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Abstract. Long-term exposure to ambient ozone (O3) is as-
sociated with a variety of impacts, including adverse human-
health effects and reduced yields in commercial crops.
Ground-level O3 concentrations for assessments are typi-
cally predicted using chemical transport models; however
such methods often feature biases that can influence im-
pact estimates. Here, we develop and apply artificial neu-
ral networks to empirically model long-term O3 exposure
over the continental United States from 2000 to 2015, and
we generate a measurement-based assessment of impacts on
human-health and crop yields. Notably, we found that two
commonly used human-health averaging metrics, based on
separate epidemiological studies, differ in their trends over
the study period. The population-weighted, April–September
average of the daily 1 h maximum concentration peaked in
2002 at 55.9 ppb and decreased by 0.43 [95 % CI: 0.28,
0.57] ppb yr−1 between 2000 and 2015, yielding an ∼ 18 %
decrease in normalized human-health impacts. In contrast,
there was little change in the population-weighted, annual
average of the maximum daily 8 h average concentration be-
tween 2000 and 2015, which resulted in a ∼ 5 % increase
in normalized human-health impacts. In both cases, an ag-
ing population structure played a substantial role in modulat-
ing these trends. Trends of all agriculture-weighted crop-loss
metrics indicated yield improvements, with reductions in the
estimated national relative yield loss ranging from 1.7 % to
1.9 % for maize, 5.1 % to 7.1 % for soybeans, and 2.7 % for
wheat. Overall, these results provide a measurement-based
estimate of long-term O3 exposure over the United States,
quantify the historical trends of such exposure, and illustrate

how different conclusions regarding historical impacts can be
made through the use of varying metrics.

1 Introduction

Tropospheric ozone (O3) is a secondary pollutant that is
photochemically formed from precursor gases. Exposure to
ambient O3 is associated with adverse health effects in hu-
mans (U.S. EPA, 2013) and reduced yields in commercial
crops (Chameides et al., 1994; Mauzerall and Wang, 2001).
These impacts have driven efforts to reduce ground-level O3

in the United States, specifically targeting peak levels of
O3 concentrations through regulations that control anthro-
pogenic precursor emissions, such as nitrogen oxides (NOx)
and volatile organic compounds (VOCs). O3 reduction ef-
forts have been widely successful in reducing peak concen-
trations (Simon et al., 2015; Lefohn et al., 2017; Fleming et
al., 2018), but impacts related to both human health and crop
yields nonetheless persist (Cohen et al., 2017; Seltzer et al.,
2018; Zhang et al., 2018; Shindell et al., 2019).

Quantifying impacts requires an estimate of exposure to
O3, which is most commonly accomplished through the use
of chemical transport models (CTMs; e.g., Anenberg et al.
2010; Silva et al., 2013; Lelieveld et al., 2015; Malley et al.,
2017; Shindell et al., 2018; Stanaway et al., 2018). CTMs
apply state-of-the-science knowledge to simulate O3 forma-
tion, termination, and transport, while also providing com-
plete spatial and temporal coverage over a particular do-
main – a desired trait for impact assessments. However, esti-
mates of exposure and impacts can vary substantially across
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CTM studies. For example, two CTM-based studies esti-
mated 2005 respiratory-related premature mortalities in the
USA using the same relative risk function (Jerrett et al.,
2009), yet yielded results that differed by ∼ 3× (i.e., 13 000
vs. 38 000; Zhang et al., 2018; Lelieveld et al., 2013). While
CTMs accurately reproduce many features of atmospheric
chemistry (Shindell et al., 2013; Hu et al., 2018), one impor-
tant issue associated with CTM-based impact assessments is
that CTMs are consistently biased high when predicting O3

concentrations (e.g., Schnell et al., 2015; Travis et al., 2016;
Yan et al., 2016; Seltzer et al., 2017, Porter et al., 2017;
Guo et al., 2018). Such biases can influence estimates of
impacts and are often amplified by nonlinear concentration–
response functions (Seltzer et al., 2018). Measurement-based
methods, including area-weighted average of nearby moni-
tors, nearest monitor, inverse distance weighting, Kriging in-
terpolation, and multiple-linear regression under a Bayesian
framework, can also be used to estimate exposure (Bell,
2006; Brauer et al., 2008; Marshall et al., 2008; Chang et al.,
2010; Seltzer et al., 2018). However, a notable limitation of
such methods stems from the sparse spatial coverage of mon-
itoring sites. While these limitations might be minor in ar-
eas with dense monitoring, such methods can become insuf-
ficient as the distance from monitors increases (Bell, 2006).

O3 exposure trends are also of great interest to researchers
and air quality managers. To accurately model trends of O3

exposure, many dimensions of variability must be captured.
For the annual average of the maximum daily 8 h average
O3 concentration (hereafter MDA8), a metric that has been
used to quantify cause-specific long-term O3 exposure asso-
ciations in epidemiological studies (e.g., Turner et al., 2016;
Lim et al., 2019), the O3 diurnal and seasonal cycles must be
accurately simulated over time. CTM evaluation studies also
report the existence of seasonal, spatial, and diurnal variabil-
ity in model performance (Cooper et al., 2014; Schnell et
al., 2015; Seltzer et al., 2017; Lin et al., 2017; Guo et al.,
2018; Strode et al., 2019; Young et al., 2018), which can
lead to conflicting conclusions regarding trends in exposure.
For example, Zhang et al. (2018) report a ∼ 9 % decrease in
the population-weighted, daily maximum 1 h exposure con-
centration of O3 in the US warm season between 1990 and
2010. Meanwhile, a separate study reported no change in the
population-weighted, daily maximum 8 h exposure concen-
tration of warm-season O3 over those same 2 decades (Stan-
away et al., 2018). Since monitoring data are sparse, quan-
tification of trends using observations requires either con-
tinuous, long-term measurement data at a particular site or
the aggregation of observations into regions (e.g., Southeast,
Northeast, Great Plains) and/or urban–rural–suburban classi-
fications. Many studies have indeed made use of such data to
assess O3 trends (Jaffe and Ray, 2007; Cooper et al., 2012,
2014; Parrish et al., 2012; Simon et al., 2015). The recent
publication of the Tropospheric Ozone Assessment Report
(TOAR) database (Schultz et al., 2017) has created a rich ob-
servational dataset and further expanded the number of such

assessments (e.g., Chang et al., 2017; Gaudel et al., 2018;
Lefohn et al., 2018; Fleming et al., 2018; Mills et al., 2018b).

