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ABSTRACT

Supermassive black holes (SMBHs) are tightly correlated with their hosts but the origin of such
connection remains elusive. To explore the cosmic build-up of this scaling relation, we present an

empirically-motivated model that tracks galaxy and SMBH growth down to z=0. Starting from a

random mass seed distribution at z=10, we assume that each galaxy evolves on the star-forming “main

sequence” (MS) and each BH follows the recently-derived stellar mass (M⋆) dependent ratio between

BH accretion rate and star formation rate, going as BHAR/SFR ∝ M
0.73[+0.22,−0.29]
⋆ . Our simple recipe

naturally describes the BH-galaxy build-up in two stages. At first, the SMBH lags behind the host

that evolves along the MS. Later, as the galaxy grows in M⋆, our M⋆–dependent BHAR/SFR induces a
super-linear BH growth, as M BH ∝ M1.7

⋆
. According to this formalism, smaller BH seeds increase their

relative mass faster and earlier than bigger BH seeds, at fixed M⋆, thus setting along a gradually tighter

M BH–M⋆ locus towards higher M⋆. Assuming reasonable values of the radiative efficiency ǫ ∼0.1, our

empirical trend agrees with both high-redshift model predictions and intrinsic M BH–M⋆ relations

of local BHs. We speculate that the observed non-linear BH-galaxy build-up is reflected in a twofold
behavior with dark matter halo mass (MDM), displaying a clear turnover at MDM ∼2×1012 M⊙. While

Supernovae-driven feedback suppresses BH growth in smaller halos (BHAR/SFR ∝ M1.6
DM), above the

MDM threshold cold gas inflows possibly fuel both BH accretion and star formation in a similar fashion

(BHAR/SFR ∝ M0.3
DM).

Keywords: galaxies: high-redshift— galaxies: evolution— galaxies: nuclei

1. INTRODUCTION

How supermassive black holes (SMBHs) formed and

evolved with cosmic time is one of the most debated
issues in modern Astrophysics. One of the best known
evidence supporting co-evolution between SMBHs and
their host galaxies is the observed relationship at z∼0

between SMBH mass (MBH) and several properties of

Corresponding author: Ivan Delvecchio

ivan.delvecchio@cea.fr

∗ Marie Curie Fellow

galaxy bulges: stellar velocity dispersion (σ∗), stellar

bulge mass (Mbulge), dark matter halo mass (MDM) (e.g.

Magorrian et al. 1998; Gebhardt et al. 2000; Ferrarese &

Merritt 2000; Häring & Rix 2004; Gültekin et al. 2009).
Such tight (scatter ∼0.3 dex) correlation is currently

interpreted as the outcome of a long-term balance

between feeding and feedback processes occurring in

galaxy bulges and their central BHs (see a comprehen-

sive review by Kormendy & Ho 2013).

Nevertheless, still unclear is whether the local MBH–

Mbulge relation observed for classical galaxy bulges
(MBH/Mbulge <1/200, Kormendy & Ho 2013) evolves
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with redshift. Several studies targeting high-redshift
quasars found BHs as massive as 109 M⊙ at z>6, when

the Universe was less than 1 Gyr old (Mortlock et al.

2011; Wu et al. 2015; Bañados et al. 2018; Vito et al.

2019). This suggests the presence of high-redshift BHs
that are overmassive (MBH/M⋆ >1/100) relative to lo-

cal scaling relations, as found in local giant ellipticals
(Lupi et al. 2019). Nevertheless, their MBH measure-

ments might be biased, since they rely on gas dynamical

estimates on kpc scales, which might not hold within

the BH sphere of influence. An alternative scenario is

that the galaxy stellar/halo mass primarily regulates

the amount of cold gas available for triggering and sus-

taining the central SMBH growth (see Volonteri 2010

for a review). Investigating the relationship between BH

accretion rate (BHAR) and star formation rate (SFR)

is crucial to shed light on the connection between both

phenomena at various epochs.
A pioneering study of Mullaney et al. (2012) first pro-

posed the idea that SMBH and galaxy growth are syn-
chronised at all times at a universal BHAR/SFR∼10−3.

Recently, a number of empirical evidence argued that
the BHAR/SFR ratio increases with M⋆ (Rodighiero et

al. 2015; Yang et al. 2018; Aird et al. 2019). This was

independently corroborated in Delvecchio et al. (2019,
D19 hereafter), via modeling the observed AGN X-ray

luminosity function (XLF, Aird et al. 2015). In this let-
ter, we explore the implications on the cosmic SMBH

growth resulting from a M⋆–dependent BHAR/SFR

trend. Particularly, assuming a seed distribution for

both MBH and galaxy M⋆ starting at very high red-

shift (z=10), we let it evolve following the above trend.
Finally, we compare their final mass build-up with ob-

served scaling relations at z=0 and state-of-the-art cos-
mological simulations at higher redshifts.

