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Abstract

For a class of uncertain systems we analyze passification-based adaptive controller in the presence of small, unavoidable input
and output time-varying delays as may be present in controller implementation. We derive upper bounds for time delays such
that in some domain of initial conditions the states of the closed-loop system tend to zero, whereas an adaptive controller
gain tends to a constant value. The results are semi-global, that is the domain of initial conditions is bounded but can be
made arbitrary large by tuning an appropriate controller parameter. For the first time, we apply an adaptive controller to
linear uncertain networked control systems, where sensors, controllers, and actuators exchange their information through
communication networks. The efficiency of the results is demonstrated by the example of adaptive network-based control of
an aircraft.
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1 Introduction

In this paper we consider passification-based adaptive
controller, which proved to be efficient for stabilization
of delay-free systems. As it has been shown in [5], any
hyper-minimum-phase linear time-invariant system can
be stabilized by a static output feedback u(t) = −ky(t)
if k is large enough (for more established description
see [1]). For the case of uncertain systems an adaptive
version of this controller has been derived via the speed
gradient method [7].

While applying adaptive controller it is important to
take into account unknown unavoidable input/output
delays, which is a challenging problem [24,15]. Most of
the existing works on adaptive control deal only with
state delays, e.g. [17,18,3,25] to name a few. Adaptive
controllers for linear systems with full state measure-
ments and a constant input delay have been proposed
and analyzed in [23,4]. Passification-based adaptive out-
put-feedaback controller with a constant input delay has
been studied in [19].

Email addresses: antonselivanov@gmail.com
(Anton Selivanov), emilia@eng.tau.ac.il
(Emilia Fridman), fradkov@mail.ru (Alexander Fradkov).

Note that for linear time-invariant systems with con-
stant time-delays there is almost no difference between
an input and output delay, since the transfer function is
the same. A more challenging problem is adaptive stabi-
lization with time-varying delays, where input and out-
put delays should be treated separately. A possible way
to approach this problem is to assume that the differ-
ence between current and delayed signal is small enough
[2,20], but this assumption is restrictive and difficult to
verify.

In the present paper we suggest a simple adap-
tive output-feedback controller that stabilizes hyper-
minimum-phase systems with input and output time-
varying delays. Namely, we derive upper bounds on the
time-delays such that in a given domain of initial condi-
tions the states of the closed-loop system tend to zero,
whereas an adaptive controller gain tends to a constant
value. By changing a particular controller parameter
the domain of acceptable initial conditions can be made
arbitrary large leading to semi-global stability (see
Remark 2). Moreover, we consider fast-varying delays
(without any constraints on the delay-derivatives). This
allows to apply, for the first time, an adaptive controller
to linear uncertain networked control systems, where
variable sampling intervals and communication delays
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are taken into account (see Section 4). Some prelimi-
nary results (without input delays) have been presented
in [22].

Notations: Throughout the paper the superscript “T”
stands for matrix transposition, Rn denotes the n di-
mensional Euclidean space with vector norm ∥ ·∥, Rn×m

is the set of all n×m real matrices, the notation P >0
for P ∈ R

n×n means that P is symmetric and positive
definite, λmin(P ) and λmax(P ) stand for the minimum
and maximum eigenvalues of the matrix P , respectively.
The symmetric elements of the symmetric matrix will
be denoted by ∗. The set {0, 1, 2, . . .} is denoted by Z+.

2 Preliminaries and problem formulation

2.1 Preliminaries: Passification method

For non-delay linear time-invariant systems passification
method and the corresponding design of an adaptive
controller are based on Passification lemma that we state
below.

Definition 1 For given matrices A ∈ R
n×n, B ∈ R

n×1,
C ∈ R

l×n, g ∈ R
l×1 a transfer function gTW (s) =

gTC(sI−A)−1B is called hyper-minimum-phase (HMP)
if the polynomial ϕ(s) = gTW (s) det(sI −A) is Hurwitz
and gTCB is a positive number.

