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Abstract

In the Internet of Things networks deploying fixed infrastructure is not always the best and most

economical solution. Advances in efficiency and durability of Unmanned Aerial Vehicles (UAV) made

flying small cell base stations (BS) a promising approach by providing coverage and capacity bluein

environments where using fixed infrastructure is not economically justified. A key challenge in covering

an area with UAV-based small cell BSs is optimal positioning the UAVs to maximize the coverage and

minimize the number of required UAVs. In this paper, we propose an optimization problem that helps to

determine the number and position of the UAVs. Moreover, to have efficient results in a reasonable time,

we propose complementary heuristic methods that effectively reduce the search space. The simulation

results show that our proposed method performs better than genetic algorithms.
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I. INTRODUCTION

With the development of the Internet of Things (IoT), it is estimated that the number of

Internet-connected devices will increase by tens of billions over the next 5 to 10 years. IoT devices

are used in data collecting and processing for data pattern recognition, analyzing and anticipating

incidents, optimization, and eventually better and timely decision making. The massive data

transfer in IoT requires effective coverage policies considering energy consumption and data

rate [1].

Recently, UAVs have been substantially improved and used for various applications such

as public safety and creating flying ad-hoc networks [2][3]. In IoT centric scenarios, UAVs

serve as flying BSs, which provide a reliable and energy-efficient uplink for IoT [4]. Some

works, including [5] used UAVs to collect data from IoT nodes. In contrast, others defined more

duties for UAVs like traveling to the sites of sensor clusters, collecting data, and recharging the

sensors in corresponding clusters [6]. Several works have studied UAV-based resource allocation

in machine to machine (M2M) communications. In [7], to minimize the transmit power while

satisfying the rate requirements of M2M devices, an optimal scheduling and resource allocation

mechanism for cluster head UAV communications is proposed.

One of the main advantages of using UAVs as BSs lies in the fact that they do not require

fixed infrastructure and can be deployed at any point. Moreover, with a higher altitude, for

example, up to 300 meters according to DJI S900 characteristics [8], they communicate with the

line of sight (LoS) and are less affected by channel disorders. Additionally, drones can change

their positions depending on the circumstances to increase the quality of services and reduce the

interference to enhance the percentage of covered users. It should be noted that with an increase

in the coverage area and number of drones, in aggregate more data rate will be allocated to

the users. However, the affordability and availability of drones, their path design, allocation of

resources, and energy consumption are prompting some severe financial and practical challenges

[8].

In this paper, we propose a mathematical model for optimum positioning of UAVs 1 as a

kind of aerial BS to cover IoT nodes and collect data from them. The benefits of our model

are twofold; our approach minimizes the number of UAVs, and also selects the best available

1Although UAV and drone have small differences, these two terms have been commonly used interchangeably. Similarly, in

the rest of this paper, we use the terms UAV and drone interchangeably.
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positions from given candidate points to minimize the aggregate distance of IoT nodes form

UAVs. Additionally, it considers covering at least a target percentage of users and provides their

required data rate. We investigate the performance of our model using three different groups of

candidate points and find the best strategy.

The rest of this paper is organized as follows, related works are discussed in Section II, then in

Section III we introduce the mathematical model of the main problem. In Section IV, proposed

problem formulation and problem-solving approaches are discussed. The implementation results

and comparison between the three different modes of determining the candidate points are

investigated in V and then Section VI presents our conclusions.

II. RELATED WORKS

In the literature, although UAV placement in 5G is mostly discussed, there are a few articles

considering it in the IoT environment. In this work, we focus on this understudied but important

area. Considering the decision on the UAVs altitudes in the articles, we can divide the related

works into two groups, two-dimensional (2D) and three-dimensional (3D) placement. Also, if

we look at the number of UAVs considered in previous works, the literature is divided into two

groups of single and multiple UAVs. In the following, we will review related works based on

these categories.

In [9], initially, the optimal altitude of a drone small cell for maximum coverage and minimum

required transmit power is derived. Then the problem of providing a maximum coverage using

two UAVs is investigated in interference free and full interference scenarios. The authors found

the optimal altitude of the UAVs and their position in both interference free and full interference

scenarios. They found the optimal distance between two UAVs to minimize the interference.