In this study, we applied artificial neural networks (ANNs)
and the TOAR database to estimate a suite of O3 impact met-
rics related to human health and crop yield over the contigu-
ous United States from 2000 to 2015 at 0.5◦

× 0.5◦ resolu-
tion. Specifically, we took advantage of the improved long-
term coverage afforded by the TOAR database to develop a
framework that empirically estimates O3 exposure with com-
plete spatial and temporal coverage over the United States.
ANNs have been previously used to make O3 predictions
(Ruiz-Suárez et al., 1995; Yi and Prybutok, 1996; Comrie,
1997; Gardner and Dorling, 2000; Dutot et al., 2007; Di et
al., 2017), but generally at the monitor or city level. Our
main goal was to better quantify the magnitude and trends
of population-weighted and agriculture-weighted long-term
(i.e., months, annual) O3 exposure in the USA over many
consecutive years and use those estimates to generate a
measurement-based assessment of impacts and trends on hu-
man health and crop yields. In addition, we tested and applied
the ANN to meteorologically adjust exposure predictions,
thus eliminating a substantial proportion of the short-term
variability and enabling a separate quantification of long-
term O3 exposure trends.

2 Methods

2.1 Observational dataset and impact metrics

Daily O3 observations spanning 2000–2015 from the Uni-
versity of New Hampshire Air Quality and Climate Program
(Airmap), the U.S. Air Quality System (AQS), the Canadian
Air and Precipitation Monitoring Network (CAPMoN), the
U.S. Clean Air Status and Trends Network (CASTNET), the
Global Atmosphere Watch (GAW), and the Canada National
Air Pollution Surveillance (NAPS) monitoring networks in
North America were retrieved from the Tropospheric Ozone
Assessment Report (TOAR) database (Schultz et al., 2017).
The reader is referred to Schultz et al. (2017) for a detailed
description of these networks, including variations in net-
work area type (i.e., urban vs. suburban vs. rural) and number
of monitors. These daily observations were used to calcu-
late two human-health- and two crop-yield-relevant averag-
ing metrics. The first human-health metric is from the Jerrett
et al. (2009), hereafter J2009, long-term O3 exposure epi-
demiology study. Using data from the American Cancer So-
ciety Cancer Prevention Study II (ACS CPS-II) cohort, J2009
estimated changes in cause-specific mortalities attributable to
incremental changes in the April–September average of the
daily 1 h maximum O3 concentration (hereafter MDA1). The
second human-health metric is from the Turner et al. (2016),
hereafter T2016, long-term O3 exposure epidemiology study.
T2016, using an expanded version of the ACS CPS-II cohort
that included more follow-up years, a larger population, and
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more events (i.e., deaths), reported changes in cause-specific
mortalities attributable to incremental changes in the annual
average of the maximum daily 8 h average O3 concentration
(hereafter MDA8). To elucidate the influence of the underly-
ing seasonal trends on the MDA8 metric, we also subdivided
this annual metric into 3-month seasonal windows (i.e., sum-
mer: June–August; spring: March–May). These seasonal di-
visions feature the following labels: MDA8-MAM (spring),
MDA8-JJA (summer), MDA8-SON (fall), and MDA8-DJF
(winter).

The two crop-loss metrics included here were the M12
(12 h mean) and AOT40 (accumulated amount of O3 over the
40 ppb threshold) averaging metrics. Both have been used in
a variety of crop loss assessments (e.g., Van Dingenen et al.,
2009; Avnery et al., 2011; Shindell et al., 2019). The M12
metric, which can be used to calculate impacts on maize and
soybean relative yields, is defined as the mean O3 value for
the local hours of 08:00–20:00, averaged over the 3 months
prior to the start of the harvest period. The AOT40 metric,
which can be used to calculate impacts on maize, soybeans,
and wheat, is an accumulative index and defined as a summa-
tion of the hourly mean O3 values over 40 ppb for the local
hours of 08:00–20:00, also averaged over the 3 months prior
to the start of the harvest period. We initialized the start of
the harvest period to be consistent with Avnery et al. (2011).
For maize and soybeans, the 3-month averaging period was
initialized in July. Wheat features two varieties with sepa-
rate initialization months for harvesting. One is initialized in
March and the other is initialized in May. Exposure results of
both varieties are included for illustrative and seasonal com-
parisons. It should be noted that long-term O3 exposure also
stunts the yields of a variety of other crops, such as rice (Mills
et al., 2007; Van Dingenen et al., 2009; Shindell et al., 2019),
but inclusion of these impacts was not considered here since
they are not major commercial crops in the United States.

2.2 Artificial neural network

We utilized feed-forward artificial neural networks (ANNs),
which are also referred to as multilayer perceptrons, to model
the four metrics considered here, with a unique network
for each metric. ANNs were constructed using the Keras
API (https://keras.io, last access: 5 February 2020; Chol-
let, 2015) and TensorFlow machine-learning library (https:
//www.tensorflow.org, last access: 5 February 2020; Abadi
et al., 2015). Broadly, ANNs consist of several intercon-
nected layers, beginning with an input data layer, ending
with an output data layer, and having at least one “hidden”
layer between the input and output that models the nonlin-
ear relationships of the system. Each layer is connected via
a set of coefficients at individual “nodes” that are optimized
through model training, similar to a multiple linear regres-
sion (MLR) model. In contrast to a MLR, a layer in an ANN
may have multiple nodes, and the output from each node pro-
ceeds through an “activation function”. An ANN activation

function can take many shapes, but the two most common
are a sigmoidal function (which converts the node output to
a probability) and a rectified linear (ReLu) function (which
applies a threshold to a linear function). The ANNs used here
consisted of one input, three hidden, and one output layer.
All nodes in each hidden layer featured a ReLu activation
function, including the output layer to ensure all predictions
were non-negative. The three hidden layers, each of which
included a bias term, consisted of 32 nodes each. This par-
ticular architecture was selected following the testing of var-
ious configurations (i.e., differences in the number of nodes
and layers), with the ultimate goal to prevent over-fitting of
model parameters and maximizing model generalization (see
Sect. 3.1 for added discussion).