Throughout this letter, we adopt a Chabrier (2003)

initial mass function (IMF) and a flat cosmology with

Ωm=0.30, ΩΛ=0.70 and H0=70 km s−1 Mpc−1.

2. OUR EMPIRICALLY-MOTIVATED TOY MODEL

D19 successfully reproduced the observed AGN XLF

(Aird et al. 2015) since z∼3, disentangling the rela-

tive contribution of main-sequence (MS) and starburst
(SB) galaxies. The XLF was modeled as the convo-
lution between the galaxy M⋆ function and a set of

“specific BHAR” (s-BHAR = BHAR/M⋆ ∝ LX/M⋆, see

Aird et al. 2012) distributions, that were normalised

to match a number of empirical BHAR/SFR trends.

From the derived XLF, we directly constrained the

typical BHAR/SFR ratio to scale positively with M⋆,

as BHAR/SFR ∝ M
0.73[+0.22,−0.29]
⋆ , and roughly in-

dependent of redshift at 0.5<z<3 (e.g. Aird et al.
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Figure 1. Compilation of various mean BHAR/SFR trends
with M⋆ proposed in the literature. Empirical relations
for star-forming galaxies are taken from Mullaney et al.
(2012, z∼1 and z∼2, red and blue triangles, respectively),
Rodighiero et al. (2015, z∼2, blue squares) and Yang et
al. (2018, dot-dashed lines, increasing with redshift over
0.5<z<3). Datapoints from Aird et al. (2019) (green cir-
cles) are averaged over the BHAR/SFR distributions across
0.1<z<2.5. Our recent trend (D19, black solid line) was ob-
tained by reproducing the observed XLF of AGN at 0.5<z<3,
yielding BHAR/SFR ∝ M

0.73[+0.22,−0.29]
⋆ at ±1σ confidence

level (grey shaded area).

2019). While extrapolating this BHAR/SFR trend at
z>3 might suffer from uncertainties, this finding sug-

gests that SMBHs and their hosts do not grow in lock-

step over cosmic time. Fig. 1 displays our BHAR/SFR

trend with M⋆ (black solid line), and the correspond-

ing ±1σ scatter (grey shaded area). For comparison, in

Fig. 1 we report other data and trends from the litera-

ture (Mullaney et al. 2012, Rodighiero et al. 2015; Yang
et al. 2018; Aird et al. 2019) at various redshifts. In par-

ticular, Yang et al. (2018) argue for a flatter BHAR/SFR

trend with M⋆, and slightly increasing with redshift.

However, we stress that the redshift dependence is, at

least partly, a consequence of the M⋆-independent MS

relation assumed by the authors (from Behroozi et al.

2013). The absence of a bending towards high M⋆ leads
to slightly higher SFR, therefore lower BHAR/SFR re-

lation, especially at low redshift where the flattening is

stronger (e.g. Schreiber et al. 2015). Therefore, under

the assumption of a bending MS, the above studies are

all consistent with a redshift-invariant BHAR/SFR ra-

tio.



3

2.1. Initial mass seed distributions

In order not to bias ourselves to any prior seed distri-

bution, we start with a uniform sample of one thousand

seeds formed at z=10, with masses MBH=102−6 M⊙ and
M⋆=106−10 M⊙. Such input grid spans a wide range

of MBH/M⋆, covering the mass range predicted by the
main BH seed formation channels (Begelman, & Rees

1978): (i) PopIII stars remnants (∼102 M⊙); (ii) stel-

lar dynamical collapse (∼103 M⊙); (iii) gas dynamical

collapse (∼105−6 M⊙). Taking a higher (lower) initial
redshift would simply yield slightly smaller (larger) M⋆

at z=0. Independently of this, their MBH estimates

would scale accordingly (based on the BHAR/SFR trend

with M⋆), keeping our final results and conclusions un-

changed.

2.2. Setting galaxy M⋆ growth

For each galaxy M⋆ and redshift, we assign the corre-

sponding SFR by following the MS relation of Schreiber
et al. (2015), re-scaled to a Chabrier (2003) IMF. The

MS scatter was propagated on the derived SFR by fol-
lowing a log-normal distribution with 1σ dispersion of

0.3 dex (Schreiber et al. 2015). The cumulative M⋆

is simply calculated as the time-integral of the SFR.