In [10] using brute force search, the optimum positions of UAVs are attained to deal with the

disaster and improve the public safety. Additionally, [11] has suggested an active placement

method for cache-enabled drones according to the message contents in order to make a better

quality of experience (QoE). In this technique, a drone forecasts the contents based on a model,

such as caching approach can diminish the latency of data packet transmission. Authors of [12]

represent a method that finds the optimum 3D location of UAVs, which are equipped with small

cell BSs with directional antennas using circle packing theory, so that the overall coverage of the

region is maximized. In [13], the path and optimum position of several UAVs as aerial stations

for collecting data in IoT has been investigated by exploiting the framework of optimal transport
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theory. In [14], the authors have considered complementing the capacity of current terrestrial

macro BSs network by dynamically placing UAVs. They proposed two data field clustering

algorithms in which existing terrestrial base stations do not satisfactorily address some fields.

The authors of [15] proposed a polynomial-time algorithm for mobile BS placement where

UAVs are placed sequentially along a spiral path to cover ground terminals (GTs) until all GTs

are covered. In [16] a proactive drone-cell deployment framework has been recommended for

overload reduction, which is initiated from the flash crowd in 5G. This approach assumes the

cell placement as a clustering problem and considers users covered by each UAV as a cluster.

Situating a UAV in the center of each cluster leads to the drone-cell to have the minimum total

squared distance with all cluster members. Finally, a constraint bisecting k-means method for

solving the drone placement problem has been proposed. Traffic models have been similarly

studied for three social activities, including the stadium, parade, and gathering. In all the works

mentioned above, UAVs are placed in a 2D plane with a fixed height. It should be noted that

2D placement of UAVs is as important and challenging as 3D placement, and it is especially

more popular and efficient when dealing with a larger number of UAVs.

The goal of [17] is to maximize the coverage of a single UAV with base station 3D positioning

and the bandwidth allocations to each user. The authors proposed a search algorithm to solve

the problem and reduce the complexity, which is NP-hard due to being a Mixed Integer Non-

Linear Programming problem. In [18], authors investigate a framework to provide a correlation

between the supply and flash crowd traffic demands in 5G. They design a drone-cell assisted

communication framework in 5G networks to boost communication coverage on flash crowd

traffic. It explores the prediction and operation control schemes to identify the appropriate number

and locations of drone-cells and employs the SDN technology to integrate/disintegrate drone-cells

seamlessly.

The authors in [19] investigated the problem of user-demand-based UAV assignment over

geographical areas subject to high traffic demands using a cost function based on the neural

network. Additionally, [11] suggested an active placement method for cache-enabled drones

according to the message contents to make a better quality of experience (QoE). In this technique,

a drone forecasts the contents based on a model; such a cache can reduce the latency of

data packet transmission. In [20], finding optimum cell boundaries and placement locations

for multiple non-interfering UAVs has been studied. The purpose of this paper is to minimize

total transmission power. [21] exhibits an analytical model for the discovery of an optimum
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height for UAVs to maximize the coverage area.

In [22], the minimum required number of drones and their optimum 3D position for covering

users has been calculated. In this work, a drone acquires its coverage range by changing its

altitude based on the density of users and with the purpose of reducing interference with the

other small cells and also users. As the drone lowers and increases its height in the denser and less

dense regions, respectively. [23] has provided a method of optimum 3D placement according to

the backhaul in the two modes of user-centric and network-centric. This method examines drone

robustness after selecting its location and coverage region. In [24], an algorithm is proposed

that finds the optimum location of a UAV in two dimensions with the purpose of maximizing

the number of users, while their consuming energy for the transmission is minimized. [24] has

also obtained the optimum 3D location of UAVs for maximizing the number of covered users.

Besides all the information above, the authors of [25] have presented an approach for finding

the optimum 3D position of a drone-cell in which the number of served users is increased by

satisfying signal-to-noise ratio (SNR) requirements.