Daily observations from the TOAR dataset spanning
2000–2015 were paired with MERRA-2 meteorological re-
analysis data (Gelaro et al., 2017), anthropogenic emissions
data from the Community Emissions Data System (CEDS)
inventory (Hoesly et al., 2018), monthly East Asian anthro-
pogenic emissions (Hoesly et al., 2018, Zheng et al., 2018),
and monthly methane concentrations (GLOBALVIEW-CH4,
2009). Details regarding these parameters are provided in Ta-
ble 1. Meteorological variables that were considered O3 co-
variates largely follow Li et al. (2019). Local anthropogenic
emissions (Hoesly et al., 2018) included nitrogen oxides
(NOx), non-methane volatile organic carbon (NMVOC; in-
cludes total weight of all species), and carbon monoxide
(CO). Since emissions from East Asia have a large impact
on North American ground-level O3 concentrations (Liang et
al., 2018) and have dramatically changed in recent decades
(Zheng et al., 2018), monthly total emissions from all East
Asian countries (i.e., China, Japan, South Korea, North Ko-
rea, and Mongolia) were included as an input. Emissions
from all East Asian countries were retrieved from the CEDS
inventory, with the exception of Chinese emissions, which
were retrieved from the Multi-resolution Emission Inventory
for China (MEIC) inventory (Zheng et al., 2018). As the last
year included in the CEDS inventory is 2014, anthropogenic
emissions for 2014 were repeated for 2015. To incorporate
geographical differences and long-term drivers not included
as input, several fixed-effect parameters were also used as
input, including latitude, longitude, and year. A single input
into each ANN consists of all the variables described above,
which are paired in space and time to an observation retrieved
from the TOAR database. Finally, all input data were normal-
ized by subtracting the mean and dividing by the standard
deviation of the training dataset.

Prior to model training, the complete dataset was divided
into three components – training, validation, and testing. The
training dataset is used to iteratively tune the coefficients in
the ANN, the validation dataset is used to ensure the train-
ing process does not over-fit the ANN parameters to match
the training dataset, and the testing dataset is used to evalu-
ate how well the trained model performs. To compile these
components, all available data in a given month were col-
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Table 1. Variable input parameters (i.e., non-fixed effect parameters) for each artificial neural network (ANN). All 24 h and 12 h (08:00–
20:00) periods were adjusted to local times.

Parameter Averaging Units Source

Cloud area fraction 24 h % MERRA-2; Gelaro et al. (2017)
2 m air temperature 12 h K
10 m eastward wind speed 24 h m s−1

10 m northward wind speed 24 h m s−1

Planetary boundary layer height 12 h m
Total precipitation flux 24 h kg m−2 d−1

Sea-level pressure 24 h Pa
2 m specific humidity 12 h kg kg−1

Leaf area index 24 h %
Surface shortwave radiation flux 12 h W m−2

Local anthropogenic NOx 24 h t d−1 CEDS; Hoesly et al. (2018)
Local anthropogenic NMVOC
Local anthropogenic CO

East Asian anthropogenic NOx monthly t per month CEDS; Hoesly et al. (2018)
East Asian anthropogenic CO MEIC; Zheng et al. (2018)

Methane concentrations monthly ppbv GLOBALVIEW-CH4 (2009)

lected and 3 random, consecutive days were removed for
validation, and 4 random, consecutive days were removed
for testing. The remaining days became the training dataset.
Overall, the size of the training dataset (i.e., the number of
compiled inputs) eclipsed 5 million values; therefore, the
number of trainable parameters was nearly 4 orders of mag-
nitude smaller. The optimization of all coefficients at each
node in the ANN is accomplished through stochastic gradi-
ent descent (SGD) optimization. SGD consists of (a) taking
mini-batches of the training dataset, (b) estimating the gra-
dient of all coefficients relative to the known output, (c) tak-
ing a small iterative step towards an optimal solution, (d) re-
peating with a new mini-batch of the training dataset, and
(e) repeating steps (a)–(d) until the entire training dataset has
been fed through the network. Proceeding through steps (a)-
(e) is referred to as an epoch, and network training proceeds
through multiple epochs. In total, we used the Adam opti-
mizer (Kingma and Ba, 2015), with a learning rate of 0.001
(i.e., the size of step (c)), a decay factor of 0.9 (i.e., a shrink-
ing of the step (c) size), and a mean-squared error target cost-
function. Each ANN was trained for 3000 epochs, with a
shuffling of the training data between each epoch. Through
monitoring of the model training using the validation dataset,
it was determined that 3000 epochs were sufficient to opti-
mize the system without over-fitting.

To quantify the added benefit of the ANN over a simplified
model, a comparison with results from a MLR is included.
In addition, since exposure mostly occurs at unobserved lo-
cations, and all of the model training explained thus far is
only evaluated at observed locations (i.e., from the TOAR
database), we added an additional step to test our methods.

In short, we performed several CTM simulations and sam-
pled the daily-level CTM predictions of each metric at all
available monitoring locations, generating what we refer to
as a “pseudo-observational dataset”. We then followed the
same machine learning process described above, except us-
ing the pseudo-observational dataset and four newly trained
ANNs, to predict the population-weighted (MDA1/MDA8)
and agriculture-weighted (M12/AOT40) exposure values es-
timated by the CTM. Through this process, we can assess the
network’s ability to predict total exposure through the exclu-
sive use of sparse measurements.

2.3 Chemical-transport modeling

GEOS-Chem was used to generate ground-level CTM pre-
dictions of O3 (v11-01; http://www.geos-chem.org, last ac-
cess: 5 February 2020; Bey et al., 2001). A nested version
of the model at 0.5◦

× 0.625◦ horizontal resolution, driven
by native-resolution MERRA-2 meteorology and fed vary-
ing 2.0◦

×2.5◦ boundary conditions, was utilized to simulate
O3 throughout the continental United States for the years
2000, 2003, 2005, 2007, 2010, 2012, and 2014. The model
includes comprehensive HOx−NOx−VOC−Ox gas chem-
istry, coupled to an aerosol module that includes sulfate–
nitrate–ammonium chemistry (Park et al., 2004; Pye et al.,
2009), primary carbonaceous aerosols (Park et al., 2003),
mineral dust (Fairlie et al., 2007), and sea salt (Jaegle et al.,
2011), with aerosol thermodynamics simulated using ISOR-
ROPIA II (Fountoukis and Nenes, 2007). Global anthro-
pogenic emissions come from the CEDS inventory (Hoesly
et al., 2018) and were processed through the Harvard–NASA
Emission Component (HEMCO; Keller et al., 2014). All
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nested simulations featured a 2-month spin-up, each O3 met-
ric was calculated at local time, and ground-level concentra-
tions (10 m) from the first level of the GEOS-Chem output
were calculated using the methods described in Sect. 3 of
Zhang et al. (2012).

2.4 Calculation of metric trends

Trends of all metrics are presented both spatially and
weighted towards the subject of interest (i.e., population-
weighted or agriculture-weighted). Since the metrics consid-
ered here are based on long-term exposure, all trends were
assessed at the annual timescale (i.e., one data point, either
grid cell or a population-/agriculture-weighted value) using
a linear least-squares regression. To calculate population-
weighted exposure concentrations, we used population data
from the 2017 revisions to the UN Population Division
(United Nations, 2017), distributed to grid cells using popu-
lation density data from the Gridded Population of the World
(GPW) version 4 (CIESIN, 2016). Agriculture-weighted ex-
posure concentrations were calculated using crop production
and density data from the Food and Agricultural Organiza-
tion datasets (FAO, 2010).