We acknowledge that a more detailed treatment of the

M⋆ build-up would require a correction for stellar mass
losses (Leitner, & Kravtsov 2011), which would slightly

lower our integrated M⋆, and consequently our MBH,

without affecting the overall trend. In fact, our main

goal is to track the cosmic assembly of the MBH–M⋆

slope and normalisation at various epochs, not to match

the observed galaxy M⋆ distribution at each redshift.

2.3. Setting BH growth

Each BH seed is assumed to gain mass via gas accre-

tion (Soltan 1982) at a fixed radiative efficiency ǫ=0.1
(e.g. Marconi et al. 2004). Because of a M⋆–dependent

BHAR/SFR ratio, we translate the corresponding SFR

into a long-term average BHAR, at each M⋆. Based on

this formalism, we determine the cumulative accreted

SMBH mass since z=10 as:

MBH|z=0 =

∫ z=0

z=10

BHAR|M⋆(z′) ·
dt′

dz′
dz′ + MBH|z=10

(1)
The corresponding Eddington ratio λEDD, at each M⋆

(and redshift), is calculated as:

λEDD|M⋆(z′) = 4.41 · 108 ·
ǫ

1 − ǫ
·

BHAR|M⋆(z′)

MBH/M⊙

(2)

We iterate the above procedure down to z=0 with a
redshift step of 0.1.

3. RESULTS

Exploring the cosmic build-up induced by a M⋆–

dependent BHAR/SFR ratio is paramount for under-
standing whether the galaxy (halo) governs SMBH
growth by setting the available amount of gas for fueling

SF and BH accretion, or instead if early AGN feedback
controls the amount of cold star-forming gas that fuels
galaxy growth (Volonteri 2010).

Fig. 2 displays the evolution of one thousand M⋆ and

MBH seeds (circles) since zf=10, resulting from our em-

pirical M⋆–dependent BHAR/SFR (D19). The colorbar
indicates the seed MBH distribution. For convenience,

dot-dashed lines mark various MBH/M⋆ ratios. We track

the evolution of M⋆ and MBH while propagating, at each

time step, the dispersion of the MS relation and the un-

certainty on the BHAR/SFR trend.

The positive BHAR/SFR relation with M⋆ suggests
that SMBH accretion and star formation do not proceed

in lockstep at all cosmic epochs, whereas their build-up

comes in two stages (Fig. 2).

Because of our M⋆–dependent BHAR/SFR trend, in

small M⋆ galaxies the BHAR is quite low relative to the

SFR, therefore the SMBH lags behind the galaxy. As

the galaxy steadily grows in M⋆, the BHAR is progres-
sively enhanced relative to the SFR. In this regime, the

BH grows super-linearly as MBH ∝ M1.7
⋆

, setting along

a gradually tighter MBH–M⋆ locus towards higher M⋆.

This is because two BHs with different MBH but same

galaxy M⋆ have the same BHAR. Hence, while the abso-

lute BH mass gained per unit time is the same, a smaller

BH seed will increase its relative mass by a much larger
factor than a bigger BH seed.

Therefore, the seed M⋆ is the key quantity that at-

tracts all seeds towards a super-linear slope, above a

critical M⋆ value (Fig. 2). Instead, the seed MBH is the

parameter that sets the corresponding M⋆ threshold, in-

creasing with seed MBH, above which any prior BH seed

dependence is lost.
For comparison, Fig. 2 reports predictions from cos-

mological simulations of a SB galaxy at z∼6 (Lupi et
al. 2019, orange dot-dashed line), and of normal star-

forming galaxies (Habouzit et al. 2017, magenta dotted

line at 3<z<6; Bower et al. 2017, cyan dot-dashed line

at z=0). Lupi et al. (2019) used a cosmological simula-

tion for studying the evolution of a quasar host-galaxy
at z∼6–7, with seed MBH=106 M⊙ at z&10. Instead, the

model of Habouzit et al. (2017) explores the early growth
(3<z<8) of lighter BH seeds, with MBH=102−3 M⊙. Fi-

nally, Bower et al. (2017) report the results from the EA-

GLE cosmological simulation (Schaye et al. 2015). All

these models support strong Supernovae-driven winds in

the early phases of galaxy growth, that evacuate the gas



4

       

102

104

106

108

z=10

1:10
1:100

1:1000

1:10000

       

 

 

 

 

 

z=6

1:10
1:100

1:1000

1:10000

       

102

104

106

108

z=4

1:10

1:100

1:1000

1:10000

       

 

 

 

 

 

z=3

1:10

1:100

1:1000

1:10000

       

102

104

106

108

  
  
  
  
  
  
  
  
  
  
  
  