[26] solved a joint 3D positioning and task offloading decision problems for UAV cloudlets

in order to provision IoT services with strict latency requirements. It proposed an efcient meta-

heuristic solution based on the motion of the ions optimization algorithm to solve the main mixed-

integer problem. In [27] a UAV, location and user association problem from a load balancing

perspective is investigated. Firstly, a clustering method to place UAVs is introduced. Then, a

user association strategy is proposed where the optimization task is to minimize the maximum

traffic demand of sub-regions with constraints on the capacity and the shape of sub-regions. A

UAV positioning algorithm using the method of backtracking line search is proposed to refine

the system’s load balance. Finally, the altitude of each UAV is adjusted to decrease the power

consumption of the system. By invoking user association and location algorithms, the results of

UAV positions are near optimum. [28] presented an overview of optimization approaches to solve

the location problem of UAV base stations. In addition to carefully reviewing the literature, [28]

presented a general form of mathematical formulation for flying base stations location problem.

Most of the literature modeled the UAV positioning problem with few constraints and approx-

imately solved it with heuristic or meta heuristic algorithms. Most of the works also consider

few users to serve and few UAVs (mostly one or two UAV) to deploy. In this work, we scale up

the problem by considering a large number of users, and both coverage and data rate constraints

together. We also solve the problem with an exact method. Main contributions of this work are
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summarized as follows:

• Proposing a new approach to solve the optimal UAV positioning problem while considering

coverage and data rate parameters,

• Finding candidate points for the proposed optimization model in the form of mesh refine-

ment,

• Appropriate selection of UAV numbers with the aid of a bi-section technique, and

• Finding an upper-bound for the required number of UAV using greedy algorithm.

III. SYSTEM MODEL

In this work we consider that each UAV can fly in a predefined altitude and due to its backhaul

limitations it can serve a limited number of users/IoT sensor nodes2. To use fewer UAVs, it’s

better to deploy them in dense areas and minimize the distance of the UAV from its covered

IoT nodes. Hence this is a bi-objective optimization problem which minimizes the number of

UAVs and the distance between users and the UAV.

In this problem, we want to find the optimal location of UAVs which are covering users. There

are two approaches to solve this NP-hard problem, metaheuristic algorithm, and mathematical

programming. In mathematical programming, with small dimension cases, we can use methods

like branch-and-bound or cutting plane approach to solve the problem optimally in efficient time.

Considering a fixed altitude for UAVs, the solution space for locating UAVs is a continuous 2D

space. In order to reduce the dimensions of the problem, we discretize the continuous space.

In this paper, we start with a fixed number of UAVs (P ), model the problem of finding

an optimal location for P UAVs, and solve it by a solver accurately in each iteration of the

bi − section algorithm. By doing so, we reduce a bi-objective optimization problem to a bi −

section and solve a single-objective optimization problem in each iteration. We discuss finding

the optimal P later in IV

Finding P optimum position to place P UAVs in discrete space is an instance of P -median

problem, which is a well-known problem in the field of location problems [29]. The P -median

problem is locating P facilities to minimize the demand weighted average distance between

demand nodes and the nearest of the selected facility. It also includes the capacitated and

2In the rest of this paper we use users and IoT sensor nodes (nodes) interchangeably
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Fig. 1: A possible scenario of users covering

uncapacitated facility location problems. Since each UAV has a specific capacity, in this case,

we model the problem as a capacitated P -median problem.

In the P -median problem, the position of candidate points to locating facilities is known.

We consider the points that we obtain from the discretization of two-dimensional space as the

candidate points. P -median is an NP-hard problem. Although by applying a discrete setting

on the two-dimensional space still face an NP-hard problem, which trying to solve it more

efficiently by an intelligent discretization of the two-dimensional space. To prevent the effect

of position noises and measurement errors, we assume a normal distribution noise for users’

positions error. Therefore, in general, the distance between UAVs and users will not be affected.

We also assume that DBSs use dynamic channel allocation or dynamic frequency selection

methods for interference avoidance. In Fig.1, we present a considered system in which the users

covered by two UAVs.