We also accounted for short-term variability in metric
trends by modeling meteorologically adjusted predictions
of each metric. To evaluate the ANNs’ ability to complete
this task, we performed CTM simulations of 2003, 2005,
2007, 2010, 2012, and 2014 using meteorological conditions
from each respective year, but frozen anthropogenic emis-
sions and methane concentrations from 2000. We then used
the previously trained ANNs (i.e., the ANNs generated us-
ing the pseudo-observational data) to predict the population-
weighted and agriculture-weighted exposure metrics from
these CTM sensitivity simulations. Finally, we compared the
CTM- and ANN-predicted trends attributed to meteorology
between 2000 and 2015. This enabled us to evaluate how
well the ANN can meteorologically adjust exposure trends.
From there, the same methods were applied using the ANNs
trained with the TOAR data to estimate meteorologically
adjusted trends of the population-weighted and agriculture-
weighted exposure metrics. Specifically, all variables were
held frozen at 2000 values, except for the MERRA-2 meteo-
rological conditions.

2.5 Calculation of human-health and crop-yield

impacts

Human-health impacts were quantified using the exposure–
response relationships and averaging metrics reported by
J2009 and T2016. Both epidemiological studies found a sig-
nificant relationship between exposure to long-term O3 and
premature respiratory mortality. Respiratory impacts are the
lone end point considered here since they are the most com-
mon impact reported by the community. However, T2016 and
several other studies (Jerrett et al., 2013; Crouse et al., 2015;

Cakmak et al., 2016; Lim et al., 2019) reported a significant
relationship between long-term O3 exposure and other mor-
tality end points, such as cardiovascular disease.

Impact assessments for human health generally report re-
sults as the estimated number of premature mortalities at-
tributable to long-term exposure. However, these results can
often be driven by non-exposure variables, such as changes
in population count (Cohen et al., 2017), baseline mortality
rates (Cohen et al., 2017), and population aging (Apte et al.,
2018). To eliminate the influence of changes in the total pop-
ulation count on net impacts, we normalized our results and
report estimated health impacts as premature mortalities per
100 000 people attributable to long-term O3 exposure. We
also illustrate the percent contributions of each variable (i.e.,
population aging, changes in baseline mortality rates, and ex-
posure) on the net health impact calculations.

Normalized premature mortalities attributable to long-
term O3 exposure were calculated as follows.

1X =

{

0 if [O3] ≤ TMREL
[O3] − TMREL if [O3] > TMREL

(1)

HR = expβ1Y (2)

AF = 1 − exp−β1X (3)

1Morti = y0i × AF × populationi (4)

Normalized Mort=
(

∑n

i=1
1Morti

/

∑n

i=1
populationi

)

× 100000 (5)

Here TMREL is the theoretical minimum risk exposure level,
1X is the predicted long-term O3 exposure concentration
above the TMREL, β is the exposure–response factor, HR is
the hazard ratio reported by the epidemiological study, 1Y is
10 ppb in both epidemiological studies, AF is the attributable
fraction of the disease burden attributable to long-term O3

exposure, y0 is the cause-specific, age-binned baseline mor-
tality rate, population is the age-binned population count, i is
the age bin index, 1Mort is the estimated number of cause-
specific, age-binned premature mortalities, n is the number
of age bins, and Normalized Mort is the estimated num-
ber of cause-specific premature mortalities per 100 000 peo-
ple attributable to long-term O3 exposure. Baseline mortal-
ity rates were retrieved from the 2017 GBD (Global Bur-
den of Disease) project (Stanaway et al., 2018) and mapped
to best match the ICD-10 (International Statistical Classifi-
cation of Diseases and Related Health Problems) codes re-
ported in T2016. The hazard ratio for respiratory diseases
was 1.040 (95 % CI: 1.013, 1.067) and 1.12 (95 % CI: 1.08,
1.16) in J2009 and T2016, respectively. The TMRELs used
were 33.3 ppb when using the J2009 averaging metric and
26.7 ppb when using the T2016 averaging metric, as reported
by each epidemiological study.

We report agriculture (maize, soybean, and wheat) im-
pacts in terms of a national relative yield loss (RYL) due
to long-term O3 exposure. We utilized the concentration–
response function and RYL methods outlined in Van Din-
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genen et al. (2009), as summarized below.

MaizeRYL [M12] = 1 −

(

exp

[

−

(

M12

124

)2.83
]

/

exp

[

−

(

20

124

)2.83
])

(6)

SoybeanRYL [M12] = 1 −

(

exp

[

−

(

M12

107

)1.58
]

/

exp

[

−

(

20

107

)1.58
])

(7)

MaizeRYL [AOT40] = AOT40 × 0.00356 (8)

SoybeanRYL [AOT40] = AOT40 × 0.0113 (9)

WheatRYL [AOT40] = AOT40 × 0.0163 (10)

3 Results

3.1 Artificial neural network training and evaluation

We began our evaluation using the pseudo-observational
dataset derived from daily GEOS-Chem output sampled
at all available monitoring locations. From there, we used
this dataset to train four ANNs (i.e., one for each metric)
and attempted to recreate the original GEOS-Chem output.
Through this process, we attempted to determine the strength
of an ANN in reconstructing complete exposure maps us-
ing sparse observation data. The RMSE results from the ini-
tial training and validation datasets were similar (Table 2),
indicating that the network was not over-fitting and gen-
eralized the system well. When compared to a MLR, the
RMSE testing results were ∼ 33 % lower, demonstrating the
added benefit of the ANN (Table 2). Population-weighted
and agriculture-weighted exposure estimates from the ANN
closely matched the predictions from GEOS-Chem (red vs.
blue in Fig. 1) for all metrics and featured a high coeffi-
cient of correlation (insets in Fig. 1). An exception was the
marginal high bias of the AOT40 metrics for wheat early in
the time series. These small deviations were due to a few fac-
tors. First, regions of dense agriculture production are limited
and generally located in areas with fewer monitors, thus lim-
iting the extent of model training. Second, the AOT40 metric
is an accumulation index, which can lead to the amplifica-
tion of small biases. Separately, we also found the ANN to
perform well when meteorologically adjusting the predicted
exposure trends (i.e., the short-term trends attributable to me-
teorology; see insets and green vs. yellow lines in Fig. 1). In
total, the ANN was able to reproduce the complete exposure
predictions with high fidelity, as estimated by GEOS-Chem,
using information strictly from monitoring locations.