Lemma 1 (Passification lemma) [6] Let the matri-
ces A ∈ R

n×n, B ∈ R
n×1, C ∈ R

l×n, g ∈ R
l×1 be given.

Then for existence of P ∈ R
n×n and k∗ ∈ R such that

P > 0, PA∗ +AT
∗ P < 0, PB = CT g, (1)

where A∗ = A − Bk∗g
TC, it is necessary and sufficient

that the function gTW (s) = gTC(sI −A)−1B is HMP.

An appropriate value for k∗ in Lemma 1 is any positive
number such that

k∗ > − inf
ω∈R

Re
{

(

gTW (iω)
)−1
}

. (2)

See [1] for more details on Passification method.

2.2 Problem formulation

Consider an uncertain linear system

ẋ(t) = Aξx(t) +Bu(t− r1(t)), x(0) = x0,

y(t) = Cx(t− r2(t)),
(3)

where x ∈ R
n is the state, u ∈ R is the control input,

y ∈ R
l is the measurable output; Aξ is an uncertain

matrix that resides in the polytope

Aξ =
N
∑

i=1

ξiAi, 0 ≤ ξi ≤ 1,
N
∑

i=1

ξi = 1. (4)

The delays r1(t), r2(t) are supposed to be unknown and
bounded:

0 ≤ r1(t) ≤ h1, 0 ≤ r2(t) ≤ h2.

We set x(t) = 0 for t < 0. This does not affect the
solution x(t) and implies that y(t) = 0 if t− r2(t) < 0.

Denote
r(t) = r1(t) + r2(t− r1(t)). (5)

The quantity r(t) is the overall delay of the closed-loop
system. Clearly

r(t) ≤ h1 + h2 , h.

If t − r(t) < 0 then the system (3) is in the open-loop
since it has not received a signal from the controller.
Therefore, a special analysis is needed on the intervals
where t− r(t) < 0. Following [16] we assume

Assumption 1 There exists a unique t∗ > 0 such that

{

t− r(t) < 0, t < t∗,

t− r(t) ≥ 0, t ≥ t∗.

Assumption 1 has a simple physical meaning: the sys-
tem (3) starts to receive signals from the controller at
time t∗. It is clear that t∗ ≤ h. Assumption 1 is always
satisfied for slowly-varying delays with ṙ(t) ≤ 1 (since
t− r(t) is increasing) and for networked control systems
as considered in Section 4.

Similar to [1,6] we assume

Assumption 2 There exists a known g ∈ R
l such that

gTC(sI −Aξ)
−1B is HMP for all Aξ from (4).

For a given g satisfying Assumption 2 we consider the
adaptive controller

u(t) = −k(t)gT y(t),

k̇(t) = γ−2
(

gT y(t)
)2

,
(6)

where k, γ ∈ R, γ > 0.

For r1(t) = r2(t) ≡ 0 under Assumption 2 it has been
shown in [1] that solutions of the closed-loop system (3),
(6) satisfy the following property: for all k(0) ∈ R

lim
t→∞

∥x(t)∥ = 0, lim
t→∞

k(t) = const. (7)
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Our objective is to derive conditions ensuring (7) for
non-zero delays and for a certain choice of k(0).

3 Main results

The closed-loop system (3), (6) can be presented in the
form

ẋ(t) = Aξx(t)− k∗BgTCx(t− r(t))

+ (k∗ − k(t− r1(t)))BgTCx(t− r(t)),

k̇(t) = γ−2
(

gTCx(t− r2(t))
)2

(8)

with k(t) = k(0) for t < 0. Note that here ẋ(0) and ẋ(t∗)
denote right-hand side derivatives.

The idea of passification-based approach is the following.
Under Assumption 2 there exist P > 0, k∗ that satisfy
(1). Consider a Lyapunov-like function

V0(x, k) = xTPx+ γ2(k − k∗)
2.