IV. PROBLEM FORMULATION AND PROPOSED METHOD

To model the placement problem as an optimization problem, our objective is to find the

optimum position of P UAVs in a way that the total distance of users from their covering UAV,

such that at least α percent of users are covered, is minimized. In this problem, we assume that

node coordinates, candidate points, the data rate of each small cell, and the data rate required

by each node are known as denoted in Table I.
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TABLE I: Using parameters in the mathematical model

Parameters Description

DR The sum data rate covered by each small cell

DRUj Required data rate of node j

I Candidate points set for deploying UAVs

J Users set

dij The distance of UAV i from node j

α Minimum percentage of requested coverage

R Coverage radius of each small cell

mbi Mobile Base station i

P The number of UAVs that should be deployed

D The number of candidate points for UAV deployment

U The total number of users

The objective function is defined to minimize the total distance of users from UAVs to deploy

UAVs in optimum places. To achieve this, we need to find out which nodes should be served

by which UAV; in other words, map each IoT node to a UAV. This is done by xij , which is

equal to 1 if node j served by UAV i and 0 otherwise. As mentioned, we discretized the search

area; thus, the UAVs will be positioned on a set of finite candidate points. In the optimization

problem, we denoted the candidate points with mbi, which becomes 1 if ith candidate point is

selected for UAV deploying.
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min
x

∑

i∈I

∑

j∈J

dijxij (1a)

s.t. xij ≤ mbi, ∀i ∈ I, ∀j ∈ J (1b)

D∑

i=1

xij ≤ 1, ∀j ∈ J (1c)

xij = 0, ∀i ∈ I, j ∈ J, di,j > R (1d)

U∑

j=1

DRUjxij ≤ DR, ∀i ∈ I (1e)

D∑

i=1

mbi = P (1f)

U∑

j=1

D∑

i=1

xij ≥ αU. (1g)

In our formulation, (1b) states that node j can only use the candidate point i’s service if that

point is selected for the UAV deployment. It is clear that if candidate point i is not selected for

UAV deployment, it will not be available to provide service to any node. (1c) states that each

node can get the service from only one UAV. Since xij is binary variable, constraint (1c) utmost

allows one of them to get 1. (1d) does not let the nodes that are out of the coverage range of one

small cell to get the service from it. (1e) refers to the limited data rate of each small cell. The

total data rate of nodes that receive the service from i-th UAV should not be more than the data

rate of the small cell itself. (1f) lets to deploy only P UAVs. Section 5 discusses how to specify a

P value that is appropriate to the cost as well as the quality of the user’s service. (1g) states that

the ratio of the covered nodes to the whole nodes is greater than α. This constraint guarantees

that at least α percent of users will get the service. Also (1e) and (1g) guarantee that each UAV

serves with a maximum data rate capacity. (1d) and (1g) are not in original P -median model.

Since these constraints are like covering problem constraints, our model will be a combination of

two NP-hard problems, covering and P -median. With α = 1 in (1g) proposed model will merge

to a P -median model. Therefore, finding the optimum position is also an NP-hard problem.

Knowing that we cannot reach the optimum solution for an NP-hard problem in polynomial

time, to have an operational solution, heuristic and meta-heuristic methods are used. Also,

reducing the problem to a smaller one, and finding the exact solution is another approach that
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we considered. Since the number of candidate points affects the problem complexity, we try to

reduce our NP-hard problem to a smaller one by intelligently defining the set of candidate points

and solve the problem exactly.

After modeling the problem, we should answer the following questions:

1) What is the best set of candidate points for deploying UAVs? As seen in describing model

parameters in Table I, in this kind of modeling, the candidate points set (I) must be given to

the model for deploying UAVs.

2) What is the optimal appropriate value for the number of UAVs (P )?

A. Finding a set of candidate points

In our model, we need to provide a set of candidate points. With this type of modeling and

considering candidate score for a finite number of points on the page, the main optimization

problem, which is the selection of P points from an uncountable number of points on the surface

is converted to an integer problem to select P points (equal to the number of UAVs) from a

large but finite number of candidate points.