With confidence in the overall framework, we then trained
new ANNs using daily 2000–2015 observations from the
TOAR database. Little difference between the training, val-
idation, and testing performance metrics indicated that each
ANN was not over-fitting to the training dataset (Table 3). In
addition, we again found the ANN to perform ∼ 30 % better
than a MLR model (Table 3). When compared to the origi-
nal TOAR database, we found high accuracy between each
ANN-predicted long-term metric and the original observa-
tions (Figs. S1–S4; Table S1 in the Supplement). The RMSE
of the MDA1 and MDA8 predictions ranged from 3.1 to 4.4
and 2.3 to 3.9 ppb, respectively (Table S1). The r2 of the two
metrics ranged from 0.77 to 0.84 and 0.74 to 0.82. Similar
levels of bias (RMSE) and correlation (r2) were found when
comparing the long-term agriculture metrics (Table S1).

3.2 Magnitude and trends of long-term O3 exposure

metrics

3.2.1 Human-health-relevant metrics

The MDA1 metric featured large reductions throughout the
study period, with downward trends exceeding 1 ppb yr−1 in
the Southeast and in portions of California (Fig. 2). As a
result, exposure throughout this period simultaneously de-
creased. The national population-weighted exposure concen-
tration peaked in 2002 at 55.9 ppb, reached a minimum of
48.2 ppb in 2014, and featured sizable year-to-year fluctu-
ations due to inter-annual variation (Fig. 3). From 2000 to
2015, the national population-weighted exposure concentra-
tion of the MDA1 metric featured an annual decrease of
0.43 [95 % CI: 0.28, 0.57] ppb yr−1 (Table S4). After ad-
justing for meteorology, the trend changed to −0.41 [95 %
CI: −0.35, −0.47] ppb yr−1. The similar mean values of
these two trends suggest that nearly all of the MDA1 re-
ductions are due to non-meteorological drivers (i.e., emis-
sion changes, intercontinental transport, methane). Changes
in exposure featured an east–west divide, with population-
weighted exposure concentrations decreasing by 0.49 [95 %
CI: 0.28, 0.69] ppb yr−1 in the east and 0.31 [95 % CI: 0.21,
0.41] ppb yr−1 in the west (Fig. 3, Table S4).

In contrast, the MDA8 metric featured more modest de-
creases in the Southeast USA and scattered areas with in-
creasing trends (Fig. 2). This divergence between the two
human-health metrics is due to the different averaging pe-
riods (i.e., the traditional “ozone season” vs. an annual aver-
age). If only summer months were considered when calculat-
ing the MDA8 metric (i.e., MDA8-JJA), the two trends would
be spatially and quantitatively consistent (Fig. 2). However,
O3 increases during the winter months (i.e., MDA8-DJF)
partially compensated for the summer decreases, resulting
in no discernable trend for the national population-weighted
MDA8 metric (Fig. 3). After adjusting for meteorology, the
national population-weighted MDA8 trend from 2000 to
2015 is −0.02 [95 % CI: 0.01, −0.04] ppb yr−1 (Fig. 3). Sim-
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Table 2. Daily-level training, validation, and testing performance metrics (RMSE) of the ANN using GEOS-Chem sampled data at TOAR
locations compared to a multiple linear regression model. Note ppbh denotes parts per billion-hour.

Dataset MDA1 MDA8 M12 AOT40

ANN (ppb) MLR (ppb) ANN (ppb) MLR (ppb) ANN (ppb) MLR (ppb) ANN (ppbh) MLR (ppbh)

Training 6.91 10.69 6.62 10.32 6.48 9.93 62.83 98.15
Validation 7.16 10.60 6.95 10.55 6.68 9.74 64.97 97.48
Testing 7.09 10.50 6.83 10.18 6.86 10.03 66.68 100.43

Figure 1. Red – GEOS-Chem (GC) simulated values of all metrics. Blue – ANN predictions of GC using daily samples from the GEOS-
Chem simulations at all available monitoring locations. Green – meteorological trend simulated by GEOS-Chem with all input frozen at
2000 levels, with the exception of meteorological variables. Yellow – ANN prediction of GC-MET (green) using the previously trained (i.e.,
blue) neural networks. Inset within each panel is the coefficient of correlation for the GC–ANN and GC-MET–ANN-MET time series.

ilar to the MDA1 metric, trends featured an east–west di-
vide. It is interesting to note that the western MDA8 trends
were slightly positive and the eastern MDA8 trends were
slightly negative (Table S4). Separately, prior studies (e.g.,
Bloomer et al., 2010; Cooper et al., 2012; Parrish et al.,
2012; Clifton et al., 2014; Simon et al., 2015; Strode et al.,
2015; Fleming et al., 2018) have highlighted the existence
of a seasonal shift in the distribution of O3 concentrations
throughout the United States. We find that these shifts have
not only manifested in contrasting seasonal trends (i.e., sum-
mer decreases vs. winter increases), but have also led to
changes in the dominant months of O3 exposure. For exam-
ple, the population-weighted exposure concentrations during
the spring and summer months (MDA8-MAM vs. MDA8-
JJA) were nearly equivalent from 2013 to 2015 (Table S2).

It should be noted that comparing previously reported sea-
sonal trends of O3 is difficult due to varying study periods,
averaging metrics, and selection of monitoring networks. Of-

tentimes, rural locations are highlighted, enabling the isola-
tion of trends in background O3 concentrations or the mini-
mization of the influence of nearby changes in anthropogenic
emissions (e.g., Jaffe and Ray, 2007; Cooper et al., 2012;
Jaffe et al., 2018). These study-specific choices can effect
conclusions. For example, Simon et al. (2015) report that ru-
ral O3 monitors more often feature statistically significant de-
creases in national mean MDA8 O3 during summer months
and urban O3 monitors more often feature statistically sig-
nificant increases in national mean MDA8 O3 during winter
months. For this study, since our focus is on changes in ex-
posure, we incorporate all available observational data, in-
cluding monitors in urban cores. As such, when compared
to prior studies, our conclusions regarding O3 trends may be
different.

Cooper et al. (2012), using rural monitoring data spanning
1990–2010, reported a −0.45 and a +0.10 ppb yr−1 trend in
daytime O3 during summer months for the eastern and west-
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Table 3. Daily-level training, validation, and testing performance metrics (RMSE) of the ANN using TOAR observations compared to a
multiple linear regression model. Note that ppbh denotes parts per billion-hour.