Its derivative along the trajectories of (8) has the form

V̇0 = 2xT (t)P
[

Aξx(t)− k∗BgTCx(t− r(t))
]

+ 2(k∗ − k(t− r1(t)))x
T (t)PBgTCx(t− r(t))

+ 2(k(t)− k∗)
(

gTCx(t− r2(t))
)2

.

(9)

For r1(t) = r2(t) ≡ 0 the last two terms can be canceled

because PB = CT g. Hence, (1) guarantees that V̇0 ≤
−ε∥x∥2 for some ε > 0. The latter implies (7) (see [1]).

Remark 1 Note that the above arguments can be easily
extended to systems with state delays. Consider the sys-
tem

ẋ(t) = A0x(t) +A1x(t− r(t)) +Bu(t),

y(t) = Cx(t).
(10)

Here x, u, y are defined as previously and all matrices are
constant with appropriate dimensions. Calculating V̇0 we
obtain:

V̇0 = 2xT (t)P
[

A0x(t) +A1x(t− r(t))

−k∗BgTCx(t)
]

+ 2(k∗ − k(t))xT (t)PBgTCx(t)

+2(k(t)− k∗)(g
T y(t))2.

Since PB = CT g, the last two terms can be canceled
and the Lyapunov-based analysis of (10) is reduced to
the standard one for linear time-delay systems under
u(t) = −k∗g

T y(t). In the case of an input/output time-
varying delay such a cancelation is not possible since the
controller does not measure the current value of the state.
Therefore, adaptive control of systems with input/output
delays is much more challenging than the one under state
delays.

As alreadymentioned, if r1(t) ̸≡ 0 or r2(t) ̸≡ 0 the cance-
lation of the last two terms in (9) is not possible because
x and k depend on different time instants. Note that the
right-hand side of (9) can be considered as a quadratic
form in x(t), x(t−r(t)), and x(t−ri(t)) (i = 1, 2), where
matrices depend on the following time-varying parame-
ters:

a = k∗ − k(t),

b = k∗ − k(t− r1(t)),

c = k(t)− k(t− r1(t)).

(11)

Consider the following Lyapunov-Krasovskii functional:

V (xt, ẋt, k) = V0(xt, k) + VS(xt) + VR(ẋt), (12)

where xt(θ) = x(t+ θ), θ ∈ [−h, 0], h = h1 + h2, and

VS(xt) =

∫ 0

−h

xT
t (s)Sxt(s) ds, S > 0,

VR(ẋt) = h

∫ 0

−h

∫ 0

θ

ẋT
t (s)Rẋt(s) ds dθ, R > 0.

Here VS and VR are standard terms for systems with fast-
varying delays [11,13]. Our goal is to derive conditions

that ensure V̇ ≤ −ε∥x(t)∥2 for some ε > 0 if

|a| ≤ M∗, |b| ≤ M∗, |c| ≤ M1 (13)

for t ≥ 0, where M∗ and M1 are some fixed bounds.
Further we will show that (13) is valid for t ≥ 0 if one
choose appropriate values of k(0) and γ.

We are in a position to formulate our main result.

Theorem 1 Let Assumptions 1 and 2 hold. Given h > 0
and tuning parameters M∗ > 0, M1 > 0, k∗ > 0, let
there exist n×n matrices P > 0, S > 0, R > 0, G1, G2,
G3 such that the following relations hold:

Hi(a, b, c)

∣

∣

∣

∣

a±M∗,b±M∗,c±M1

< 0, i = 1, . . . , N,

PB = CT g,

(

R Gj

∗ R

)

≥ 0 (j = 1, 2, 3),

(14)

where

Hi(a, b, c) =
























Hi
1 H2(c) 0 H3 H4(a) hAT

i R

∗ −R R H5(a) −hG1 H7(b)

∗ ∗ −(S +R) hG2 hG1 0

∗ ∗ ∗ −h2R H6(a) 0

∗ ∗ ∗ ∗ −h2R 0

∗ ∗ ∗ ∗ ∗ −R

























,

3



Hi
1 = P [Ai −Bk∗g

TC] + [Ai −Bk∗g
TC]TP + S,

H2(c) = cPBgTC,

H3 = k∗hPBgTC,

H4(a) = k∗hPBgTC − ahPBgTC,

H5(a) = ahCT gBTP − hG2,

H6(a) = ah2PBgTC − h2(G3)
T ,

H7(b) = hbCT gBTR− hk∗C
T gBTR.

