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Imperial College London

Abstract. We present Louise, a new Meta-Interpretive Learner that
performs efficient multi-clause learning, implemented in Prolog. Louise
is efficient enough to learn programs that are too large to be learned
with the current state-of-the-art MIL system, Metagol. Louise learns by
first constructing the most general program in the hypothesis space of a
MIL problem and then reducing this “Top program” by Plotkin’s pro-
gram reduction algorithm. In this extended abstract we describe Louise’s
learning approach and experimentally demonstrate that Louise can learn
programs that are too large to be learned by our implementation of
Metagol, Thelma.

1 Introduction

In Meta-Interpretive Learning (MIL) [3, 2] a learner searches a space of hypothe-
ses consisting of sets of first order definite datalog clauses. This search is expen-
sive and the state-of-the-art MIL learner, Metagol [1] can not effectively learn
theories larger than a handful of clauses in size1. Our new MIL-learner, Louise2,
implemented in Prolog, avoids a classical search of the space of hypotheses and
instead learns by constructing the most general program that explains the train-
ing examples given the background knowledge, and then logically reducing this
“Top program” to remove redundant clauses. The result is an efficient learner
that can learn hypotheses that are too large to be learned by Metagol.

blood relative/2 relative/2

Time Clauses Time Clauses

Thelma 76.509sec. 11 2hrs (Timed out) 5 (Timed out)

Louise 0.094sec. 11 46.169sec. 29

Table 1: Experiment results

1 In practice this means 5 to a dozen clauses, depending on the problem.
2 https://github.com/stassa/louise

1



2 The 29th ILP conference, 3–5 Sep 2019, Plovdiv, Bulgaria.

Top program construction

Generalisation of positive examples

m(chain, grandfather, father, father).
m(chain, grandfather, father,mother).
m(chain, grandfather, father, parent).
m(chain, grandfather, parent, father).
m(chain, grandfather, parent,mother).
m(chain, grandfather, parent, parent).

Specialisation by negative examples

m(chain, grandfather, father, father).
m(chain, grandfather, father,mother).
m(chain, grandfather, father, parent).

Hypothesis construction

Top proram unfolding
m(grandfather,A,B) : −m(father,A,C),m(father, C,B).
m(grandfather,A,B) : −m(father,A,C),m(mother, C,B).
m(grandfather,A,B) : −m(father,A,C),m(parent, C,B).

Top proram reduction
m(grandfather,A,B) : −m(father,A,C),m(parent, C,B)

Reduction excapsulation

grandfather(A,B) : −father(A,C), parent(C,B).

Table 2: Top program construction and reduction for “grandfather”.

2 Framework

Algorithm 1 Learning by Top program construction and reduction

Given: A MIL Problem, T = {E,B,M,H}.
Return: A hypothesis, H ∈ H.

1: Encapsulate {E,B,M} and expand M.
2: Construct the Top prorgam for T , S.
3: Reduce S to S ′.
4: Excapsulate S ′ as H.
5: Return H

Louise’s learning procedure is described in Algorithm 1. Construction of the
Top program is defined in Algorithm 2. Reduction of the Top program is achieved
by application of Gordon Plotkin’s program reduction algorithm, defined in
Plotkin’s doctoral thesis, [4], as Theorem 3.3.1.2. Louise’s learning procedure
is illustrated in table 2 with an example for the “grandfather” relation.

A MIL problem T = {E,B,M,H} consists of ground definite clause ex-
amples, E = {E+, E−}, definite clause definitions of background knowledge
predicates, B, second order definite clause metarules,M, and the corresponding
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Algorithm 2 Top program construction

Given: An encapsulated MIL problem, T = {E+, E−, B,M,H}.
Return: A set S of metasubstitutions µ/M in all solutions of T .

1: Generalise(E+, B,M) → S+

2: Specialise(E−, B,M,S+) → S−

3: Return S = S−

4: procedure Generalise(E+, B,M)
5: Initialise: Let S+ = ∅
6: for e+ ∈ E+ do

7: for M ∈ M do

8: Set S+ = S+ ∪ {µ/M : µM ∪B ∪M |= e+}
9: end for

10: end for

11: Return S+

12: end procedure

13: procedure Specialise(E−, B,M,S+)
14: Initialise: Let S− = S+

15: for µ/M ∈ S− do

16: if ∃e− ∈ E−: µM ∪B ∪M |= e− then

17: Set S− = S− \ {µ/M}
18: end if

19: end for

20: Return S−

21: end procedure

search space of definite datalog hypotheses, H. Louise begins learning by encap-

sulating a MIL problem. Briefly, to encapsulate a literal means to replace it by
a new literal of an encapsulation predicate (m, in Louise) whose arguments are
the predicate symbol and arguments of the original literal. Encapsulation allows
a compact representation of the Top program as a set of first order atoms repre-
senting metasubstitutions of the existentially quantified variables in a metarule.
In algorithm 2 a metasubstitution µ of the existentially quantified variables of
a metarule M ∈ M is represented as µ/M . The set of metasubstitutions in
the Top program is unfolded to produce a set of definite clause instances of the
metarules inM before program reduction. The reduced Top program is then ex-

acpsulated to form the learned hypothesis. Excapsulation is the opposite process
of encapsulation.

3 Experiments

We compare the performance of Louise to Thelma3, our Prolog implementation
of Metagol, on two kinship problems. The target theory for blood relative/2

3 https://github.com/stassa/thelma
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consists of 16 clauses of the Identity metarule, P (X,Y )← Q(X,Y ). Each clause
maps one of 16 definitions of kinship relations to blood relative/2. The target
theory for relative/2 cannot be expressed in the background knowledge and
metarules we allow for the experiment, forcing the two systems to learn a larger
hypothesis. We did not know what this larger hypothesis would be in advance of
our experiments. We set a time limit of 2 hours for both experiments. Results of
the experiments are listed in table 1. Both learners compress the target theory
for blood relative/2 to 11 clauses. However, Thelma takes a significantly longer
time to learn the shorter theory than Louise and times out on the longer theory.
Louise learns both theories in under a minute.

4 Conclusions and future work

Unlike Metagol and Thelma, Louise is not yet capable of predicate invention
because of the left-recursive nature of its representation of metarules. However,
Louise can learn some programs for which predicate invention is normally re-
quired by performing episodic learning and unfolding metarules onto each other
to produce extended metarules.

In future work we intend to implement predicate invention by use of a TP op-
erator for bottom-up evaluation, to avoid issues with left-recursion in metarules.
We also intend to test Louise on larger problems, in particular, machine vision
problems.
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