  
  
 M

B
H
 [

M
O •
]

z=2

1:10

1:100

1:1000

1:10000

M* [MO •]

 

 

 

 

 

106107108109101010111012

z=1

1:10

1:100

1:1000

1:10000

M* [MO •]

102

104

106

108

106107108109101010111012

z=0

1:10

1:100

1:1000

1:10000

This work (MS)

Simulations:
Lupi+2019 (z~6)
Habouzit+2017 (3<z<6)
Bower+2017 (z=0)

MBH - M* :
Shankar+2016 (z=0)

log (MBH seed / MO •)

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Figure 2. Cosmic build-up of SMBH and galaxy mass implied by our M⋆–dependent BHAR/SFR trend (open circles). We
assume uniform MBH and M⋆ seed distributions at zf=10, spanning the ranges 102 <MBH <106 and 106 <M⋆ <1010 M⊙,
respectively (top-left panel). The colorbar indicates the seed MBH distribution at zf . Dot-dashed lines mark various MBH/M⋆

ratios. We track the evolution of M⋆ and MBH for MS galaxies (circles), incorporating the scatter of the MS relation and the
uncertainties on the assumed BHAR/SFR trend. For comparison, we show predictions of a SB galaxy at z∼6 (Lupi et al. 2019,
orange dot-dashed line), and of normal star-forming galaxies (Habouzit et al. 2017, magenta dotted line at 3<z<6; Bower et al.
2017, cyan dot-dashed line at z=0). We also show the proposed de-biased MBH–M⋆ relation at z=0 (Shankar et al. 2016, yellow
solid line). The absence of galaxies with M⋆ <1010 M⊙ at z=0 is simply attributable to our limited M⋆ grid at z=10.
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Figure 3. Final MBH–M⋆ relation at z=0 determined by
our M⋆–dependent BHAR/SFR. The colorbar indicates the
seed M⋆ distribution at zf . For comparison, we show the lo-
cal relation from Kormendy & Ho (2013), both with Mbulge

(green solid line) and converted to total M⋆ (green dashed
line). Our MS wedge agrees remarkably well with the pro-
posed de-biased MBH–M⋆ trend (Shankar et al. 2016, yellow
solid line) and with the virial MBH estimates for BLAGN
(empty squares, Reines & Volonteri 2015). For complete-
ness, we report MBH–M⋆ estimates collected from Reines &
Volonteri (2015) for reverberation mapping AGN (RM, filled
squares), dynamical MBH measurements (empty stars) and
dwarf galaxies (filled stars). The tag “MW” marks the mass
measurements for the Milky Way.

around the central SMBH (Dubois et al. 2014), halting
both BH and galaxy bulge growth. However, the rest

of the galaxy keeps growing on the MS until it reaches

a critical M⋆, increasing with seed MBH. At this stage,

the galaxy potential well is deep enough to retain the

ejected gas, and to drive it more effectively towards the

center. The BH grows super-linearly with M⋆ matching
the proposed de-biased MBH–M⋆ relation (Shankar et al.

2016, yellow solid line, see Fig. 3). This predicted sce-

nario is qualitatively consistent with our empirical toy

model predictions, as a natural consequence of a M⋆–

dependent BHAR/SFR ratio. A noteworthy difference
is that the above cosmological simulations do not di-

rectly link the BHAR to the host’s properties, while our
toy model assumes that BHAR depends exclusively on
the galaxy’s star-forming content.

In Fig. 3 we further test our empirical predictions

at z=0 against the local relation by Kormendy & Ho

(2013), both with Mbulge (green solid line) and converted

to total M⋆ (green dashed line), by applying a M⋆–

dependent bulge-to-total (B/T) correction for local MS

galaxies (Dimauro et al. 2018). Our MS wedge agrees re-

markably well with the MBH–M⋆ of Shankar et al. (2016,
yellow solid line), suggesting that our long-term aver-

aged BHAR/SFR trend is able to recover the intrinsic

MBH–M⋆ relation of MS galaxies. In addition, our trend

fits very well the BLAGN sample of Reines & Volonteri

(2015), who exploited 262 single-epoch MBH estimates

down to ≈105 M⊙, for which they computed the total

galaxy M⋆. This low-mass AGN sample contains mod-
erate luminosity AGN (1041.5 <LAGN <1044.4 erg s−1),

hence significantly more common than previous quasars

samples. The authors found a 10× lower normalisation

than that inferred for dynamical MBH–Mbulge trends of

inactive elliptical galaxies (Kormendy & Ho 2013), that

we interpret in the next Section.