Assume additionally that

h1 ≤
M1λmin(P )

M2
∗∥g

TC∥2
. (15)

Then for any δ > 0 there exists γ > 0 such that for all
initial conditions x0, k(0) subject to

∥x0∥ < δ, k(0) ∈ [k∗ −M∗, k∗], (16)

solutions of the system (3), (6) satisfy the property (7).

Proof. See Appendix A.

Remark 2 Conditions of Theorem 1 ensure semi-global
results, where (7) is guaranteed for any δ > 0 and x0 with
∥x0∥ < δ. It follows from the proof of Theorem 1 that an
appropriate γ can be chosen from the inequality

δ2 ≤ γ2 min

{

M2
∗ e

−2ΛAt∗

λmin(P )
,
M∗

c1
,
M2

∗ − c2∗
cx

}

, (17)

where ΛA = maxi ∥Ai∥ and c1, c∗, cx are given in (A.2),
(A.3), (A.6), correspondingly. If t∗ in (17) is unknown,
one should substitute a known upper bound for t∗.

Remark 3 Under Assumptions 1, 2 due to Passification
lemma there exist P and k∗ that satisfy (1). With these
P and k∗ relations (14) are feasible for given M1 > 0
and M∗ > 0 if h is small enough. Indeed, due to (A.8)
H2 → 0 for h → 0. The same is true for H3, . . . , H7.
Then by Schur complement theorem [12, p.318] it can
be shown that Hi < 0 for R = I, S = hI, Gj = 0
(j = 1, 2, 3). When h → 0 allowable M∗ and M1 tend to
infinity, therefore, our results recover the global results
from [1] for delay-free case. Relations (14) give acceptable
bounds h1 and h2 such that (7) holds for the closed-loop
time-delay system (3), (6).

Remark 4 There is a trade-off between enlarging ofM∗,
M1 and enlarging of the delay bounds h, h1. The smaller h
is, the largerM∗ can be taken such that the LMIs (14) are
feasible, i.e. a wider choice of adaptive gain is possible.
Furthermore, givenM1, k∗ such that (14) are feasible for
M∗ they remain feasible with the same decision variables
for all M ′

∗ < M∗. The latter means that the stability is
guaranteed for the same h but for larger h1 due to (15).

Fig. 1. Networked control system.

4 Network-based adaptive control

4.1 Case study: adaptive control of networked control
systems

In this section we apply passification-based adaptive
control to networked control systems. Consider the un-
certain system

ẋ(t) = Aξx(t) +Bu(t),

y(t) = Cx(t)
(18)

with several nodes (a sensor, a controller, and an ac-
tuator) that are connected via two communication net-
works: a sensor network (from the sensor to the con-
troller) and a control network (from the controller to the
actuator). Let sk be the sequence of sampling instants:

0 = s0 < s1 < . . . < sk < . . . , k ∈ N, lim
k→∞

sk = ∞.

At each sampling instant sk the output y(t) is sampled
and transmitted via the network to the controller with a
variable delay τsck . Therefore, the updating instant time
of the controller is σk = sk + τ sck . For simplicity, we
assume that σk < σk+1, that is the old sample cannot
get to the destination after the most recent one. Then
the controller has the form

u(t) = −k(t)gT y(σk − τsck ),

k̇(t) = γ−2
(

gT y(σk − τsck )
)2
,

t ∈ [σk, σk+1). (19)

At the sampling instants σk the control signal is sampled
and transmitted through the network to the Zero-Order
Hold (ZOH) with a variable delay τ cak . Therefore, the
updating instant time of the ZOH is tk = sk+ τsck + τ cak .
We assume that tk < tk+1 and there is a known MAD
(maximum allowable delay) such that τsck +τ cak ≤ MAD.