We propose three strategies for selecting candidate points. In the first strategy, the position of

the nodes is presented as candidate points. In the second strategy, we find candidate points by

a simple mesh, and in the third, we find out candidate points based on the node positions with

a smart meshing.

1) On Users: Nodes positions are selected as a set of candidate points for the deployment of

the small cell. This strategy has been considered due to excluding the chance of being nominated

from points where the user is not there. When there are many nodes, the number of candidate

points increases relatively, and achieving the solution of P -median will take time.

However, if a part of the environment is empty of the user, there will be no points for

nominating on that coordinate. Besides, if more than one node is located near a coordinate, this

point of the surface will be announced several times as a candidate and produce some identical

form of constraints. To prevent this problem, it can be considered distinctive points of node

positions as candidate points.

2) Simple mesh: In this approach, we mesh the surface and give the intersection points of

horizontal and vertical lines as candidate points to the problem. Length and width of mesh cells

do not depend on the node positions and select in such a way that if the nodes are located at
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the maximum distance (Fig.2a), cover all of them. It means that if users are in the worst state,

each cell of simple mesh contains one user.

The length and width of the mesh are specified here, and as shown in Fig.2b for the other

nodes placement in the surface, this mesh is still used. Although this approach has a simple

calculation, high-density and low-density of the points do not affect meshing.
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Fig. 2: Simple meshing with different user distributions

3) Smart mesh (Mesh refinement): this type of meshing completely depends on the node

positions. In this case, when the density of each cell exceeds a distinct value (for example,

one node in every 10 m2), we have to refine it. This means that we divide that cell into four

smaller ones and add created intersections to the candidate points set (Algorithm 1). The density
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(a) step 1 (b) step 2

(c) step 3 (d) step 4

Fig. 3: Mesh Refinement steps

parameter of this meshing gets two different values. For the big size cells, in order to prevent

quick stop and having more numbers of candidate points, we consider a smaller density parameter

than the parameter of smaller cells. This is because of nodes’ density and distribution in bigger

cells are less than smaller ones. Considering single parameter in the Algorithm 1, candidate points

can not cover all nodes if the parameter is too high. Otherwise, the algorithm will not stop, and

dividing into smaller regions will continue forever. Mesh refinement provides more candidate

points for denser regions to deploy UAVs. In Fig.3, the mesh refinement on a rectangular region,

where the nodes are heterogeneously distributed, is presented. At first, the whole environment is

considered as a cell; this cell marks by 1 (Fig.3a). The cell’s density is compared with the density

parameter; if it is dense, we divide the cell into four smaller cells (Fig.3b). This procedure will

be done for all cells until no dense cell remains (Fig.3c-3d).

Although this kind of finding the candidate points needs a little more time than the preceding

two methods, considering the node density during the meshing is one of its strengths.
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Algorithm 1 Mesh Refining

k ←− 1;

for (each node i)

node label(i) ←− 1;

end for

while ( k ≤ number of cells)

if (cellk is big )

density parameter = a;

else

density parameter = b;

end if

while ( total number of nodes with label k
area space of cellk

≥ density parameter)

t ←− total number of cells;

divide cellk into four equal cells;

mark new cells with k, t+ 1, t+ 2, t+ 3 ;

update the node labels according to its cell mark;

end while

k ←− k + 1;

end while

B. Finding optimal P

Practically, we need a suitable P before solving our mathematical model. The proposal of

this paper for finding the optimal P is following as: Firstly, we need to find Pmax. In fact, Pmax

is a value that guarantees the problem based on this value for P is feasible. Then, the space of

[1, Pmax] is explored by binary search. It means actually, we solve the problem’s mathematical

model at most logPmax

2 times.

The most straightforward choice for Pmax is the number of nodes. However, in order to

increase the efficiency and reduce the search space, we propose a greedy algorithm to find a

suitable Pmax, which its steps is described in Algorithm 2. In this greedy algorithm, first, we

arrange the nodes in the order of the number of neighboring nodes in descending order, then we

put a DBS on the first dense node. As long as the small cell’s data rate allows, nodes that are in
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the range of the DBS are assigned to the small cell. Then we reorder the remaining nodes and

continue the process until all nodes are covered. We can also reduce search space to [Pmin, Pmax]

which Pmin is obtained from equation (2).