Dataset MDA1 MDA8 M12 AOT40

ANN (ppb) MLR (ppb) ANN (ppb) MLR (ppb) ANN (ppb) MLR (ppb) ANN (ppbh) MLR (ppbh)

Training 9.25 13.02 8.24 11.65 7.89 10.90 55.69 78.50
Validation 9.36 13.26 8.24 11.43 8.06 11.16 56.22 76.98
Testing 9.39 13.08 8.23 11.56 7.87 10.76 57.13 78.55

Figure 2. Trends of the MDA1 (a; ppb yr−1) and MDA8 (b; ppb yr−1) health metrics from 2000 to 2015. Trends of MDA8-JJA (c; ppb yr−1)
and MDA8-DJF (d; ppb yr−1) from 2000 to 2015. The p values from these trends can be found in Fig. S5.

ern USA, respectively. However, both trends featured wide
ranges. Jaffe et al. (2018), using a limited number of high-
elevation, rural monitoring sites, reported decreasing trends
of median summertime O3 between 2000 and 2016 at most
analyzed locations, with stronger decreases in the east than
west (∼ 1 ppb yr−1 vs. ∼ 0.5 ppbr). Lin et al. (2017) also
used rural monitoring data, but increased the coverage to
include 1988–2014 and found a 0.4–0.8 ppb yr−1 decreas-
ing trend of median MDA8-JJA concentrations in the east-
ern USA and mixed trends in the west. Fleming et al. (2018)
incorporated both urban and nonurban monitors and showed
that the observed magnitude of several warm season human-
health ozone metrics is similar for North American urban and
nonurban sites and that the trends are only slightly smaller for
the urban areas. Broadly, we also found a dramatic divide be-
tween east and west summertime O3 exposure trends, but our
results did feature some differences from prior studies. For

example, our exposure-focused (i.e., population-weighted)
estimates of eastern USA trends are similar to the mean re-
ported by Cooper et al. (2012) and on the low end of that
reported by Lin et al. (2017). We also found a consistent de-
creasing trend in western MDA8-JJA exposure, as well as
smaller levels of trend uncertainty (Table S4).

Cooper et al. (2012) also reported a uniform east and
west increase in rural wintertime O3 concentrations of
0.12 ppb yr−1. However, the exclusive selection of rural mon-
itors precludes the extrapolation of those results to esti-
mate exposure trends. This is well illustrated by Simon et
al. (2015), who used an extensive network of 1998–2013 ob-
servations to show that there was a strong rural–urban di-
vide in mean winter O3 trends, with increasing trends more
prevalent in urban areas. Indeed, when compared to Cooper
et al. (2012), we found a much stronger trend increase in
MDA8-DJF exposure (Table S4). Our results indicate that the
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Figure 3. (a) Population-weighted exposure concentrations of the MDA1 human-health metric from 2000 to 2015. The meteorologically
adjusted trend is in black with the slope in the inset. (b) The 2000–2015 population-weighted trends (ppb yr−1) of the MDA1 (green)
and MDA8 (red) metrics. The west–east divide is made along the 95◦ W meridian and the whiskers span the 95 % confidence interval.
(c) Population-weighted exposure concentrations of the MDA8 human-health metric from 2000 to 2015. The meteorologically adjusted
trend is in black with the slope in the inset. Tabulated values of these plots can be found in Table S2 and S4.

national trend in MDA8-DJF exposure was +0.33 [95 % CI:
0.37, 0.28] ppb yr−1 (Table S4), with a near-uniform increase
in both the east and west.

3.2.2 Crop-loss-relevant metrics

Since the averaging months for crop-loss metrics are de-
pendent on crop variety, the magnitude and trends can fea-
ture distinct patterns (Table S3). All maize and soybean
metrics envelop the months of July–September. As such,
and consistent with the MDA1 results, this averaging pe-
riod yielded widespread decreases for both the M12 and
AOT40 metrics, with the strongest reductions in the south-
east and California (Fig. 4a, b). However, both of these
crops are predominantly grown in the Midwest and Great
Plains (Fig. S7). These regions generally experienced smaller
trend reductions. Nationally, the agriculture-weighted trends
of the M12 metric for maize and soybeans were −0.35 [95 %
CI: −0.17, −0.54] ppb yr−1 and −0.39 [95 % CI: −0.19,
−0.59] ppb yr−1 (Fig. 5; Table S4). The agriculture-weighted
trends of the AOT40 metric for maize and soybeans were
−0.35 [95 % CI: −0.18, −0.51] ppmh yr−1 and −0.39 [95 %
CI: −0.21, −0.56] ppmh yr−1 (Fig. 5; Table S4). After ad-
justing for meteorology, the mean trend for both metric and
crop pairings was reduced marginally, suggesting that mete-
orological factors played a small role in the net trends from
2000 to 2015 (Fig. 5b).

Both agriculture-weighted AOT40 averaging periods for
wheat (MAM and MJJ) featured decreasing, but consider-
ably different, trends (Fig. 5, bottom panels). These trend
differences again highlight the seasonal shift in O3 concen-
trations. From 2000 to 2006, the AOT40-MJJ wheat met-
ric was ∼ 40 %–60 % higher than the AOT40-MAM wheat
metric (Table S3). However, by 2014, both metrics were
nearly equal. The 40 ppb accumulation threshold applied in

the AOT40 calculation also amplifies this convergence. To-
wards the end of the study period, mean daytime O3 con-
centrations in the Midwest and Great Plains had decreased
sufficiently for the two metrics to nearly intersect.

We posit that the influence of meteorology on the
agriculture-weighted trends, as indicated by the marginal
difference in the mean of the meteorologically adjusted
and non-adjusted trends, is primarily due to two factors.
Prior analysis has shown that two important meteorolog-
ical variables influencing O3 include temperature and hu-
midity (Camalier et al., 2007; Jacob and Winner, 2009).
The temperature–O3 mechanism is a function of increasing
temperatures promoting peroxyacetyl nitrate decomposition
(leading to ozone increases near NOx source regions, but de-
creases in remote areas; Doherty et al., 2013) and increases in
isoprene emissions. The humidity–O3 mechanism is a func-
tion of increasing water vapor concentrations, promoting O3

chemical destruction. According to the MERRA-2 reanalysis
product, the Midwest and Great Plains regions featured both
decreasing trends in daytime 2 m temperature and increasing
trends in daytime 2 m specific humidity (Fig. 6). In addition,
acute O3 episodes are notably sensitive to particular mete-
orological variables (Russell et al., 2016; Fix et al., 2018),
such as temperature, providing an environment where me-
teorological variability can disproportionately influence the
magnitude of AOT40 values.

3.3 Estimates of long-term O3 exposure impacts

3.3.1 Human health

Human-health impacts, reported as the estimated number of
premature respiratory mortalities attributable to long-term
O3 exposure per 100 000 people, were strongly dependent
on the choice of exposure–response relationship (Fig. 7).
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Figure 4. Trends of the M12 (a; ppb yr−1) and AOT40 (b, c, d; ppmh yr−1) agriculture metrics from 2000 to 2015. Note: JAS: July–
September; MAM: March–May; MJJ: May–July. The p values from these trends can be found in Fig. S6.