Following the time-delay approach to sampled-data con-
trol [10,9], the resulting closed-loop system can be pre-
sented in the form

ẋ(t) = Aξx(t) +Bk(t− r1(t))g
TCx(t− r(t)),

k̇(t) = γ−2
(

gTCx(t− r2(t))
)2
,

(20)
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where

r1(t) = t− tk + τ cak , t ∈ [tk, tk+1),

r2(t) = t− σk + τsck , t ∈ [σk, σk+1),

r(t) = t− tk + τ sck + τ cak , t ∈ [tk, tk+1).

(21)

Here r(t) = r1(t) + r2(t− r1(t)). Note that r(t) satisfies
Assumption 1 with

t∗ = t0 = τsc0 + τ ca0 ≤ MAD.

Assume that

tk+1 − tk + τ cak ≤ h1,

tk+1 − tk + τ cak + τsck ≤ h,
∀k ∈ Z+. (22)

Since (20) coincides with (8), the results of Theorem 1
provide bounds for the sampling intervals and network-
induced delays. We illustrate this below by an example
of network-based adaptive control of an aircraft.

4.2 Example: yaw angle control

As an example we apply our results to the following
model of a lateral motion of an aircraft [8]:

ẋ1(t) = a1x1(t) + x2(t) + b1u(t− r1(t)),

ẋ2(t) = a2x1(t) + a3x2(t) + b2u(t− r1(t)),

ẋ3(t) = x2(t),

y1(t) = x2(t− r2(t)),

y2(t) = x3(t− r2(t)),

where x3 and x2 are the yaw angle and the yaw rate,
respectively, and x1 denotes the sideslip angle; u is the
rudder angle; yi are measurable outputs; ai and bi denote
the aircraft model parameters. We suppose that the air-
craft is controlled through a network, that is the closed-
loop system has the form (20) with r1(t), r2(t) given by
(21). Then Assumption 1 is satisfied with t∗ ≤ MAD.
Following [8] we take a3 = 1.3, b1 = 19/15, b2 = 19 and
suppose that a1 ∈ [0.1, 1.5], a2 ∈ [27, 52] are uncertain
system parameters. Then for g = (1, 1)T the transfer
function

gTW (s) =
b2s

2 + (b1a2 − b2a1 + b2)s+ b1a2 − b2a1
s(s2 − (a1 + a3)s+ a1a3 − a2)

is HMP, since for all a1, a2 from the given sets its nu-
merator is a stable polynomial and b2 > 0. Therefore,
Assumption 2 is true. For M∗ = 5, M1 = 0.4, k∗ = 4.61
conditions of Theorem 1 are satisfied with h1 = 4×10−4,
h = 10−3, γ = 25, δ = 20. To illustrate Remark 4 we
take M ′

∗ = 4 < M∗ with the same M1, k∗. This leads to
the same h but larger h1 = 6.4× 10−4.

Fig. 2. State norms for 5 different randomly chosen initial
conditions.

Fig. 3. Evolution of adaptive gains for 5 different randomly
chosen initial conditions (solid lines); the value of k∗ = 4.61
(dashed line).

In Figs. 2, 3 one can see the results of numerical simula-
tions for a1 = 0.75, a2 = 33 and five different randomly
chosen initial conditions such that ∥x(0)∥ ≤ δ = 20. We
took tk+1 − tk = 2 × 10−4, τsck = (1.5 + 0.5(−1)k)10−4

and τ sck = (5.5 + 0.5(−1)k)10−4 with MAD = 8× 10−4.
As it follows from Theorem 1, x(t) → 0 and k(t) tend to
constant values.

It is easy to prove that k∗ is an appropriate gain for the
static controller u(t) = −k∗g

T y(t) that stabilizes entire
class of uncertain systems. As one can see in Fig. 3, the
limit value of k(t) is smaller than k∗ = 4.61, which shows
an advantage of the adaptive control over the static one.