Pmin =
α ∗NumberofUsers ∗Meandatarate

UAVdatarate

(2)

Lemma 1. Pmin in equation (2) is a lower bound for the number of UAVs required to cover α

percent of users with specified data rate.

Proof. Suppose UAVs have no limit on the coverage radius. The number of needed DBSs, in

this case, will not be more than the number of required DBSs when they have a limited coverage

radius. Without affecting the generality, suppose that

DRU1 ≤ DRU2 ≤ · · · ≤ DRUN

where DRUj is required data rate for user j and N is the number of users. By covering users

with less DRU , it can reach α percent of users’ coverage with fewer UAVs. So the minimum

number of UAVs to cover α percent of users is equal to
∑αN

j=1 DRUj

UAVdatarate

But since we do not have exact DRU values when calculating the lower bound, we use the

average of distribution which is estimated for the requested data rate instead. So we have:

Pmin =

∑αN

j=1 Meandatarate

UAVdatarate

=
α ∗N ∗Meandatarate

UAVdatarate
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Algorithm 2 A greedy algorithm for finding Pmax

Mark all nodes as uncovered

for ( each node i )

A(i) ←− the number of nodes in R-radius of node i;

end for

while ( all nodes are not covered )

i0 ←− arg max A;

put a UAV at point i0;

while ( data rate of the small cell has not reached )

assign its around nodes to the small cell;

mark assigned node as covered;

A(i0) ←− 0;

end while

end while

After choosing one of the candidate points methodologies, we find Pmax using Algorithm 2.

Then we calculate Pmin, then we solve the problem of locating p = Pmin+Pmax

2
UAVs by solving

the mathematical model using Cplex3 [30]. If the mathematical model has a feasible solution

and α percent of the nodes are covered, we update Pmax = p and otherwise update Pmin = p,

then resolve the problem of locating p = Pmin+Pmax

2
UAVs. We continue this process while Pmax

is larger than Pmin. The solving procedure of the proposed optimization model is represented in

figure 4.

C. Metaheuristic approach

In the next section, we compare the proposed mathematical model with the genetic algorithm

(GA). In fact, in each iteration of the bi−section algorithm, instead of solving the mathematical

model of locating p UAVs, the problem is solved by the genetic algorithm presented in [31]. If

the solution is feasible, the bi− section algorithm decreases P . Otherwise, P increased, and the

genetic algorithm reruns for the updated P . In the following, we discuss our benchmarking GA

briefly.

In GA, each feasible solution is represented as a chromosome that has a certain number of genes.

3A solver software that is commercially available.
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In our approach, each chromosome has P gens, where P is the number of UAVs, and the value

of each gene denotes the index of a candidate point.

The procedure of finding how good (fit) each solution (chromosome) is called fitness evaluation.

In order to find the fitness of a chromosome, it must first determine which nodes are assigned

to each gene (selected candidate point) in a chromosome.

In the genetic algorithm, presented in [31] fitness procedure tries to assign each node to the

nearest selected candidate point. Since each drone has a fixed bandwidth, some nodes will have to

be assigned to second, third, and other nearest candidate points. Suppose there is an assignment

conflict, for example, a candidate point can serve to only one more node, but this candidate

point is the nearest for two nodes. The procedure prefers to assign the node that would be

most intolerant if it assigned to the second nearest candidate point. The difference between the

two distances determines the intolerance of a node, distance between the node, and the nearest

candidate point and distance between the node and the second nearest candidate point. Once

the assignment procedure complete, the fitness of a chromosome can be computed. In our case

for a chromosome, it is likely that less than 90% of the nodes are within the allowed range of

selected candidate points. In this case, by adding a large number to the fitness, we try not to

select the chromosome with this condition, as it will denote an infeasible solution.

After determining the fitness of each chromosome in the initial population, the best chromo-

somes are selected to generate a new generation. We can use two types of selection schemes.