Figure 5. (a) Agriculture-weighted exposure concentrations of the M12 agriculture metrics from 2000 to 2015. The meteorologically ad-
justed trend of each metric is in black with the slope in the inset. (b) The 2000–2015 agriculture-weighted trends (ppb yr−1 for M12,
ppmh yr−1 for AOT40) of the M12 and AOT40 metrics. The whiskers span the 95 % confidence interval. (c) Agriculture-weighted exposure
concentrations of the AOT40 agriculture metrics from 2000 to 2015 (trends of AOT40 soybean and AOT40 maize are nearly equivalent).
The meteorologically adjusted trend of each metric is in black with the slope in the inset. Note: variable averaging periods are considered,
reflecting differences in crop harvest seasons. Tabulated values of the left and right plots can be found in Tables S3 and S4.
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Figure 6. Annual trends in the daytime 2 m temperature and daytime 2 m specific humidity from 2000 to 2015.

Figure 7. (a) Annual estimates of normalized premature mortalities (number per 100 000 people per year) attributable to long-term O3
exposure using the MDA1 and MDA8 averaging metrics and exposure–response function from J2009 and T2016, respectively. The shaded
region reflects the confidence interval reported in each underlying epidemiological study. (b) The 2000 vs. 2015 percent contributions of
population aging, changing baseline mortality rates, and long-term O3 exposure to net normalized premature mortalities using the MDA1
and MDA8 averaging metrics and exposure–response function from J2009 and T2016, respectively. Tabulated values of (a) can be found in
Table S5.

First, the T2016 results reported nearly double the estimated
human-health impacts attributable to long-term O3 expo-
sure. For example, in 2010, the J2009 and T2016 estimated
impacts were ∼ 5.4 [95 % CI: 1.8, 8.7] and ∼ 11.3 [95 %
CI: 7.9, 14.5] premature mortalities per 100 000 people, re-
spectively. Second, the diverging trends of the two expo-
sure metrics (Fig. 3) are reflected in the estimated impacts
(Fig. 7). Between 2000 and 2015, the MDA1 population-
weighted exposure concentration decreased from ∼ 53.7 to
∼ 48.3 ppb (Table S2). As a result, the estimated human-
health impacts using the J2009 parameters decreased from
∼ 6.0 [95 % CI: 2.0, 9.7] to ∼ 5.0 [95 % CI: 1.7, 8.0] prema-
ture mortalities per 100 000 people (Table S5). In contrast,
the MDA8 population-weighted exposure concentration de-
creased from ∼ 39.9 to ∼ 39.1 ppb, yet the impacts using
the T2016 parameters increased from ∼ 10.8 [95 % CI: 7.6,

13.8] to ∼ 11.3 [95 % CI: 7.9, 14.5] premature mortalities
per 100 000 people (Fig. 7 and Table S5). These differences
in estimated impacts are not only due to changes in exposure.
Over this period, an aging population structure promoted in-
creased susceptibility to O3 impacts. In addition, depending
on the age bin, baseline mortality rates for respiratory dis-
eases either marginally decreased or remained approximately
stable.

While impacts due to changes in exposure for both metrics
decreased between these end points, albeit by different mag-
nitudes (blue bars in Fig. 7b; −25.5 % vs. −5.7 %), these
other determinants played a strong role in modulating the es-
timated impact trends (Fig. 7b). The net changes in 2015 vs.
2000 normalized human-health impacts using the J2009 and
T2016 exposure–response relationships and averaging met-
rics were −17.8 % and +4.7 %, respectively (black bars in
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Fig. 7b). In both calculations, an aging population structure
substantially eliminated much of the gains from exposure de-
creases (+15.5 %). Changing baseline mortality rates were
more modest, decreasing both calculations by 4.7 %.

The differences in estimated human-health impacts when
using the J2009 and T2016 exposure–response relationship
and averaging metrics reported here are consistent with prior
studies (Malley et al., 2017; Seltzer et al., 2018; Shindell et
al., 2018). That is, the estimated human-health impacts when
using the T2016 exposure–response relationship and averag-
ing metric are considerably higher than the results computed
when using the J2009 parameters. However, to our knowl-
edge, the historical evolving differences between the two
have yet to be shown. For example, the T2016 results were
∼ 80 % higher than the J2009 results in 2000 (Table S5). By
2008, the T2016 results were nearly double the J2009 results,
and this difference continued to grow over time (∼ 130 % in
2015).

Between 2000 and 2015, our net estimated premature mor-
talities attributable to long-term O3 exposure in the USA
ranged from ∼ 14500 to 19 200 when using the J2009 pa-
rameters and from ∼ 29800 to 37 600 when using the T2016
parameters. These results are lower than analogous prior
studies that are based solely on CTM estimates of O3 ex-
posure. An exception is Zhang et al. (2018), who found com-
parable results when using the J2009 epidemiological study.
However, Zhang et al. (2018) report a 13 % increase in pre-
mature mortalities attributable to long-term O3 exposure in
the United States between 1990 and 2010, despite O3 de-
creases. We find a ∼ 6.7 % decrease in premature mortali-
ties attributable to long-term O3 exposure, albeit over 2000–
2015. This is likely due to the dramatic decreases in O3 pre-
cursor emissions that occurred post-2000 (Xing et al., 2013;
Simon et al., 2015).

3.3.2 Crop loss

Agriculture impacts for each of the crop varieties considered
here decreased from 2000 to 2015 (Fig. 8). When using the
M12 metric, the estimated national RYL values for maize
and soybeans in 2000 were 4.6 % and 16.3 %, respectively
(Fig. 8 and Table S5). These values decreased to 2.9 % and
11.2 % in 2015. When using the AOT40 metric, the estimated
national RYL values for maize, soybeans, and wheat for the
year 2000 were 3.4 %, 11.9 %, and 12.1 %, respectively. By
2015, these RYL values dropped to 1.6 %, 4.8 %, and 9.4 %,
respectively. Broadly, these estimated agriculture yield im-
pacts are comparable to the global “ozone yield gaps” (i.e.,
RYL) modeled by Mills et al. (2018a), who considered the
flux-based, stomatal uptake of O3 for each crop.

Several other characteristics are consistent among all of
the crop varieties and metric combinations considered here.
For one, estimated RYL featured sizable inter-annual vari-
ability, indicating that the impacts calculated from a sin-
gle year might not be representative of a particular period.

Figure 8. Estimates of the national relative yield loss for a variety
of commercial crops using ANN-calculated exposure metrics. Tab-
ulated values of this plot can be found in Table S5.