5 Conclusion

For a class of uncertain hyper-minimum-phase systems
we analyzed passification-based adaptive controller in
the presence of unknown time-varying delays in the mea-
surements and control input. If a delay-free system un-
der the controller is such that the state tends to zero,
whereas the adaptive controller gain tends to a constant
value, then our results give an acceptable bound for time-
delay such that this property is preserved within a given

5



domain of initial conditions. This domain of stability can
be made arbitrary large by changing an appropriate pa-
rameter in the adaptation law. The results are applica-
ble to networked control systems and provide acceptable
bounds for transmission intervals and network-induced
delays. This important application was demonstrated by
an example of an aircraft that is adaptively controlled
through a network. One of the directions for the future
research is extension of the obtained results to the adap-
tive control of networks.
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A Proof of Theorem 1

We analyze the dynamics of (8) separately for t ∈ [0, t∗]
(A.1) and t ∈ [t∗,∞) (A.2).

A.1 State bound for t ∈ [0, t∗]

Assumption 1 implies t − r(t) < 0, therefore ẋ(t) =
Aξx(t). Thus,

∥x(t)∥ ≤ eΛAt∥x0∥, (A.1)
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where ΛA = maxξ ∥Aξ∥. Note that

∥Aξ∥ ≤
∑

i

ξi∥Ai∥ ≤ max
i

∥Ai∥

and for appropriate ξ, ∥Aξ∥ = maxi ∥Ai∥. Therefore,

max
ξ

∥Aξ∥ = max
i

∥Ai∥.

Note that (A.1) is preserved for t < 0, hence ∥x(t −
r2(t))∥ ≤ eΛA(t−r2(t))∥x0∥ ≤ eΛAt∥x0∥. As a result, we
have

k(t)− k(0) = γ−2

∫ t

0

(

gTCx(s− r2(s))
)2

ds

≤
c1∥x0∥

2

γ2
,

where

c1 =
Λ2
C

2ΛA

(

e2ΛAt∗ − 1
)

, (A.2)

with ΛC = ∥gTC∥. By conditions of the theorem k(0) ≤
k∗, therefore k(t) − k∗ ≤ k(t) − k(0) ≤ c1γ

−2∥x0∥
2.

Equation (8) implies k(t) ≥ k(0), thus k∗ − k(t) ≤ k∗ −
k(0). Finally, for t ∈ [0, t∗) we have

|k(t)− k∗| ≤ c∗ = max
{

k∗ − k(0), c1γ
−2δ2

}

, (A.3)

where the inequality ∥x(0)∥ ≤ δ was used. Since the
right-hand side of (8) is piecewise continuous, functions
x(t) and k(t) are continuous for t > 0, therefore, (A.1)
and (A.3) are valid for t = t∗.

A.2 The bound on V̇ for t ∈ [t∗,∞) under (13)

Assumption 1 implies t − r(t) ≥ 0, therefore, ẋ(t) and

k̇(t) do not depend on x(t) with t < 0. Thus, we set
x(t) = x0 for t < 0 and consider V given by (12) (see
[16] for details).

Now we calculate the derivative of V along the trajecto-
ries of (8) for t ∈ [t∗,∞). Denote

µ(t) =
1

h

∫ t−r2(t)

t−r(t)

ẋ(s) ds, ν(t) =
1

h

∫ t

t−r2(t)

ẋ(s) ds.