Proportionate-base selection picks out individuals base upon their fitness relative to the fitness

of other individuals. Ordinal-base selection select individuals upon their rank in population. In

this paper, we use proportionate-base selection. Finally, a new generation is created by applying

the crossover operator on the selected chromosomes. Crossover is a recombination operator that

proceeds in three steps:

• Select two chromosomes for mating at random.

• Select a cross site at random along a chromosome length.

• Swap position values between two chromosomes.

After repeating the whole process for a predetermined number of generations, the best chromo-

some in the last generation will be select as the best solution.
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TABLE II: Test parameters for evaluating the problem model

Parameters Description

Region 500× 500

numberofnodes 200, 300, 400, 500

α 90%

J Users set

dij The distance of UAV i from node j

α Minimum percentage of requested coverage

R 40, 60m

UAVdatarate 20Mbps

GeneticPopulation 1000

GeneticSteps 40

V. NUMERICAL RESULTS

A. Test System

In this section, we look at the implementation results of the optimization placement model for

UAVs using the three presented approaches and GA. For simulation, we consider a 500 × 500

meters area with scenarios including 500, 400, 300, and 200 nodes with four different distributions

from dense to scattered using Poisson Point Process. In this optimization problem, we want to

achieve the minimum number of UAVs for covering at least 90% of users (α = 0.9) according to

the quality constraints. Additionally, the data rate of each UAV assumed 20 megabit per second,

which is the limitation of the sum of covered users’ uplink, and their flying altitude is 40 and 60

meters. Here we considered elevation angle of 45 degrees to the coverage radius would be 40 and

60 meters, respectively, which is related to the DJI drone specifications and power consumption.

Pmax obtained through implementing Algorithm 2 on the data of nodes while the minimum

number of possible UAVs to cover users’ data rate has been achieved according to equation (2).

These parameter values for each scenario are shown in table II.
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Based on implementing the bi-section algorithm in order to find the optimal P , we get the

lowest necessary UAVs with at most log
(Pmax−Pmin)
2 times execution of the optimization model.

Also, the population of GA is 1000, and the number of steps is equal to 40. Moreover, candidate

points given to the GA are reached from the simple meshing of the surface using the smallest

size of mesh refinement cell. All of these parameters are shown in table II. For time consumption

we ran algorithms and Cplex studio IDE, for solving proposed mathematical model, on a system

with 12GB RAM and 2.4GHz Core-i5 CPU.

B. Results

In the following, we compare these three approaches of candidate points’ selection as inputs of

the optimization problem with each other and with the results of the GA in each scenario. Fig.5

illustrates how UAVs are deployed via solving the optimization problem that derives candidate

points with the proposed refined mesh method.

Figure 6 compares the essential UAV numbers for covering 500 users. All suggested methods

should cover more than 90% of nodes due to existing constraint (1g). Although one of the goals

is to use the lowest number of UAVs, all three methods of finding candidate points cover at least

90% of nodes. These results show that even though the mesh refinement method covers the same

number of nodes, it needs fewer UAVs to cover them. In many scenarios, the number of required

UAVs is equal to the least possible number of UAVs covers α% of users, and it is clear that this

number is the optimum solution of the problem. In others, because of nodes distribution, it is

not possible to cover all nodes with the number of UAVs obtained from equation (2).

Figures 8a-8c present number of drones required with 40 meter altitude to cover 200, 300

and 400 nodes with two different distributions PPP with λ = 2000 and scattered. As shown in

these figures, our proposed method needs fewer UAVs to cover nodes comparing with GA. Also

figures 8d-8f shows results of covering nodes with 60 meter altitude drones. In this scenario,

GA needs more UAVs too. The difference in the outcome of the different methods of selecting

the candidate points in our proposed method is also less enough to be neglected. As seen, the

refined mesh is more successful than other methods due to finding high-density points with less

number of UAVs.