For example, the RYL for soybeans, when using the AOT40
metric, increased from 7.8 % in 2004 to 11.6 % in 2005 –
a nearly ∼ 50 % increase. Second, similar to Van Dingenen
et al. (2009) and Lapina et al. (2016), impacts were consis-
tently higher when utilizing the M12 metric and the asso-
ciated concentration–response functions. These differences
also became amplified over time. The RYL for soybeans in
2000 using the M12 metric (16.3 %) was ∼ 37 % higher than
the RYL using the AOT40 metric (11.9 %). This difference
increased to ∼ 135 % (11.2 % vs. 4.8 %) by 2015 (Table S5).
These diverging trends occur for two reasons. First, the day-
time O3 concentrations approached the AOT40 threshold of
40 ppb post-2007 (Table S3). This decrease precipitated dis-
proportional improvements in AOT40-calculated RYL. Sec-
ond, and to a lesser degree, the slopes of the two soybean
concentration–response functions are different (Fig. S8).

4 Uncertainties, limitations, and additional remarks

Studies quantifying the health impacts attributable to long-
term PM2.5 exposure oftentimes use higher-resolution prod-
ucts (e.g., 0.1◦

× 0.1◦) that harness satellite data (e.g., Apte
et al., 2015; Cohen et al., 2017; van Donkelaar et al., 2019).
However, a number of complications prevent such products
for surface O3 (Duncan et al., 2014). Regardless, we believe
this 0.5◦

×0.5◦ product is of sufficient resolution to estimate
long-term O3 exposure for a number of reasons. First, O3

features a residence time on the order of hours to days in the
lower troposphere and in urban environments (Parrish et al.,
2012; Monks et al., 2015), providing sufficient time for lo-
calized and regional mixing. Second, unlike short-term O3

exposure, long-term O3 exposure is less sensitive to singu-
lar events that are more heterogeneous in space and time.
Third, regional CTM studies report only marginal differences
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in O3 concentrations and estimated impacts when scaling
from 12 km to resolutions comparable to those in this analy-
sis (Punger and West, 2013; Gan et al., 2016).

In terms of impacts, there is evidence that O3 affects more
than what was presented here. For example, several epidemi-
ological studies suggest that human-health impacts may ex-
tend to cardiovascular mortality (Jerrett et al., 2013; Crouse
et al., 2015; Cakmak et al., 2016; Turner et al., 2016; Lim
et al., 2019). Separately, our analysis applied a log-linear
exposure–response function when performing the human-
health calculations since it is most common method applied
in the community. There is evidence that this relationship
may instead be linear (Di et al., 2017). For agriculture, the
exposure–response functions utilized here are “pooled” from
studies featuring a limited number of cultivars grown in the
USA and Europe (Van Dingenen et al., 2009). While con-
sidered reliably representative of the commonly grown cul-
tivar population in these regions, extrapolation of these rela-
tionships to the national level may introduce additional un-
certainty. In addition, the methodology selected here does
not take into account changes in plant conditions that may
limit or exacerbate conditions which influence the opening of
stomata and the ability of a plant to uptake O3, such as tem-
perature and soil moisture. The results presented here also
demonstrate the need for additional epidemiological stud-
ies to test the utility of common averaging metrics that are
used when estimating health impacts. Specifically, clarity is
needed regarding whether long-term O3 health impacts are
more sensitive to peak averaged (i.e., the MDA1 metric) or
annually averaged (i.e., the MDA8 metric) O3 exposure.

Finally, long-term trends of O3 are driven by a number
of mechanisms, including intercontinental transport (Fiore
et al., 2009; Lin et al., 2012, 2017) and methane concen-
trations (Fiore et al., 2002; Shindell et al., 2017; Lin et al.,
2017). For example, Lin et al. (2015) conclude that rising
Asian emissions and global methane have played a key role
in the increase in western USA springtime O3 from 1995 to
2014. These drivers merit additional study, with an emphasis
on exploring seasonal differences that influence impact met-
rics. Furthermore, inclusion of observations from the most
recent years (i.e., 2015–2017) should be targeted. Since Chi-
nese emissions of NOx peaked in 2012 (Zheng et al., 2018),
our current and future estimates of intercontinental transport
influences on background O3 might warrant revisiting.

5 Conclusions

Through the application of artificial neural networks, we em-
pirically model the magnitude and trends of long-term (i.e.,
seasonal, annual) ambient O3 over the continental United
States from 2000 to 2015. We then used these estimates of
long-term O3 exposure to generate a measurement-based as-
sessment of impacts on human health and crop yields. All
metrics with averaging periods spanning the traditional O3

season (i.e., warm months) featured peak exposure in 2002,
with net decreases over the course of the study period. For
example, the population-weighted, April–September average
of the daily 1 h maximum O3 concentration (i.e., MDA1
from Jerrett et al., 2009) decreased by 0.43 [95 % CI: 0.28,
0.57] ppb yr−1 between 2000 and 2015. In contrast, there
was little change in the population-weighted, annual aver-
age of the maximum daily 8 h average O3 concentration
(i.e., MDA8 from Turner et al., 2016) between 2000 and
2015. There were compensating seasonal effects, with win-
tertime O3 increases and summertime O3 decreases, yielding
a net population-weighted trend of −0.03 [95 % CI: 0.04,
−0.10] ppb yr−1. Human-health metric trends also featured
an east–west divide, with stronger decreases in the eastern
USA. All agriculture-weighted crop-loss metrics featured de-
creasing trends over the study period.

Human-health impacts were quantified in terms of the
estimated number of premature respiratory mortalities at-
tributable to long-term O3 exposure per 100 000 people.
Crop-loss impacts were quantified in terms of the estimated
national relative yield loss for a variety of commercial crops.
Normalized human-health impact estimates decreased by
∼ 18 % and increased by ∼ 5 % when using the Jerrett et
al. (2009) and Turner et al. (2016) averaging metrics and pa-
rameters, respectively. In both cases, exposure changes and
an aging population structure played a substantial role in
modulating these trends. When using the M12 metric, the rel-
ative yield loss (RYL) due to O3 exposure for maize and soy-
beans improved by 1.7 % and 5.1 %. When using the AOT40
metric, the net benefits were greater, with the RYL for maize,
soybeans, and wheat improving by 1.9 %, 7.1 %, and 2.7 %,
respectively. These different responses are mainly due to the
daylight O3 concentrations approaching the 40 ppb AOT40
threshold by the end of the study period. Overall, these re-
sults provide a measurement-based estimate of long-term O3

exposure over the United States, quantify the historical trends
of such exposure, and illustrate how different conclusions re-
garding historical impacts can be made through the use of
varying metrics.
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