Then

V̇0 = xT (t)[PA∗ +AT
∗ P ]x(t)

+ 2x(t)T k∗PBgTCh(µ(t) + ν(t))

+ 2
(

k∗ − k(t)
)

xT (t− r2(t))PBgTCx(t− r2(t))

− 2(k∗ − k(t))xT (t− r2(t))PBgTChµ(t)

+ 2(k∗ − k(t))hνT (t)PBgTCx(t− r(t))

+ 2
(

k(t)− k(t− r1(t))
)

xT (t)PBgTCx(t− r(t))

+ 2
(

k(t)− k∗
)(

gTCx(t− r2(t))
)2
,

where A∗ = Aξ − k∗BgTC. Using the relation PB =
CT g we find that

V̇0 = xT (t)[PA∗ +AT
∗ P ]x(t)

+ 2xT (t)k∗hPBgTC(µ(t) + ν(t))

− 2(k∗ − k(t))hxT (t− r2(t))PBgTCµ(t)

+ 2(k∗ − k(t))hνT (t)PBgTCx(t− r(t))

+ 2
(

k(t)− k(t− r1(t))
)

xT (t)PBgTCx(t− r(t)).

Further

V̇S = xT (t)Sx(t)− xT (t− h)Sx(t− h),

V̇R = h2ẋT (t)Rẋ(t)− h

∫ t

t−h

ẋT (s)Rẋ(s) ds.

Denote

α1 =
h− r(t)

h
, α2 =

r(t)− r2(t)

h
, α3 =

r2(t)

h
,

f1(t) =

∫ t−r(t)

t−h

ẋT (s) dsR

∫ t−r(t)

t−h

ẋ(s) ds,

f2(t) = h2µT (t)Rµ(t), f3(t) = h2νT (t)Rν(t).

Using Jensen inequality [12, p.322] we have

− h

∫ t

t−h

ẋT (s)Rẋ(s) ds = −h

∫ t−r(t)

t−h

ẋT (s)Rẋ(s) ds

− h

∫ t−r2(t)

t−r(t)

ẋT (s)Rẋ(s) ds− h

∫ t

t−r2(t)

ẋT (s)Rẋ(s) ds

≤ −

[

1

α1
f1(t) +

1

α2
f2(t) +

1

α3
f3(t)

]

.

Since Gj (j = 1, 2, 3) are such that

(

R Gj

∗ R

)

≥ 0
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it follows from Park’s theorem [21, Theorem 1] that

−

[

1

α1
f1(t) +

1

α2
f2(t) +

1

α3
f3(t)

]

≤ − [f1(t) + f2(t) + f3(t) + 2g1(t) + 2g2(t) + 2g3(t)] ,

where

g1(t) = h

∫ t−r(t)

t−h

ẋT (s) dsG1µ(t),

g2(t) = h

∫ t−r(t)

t−h

ẋT (s) dsG2ν(t),

g3(t) = h2µT (t)G3ν(t).

Using representation x(t−r2(t)) = x(t)−hν(t) we finally
arrive at

V̇ ≤ ηT (t)Wη(t) + h2ẋT (t)Rẋ(t), (A.4)

where

η(t) = (xT (t), xT (t− r(t)), xT (t− h)T , νT (t), µT (t))T ,

W =



















H1 H2(c) 0 H3 H4(a)

∗ −R R H5(a) −hG1

∗ ∗ −(S +R) hG2 hG1

∗ ∗ ∗ −h2R H6(a)

∗ ∗ ∗ ∗ −h2R



















,

with a = k∗−k(t), c = k(t)−k(t− r1(t)), H1 = P [Aξ −
Bk∗g

TC] + [Aξ − Bk∗g
TC]TP + S. Substituting right-

hand side of (8) instead of ẋ(t) into (A.4) and applying
Schur complement theorem [12, p.318] we find that, if
for i = 1, . . . ,M

Hi

(

a, b, c
)

< 0, (A.5)

with a, b, c given by (11), then ∃ ε > 0: V̇ (t) ≤
−ε∥η(t)∥2, where V (t) = V (xt, ẋt, k(t)).