The standard deviation of the number of drones with different altitudes is shown in figures

6 and 8, which illustrate that in both altitudes, the results of smart mesh for number of DBSs

have less deviation from the average. Therefore it is the most reliable method for determining
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candidate points to solve the optimization problem. To compare with the lower bound, which

is calculated from equation (2), figure 7 shows that in users’ dense distributions, which are

λ = 20 and λ = 200 the results of the optimization model is equal to the lower bound. In other

distributions because of users’ positions and their distance from each other more UAVs needed

to cover them. However, the smart mesh method requires the least possible UAVs to cover users.

Figure 9 shows a comparison of mentioned methods established upon data rate that they

covered in different distributions for 500 users. Similar to Fig. 8, figures 10a-10c and 10d-10f

represent mean data rate served by each small cell to 200, 300 and 400 nodes with 40 and 60

meter altitude drones, respectively. According to this comparison, in overall, the refined mesh

method has the best operation because of having more average data rate in each small cell,

consequently, using UAVs more efficient and also covering more data rate using less UAVs. In

a condition that the candidate points have coordinates exactly like the nodes, a better operation

than simple mesh is expected, because high-density locations have more chance for deploying

UAVs.

The comparison of these methods in terms of execution time shows that the refined mesh

method obtained the optimal answer much faster than the others on average. The average execu-

tion time for running each epoch of our method using mesh, smart mesh, and on user candidate

point strategy is 165689.44, 14790.16, 16230.25 milliseconds(ms) respectively. Meanwhile, each

epoch of GA took 87434.94 ms on average.

To compare memory usage, one of the most effective factors in the amount of memory usage

for each of the mentioned strategy is the number of branches and cuts in BranchandCut

algorithm in the CPLEX solver. The number of decision variables in the mathematical model

has a high impact on the number of branches. Since the number of decision variables in each

strategy has a direct relation to the number of candidate-points, the method which produces fewer

candidate points is expected to occupy less memory. Because of the smart offering of candidate-

points in the smart mesh method, this method provides the lowest number of candidate-points.

On user strategy and simple mesh rank second and third in terms of the number of candidate-

points, respectively. The average amount of memory usage in mesh, smart mesh, on user and

GA are 268.3, 158.6, 206.4 and 351.7 Megabytes(MB), respectively

We ran all methods for four types of node distribution, from dense to scattered and compared

the results. These results show that our proposed method performs significantly better than GA.

We should mention that the results of our proposed method are exact, but GA cannot reach the
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exact answer. In our proposed method, different strategies to determine candidate points in some

cases have different results. But the smart mesh method overally has the best solution comparing

other methods. It is due to in different distribution scenarios the smart mesh method has the best

candidate points in terms of candidate point number, density, and position. In terms of number,

other methods always have a constant number of candidate points, and in terms of density and

position they do not decide the density and position of candidate points due to users density, but

smart mesh method determines number, position, and density of candidate points considering

these terms. This decision leads to have better and more reliable results in less execution time.

To solve the optimization problem, the smart mesh method is reached to the ideal answer of

UAV positions in less time compared to the others. In addition to using less number of UAVs

to cover nodes, it also supports more average data rate. The lower execution time affects in a

demanded higher number of UAVs. Moreover, attaining the appropriate number of UAVs needs

more execution time.

VI. CONCLUSION

In this paper, to determine the positions of UAVs in the desired environment, a mathematical

optimization model based on P -median has been proposed. Considering that solving this problem

is not possible at a reasonable time, to get the P value, which is the number of UAVs, the surface

discreted and the bi-section method has been used. P -median needs candidate points to select P

points from them. Three methods have been suggested for candidate points, including exploratory

on user, simple meshing, and mesh refinement (smart meshing). After implementing simulation

and solving the optimization problem, according to the acquired results, it is generally evident

that the refined mesh works better and reach the optimum solution based on less number of

UAVs and more covered data rate.
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(c) 400 nodes and 40m UAV altitude
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(e) 300 nodes and 60m UAV altitude
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Fig. 8: Mean drone number required in other different scenarios
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(c) 400 nodes and 40m UAV altitude
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(d) 200 nodes and 60m UAV altitude
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Fig. 10: Mean data rate served by each small cell in other different scenarios