A.3 Proof of (13) for t ≥ 0

Now we show that |a| ≤ M∗, |b| ≤ M∗, and |c| ≤ M1,

what will guarantee negative definiteness of V̇ . Using
estimates for |k∗ − k(t)| and ∥x(t)∥ on t ∈ [0, t∗], we
calculate

V (t∗) ≤ cx∥x0∥
2 + γ2c2∗,

where c∗ is from (A.3) and

cx = ∥P∥e2ΛAt∗ + ∥S∥

(

h− t∗ +
1

2ΛA

(

e2ΛAt∗ − 1
)

)

+
hΛARA

2ΛA

[

e2ΛAt∗t∗ +
1

2ΛA

(

1− e2ΛAt∗
)

+ (h− t∗)
(

e2ΛAt∗ − 1
)

]

,

(A.6)

ΛARA = max
ξ

∥AT
ξ RAξ∥.

By conditions of the theorem |k∗ − k(0)| < M∗. If γ is
large enough then

∥x0∥
2 <

γ2M∗

c1
.

Hence, c∗ < M∗. By increasing γ one can ensure that

∥x0∥
2 < γ2(M2

∗ − c2∗)c
−1
x ,

what will guarantee

V (t∗) < γ2M2
∗ .

Now we show that V (t) < γ2M2
∗ for t ∈ [t∗,∞). Let t1 =

min{t ∈ [t∗,∞)|V (t) = γ2M2
∗}. Then for s ∈ [t∗, t1] we

have

V (s) ≤ γ2M2
∗ ⇒

{

|k∗ − k(s)| ≤ M∗,

∥x(s)∥2 ≤ γ2M2
∗λ

−1
min(P ).

(A.7)

Since c∗ < M∗, (A.3) implies |k∗−k(t)| ≤ M∗ for t ≤ t1.
We require γ to be large enough to ensure

∥x0∥
2 ≤ γ2M2

∗ e
−2ΛAt∗λ−1

min(P ).

In this case (A.1) and (A.7) guarantee that ∥x(t)∥2 ≤
γ2M2

∗λ
−1
min(P ) for t ≤ t1. Thus, for t ≤ t1

|c| = |k(t− r1(t))− k(t)|

≤

∫ t

t−r1(t)

γ−2(gTCx(s− r1(s)))
2 ds ≤ h1

M2
∗Λ

2
C

λmin(P )
.

(A.8)
As a result, for t ≤ t1 we have:

|k∗ − k(t)| ≤ M∗,

|k∗ − k(t− r1(t))| ≤ M∗,

|k(t− r1(t))− k(t)| ≤ M1.

(A.9)

In this case conditions of the theorem guarantee (A.5)

for t ≤ t1. Therefore ∃ ε > 0: V̇ (t) ≤ −ε∥η(t)∥2. Since

V (t1) = V (t∗) +
∫ t1

t∗
V̇ (s) ds, we have V (t1) ≤ V (t∗) <

γ2M2
∗ . The latter contradicts to V (t1) = γ2M2

∗ , that
is t1 does not exist and, therefore, V (t) < γ2M2

∗ for
t ∈ [t∗,∞) and (A.9) are valid for t ≥ 0.

A.4 Proof of (7)

We have proved that ∃ ε > 0: V̇ (t) ≤ −ε∥η(t)∥2 for
t ≥ t∗. Since V (t) is a nonnegative decreasing function,
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it has a finite limit: limt→∞ V (t) < ∞. Thus,

lim
t→∞

V (t) = V (t∗) +

∫ ∞

t∗

V̇ (s) ds

≤ V (t∗)− ε

∫ ∞

t∗

∥η(s)∥2 ds.

Therefore, ε
∫∞

t∗
∥η(s)∥2 ds < ∞, i.e.

∫∞

t∗
∥x(s)∥2 ds <

∞. Boundedness of V implies boundedness of x(t) and
k(t). Therefore, ẋ(t) given by (8) is bounded and x(t)
is uniformly continuous. Then from Barbalat’s lemma
[14, Lemma 8.2] we have ∥x(t)∥ −−−→

t→∞
0. Moreover,

∫∞

t∗
∥η(s)∥2 ds < ∞ implies that there exists a finite limit

lim
t→∞

k(t) = k(t∗) + γ−2

∫ ∞

t∗

(

gTCx(s− r2(s))
)2

ds,

that is k(t) tends to a constant value.
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