4. DISCUSSION AND SUMMARY

Our findings corroborate the idea that galaxies

and their SMBHs do not grow in lockstep at all

times. Cosmological simulations predict that the

SMBH first starves until the galaxy reaches a crit-

ical M⋆ ∼109−10 M⊙ (Bower et al. 2017; Habouzit

et al. 2017; Lupi et al. 2019), corresponding to

MDM ∼1011−12 M⊙ (e.g. McAlpine et al. 2018).
Later, they predict a super-linear BH growth towards

MBH/M⋆ &10−3 at M⋆ &1011 M⊙, in qualitative agree-

ment with our findings.

The two-fold trend predicted also by our toy model

can be better visualised in Fig. 4, which displays the

cosmic evolution of MBH/M⋆ (top panel), BHAR/SFR

(middle panel) and λEDD (bottom panel) in MS galax-
ies (solid lines). Colors highlight representative cases

with different seed masses. For completeness, we also

show the extreme case of a continuous SB-like evolution

(dashed lines), for which BH and galaxy growth proceed

about 5× faster than on the MS (Schreiber et al. 2015).

The typical MBH/M⋆ ratio of MS galaxies (top panel)

decreases from z=10 until z∼2–3, and then rises towards
z=0. We note that smaller BH seeds increase their rel-

ative mass faster and earlier than bigger BH seeds, at

fixed M⋆. Above a certain critical M⋆, increasing with

seed MBH, all seeds converge towards a similar (within

a factor of two) MBH/M⋆ ratio at z=0. The evolution

of SB galaxies shows instead a minimum at higher red-

shifts, as they reach the critical M⋆ on about 5× shorter

timescales (∝M⋆/SFR) relative to MS analogs. For this

reason, the BHAR/SFR ratio of SB galaxies appears

systematically higher than for z-matched MS analogs

(middle panel). We calculate the mean λEDD from Eq. 2
and display its evolution with redshift (bottom panel).
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Figure 5. Compilation of various BHAR/SFR trends
with MDM, after applying the M⋆–MDM conversion for star-
forming galaxies (Behroozi et al. 2019) at z=1. Symbols are
the same shown in Fig. 1. The right y-axis shows the equiva-
lent AGN-to-galaxy bolometric output LAGN/LSF. The clear
twofold trend suggests that MDM might be crucial for ex-
plaining the non-linear SMBH growth.

that SMBH accretion can vary over several orders of

magnitude within the uncertainties, and it may occa-

sionally reach Eddington-limited accretion in starburst-

ing galaxies, consistently with high-redshift model pre-

dictions (e.g. Lupi et al. 2019).

The fact that BHAR is enhanced relative to SFR in
the most massive galaxies might be also linked to the in-

creasing compactness observed in star-forming galaxies

towards higher M⋆ (M⋆∝R0.4, van der Wel et al. 2014).

Indeed, a higher compactness might enhance the galaxy

ability to retain cold gas re-injected from stellar/AGN

feedback, and eventually drive it within the BH sphere

of influence.
In addition, environmental mechanisms linked to

MDM might help replenish and sustain BH-galaxy

growth via inflows of pristine cold gas, predicted to

be more effective in massive halos (Dekel et al. 2009).

To test this, we adopt the M⋆–dependent MDM/M⋆ ra-

tio for star-forming galaxies from Behroozi et al. (2019)
at z=11, and display the BHAR/SFR trend with MDM

in Fig. 5. The non-linear M⋆–MDM conversion generates

a strikingly twofold behavior that nicely resembles our

empirical twofold BH-galaxy growth. In small DM ha-

los Supernovae-driven feedback suppresses BH growth

1 Taking the conversion at a different intermediate redshift

would not affect our conclusions.
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(BHAR/SFR ∝ M1.6
DM) out to MDM ∼2×1012 M⊙, where

baryons are most efficiently converted into stars. Above

the turnover MDM, AGN activity (exerting both posi-

tive and negative feedback) and cold gas inflows might

enhance both BH accretion and galaxy star formation.

At MDM &1013 M⊙ the BHAR/SFR ratio flattens out

(BHAR/SFR ∝ M0.3
DM), possibly due to shock-heated

gas within the DM halo (Dekel et al. 2009). We find

a good agreement with the average BHAR/SFR and

MDM measurements obtained from clustering of X-ray

AGN at 0<z<3 (Allevato et al. submitted, yellow star).
Therefore, we speculate that MDM might be the leading

physical driver of the observed non-linear BH-galaxy
growth.

In Fig. 5 we link the BHAR/SFR ratio to the AGN-

to-galaxy bolometric output (LAGN/LSF, right y-axis),

assuming that BH accretion occurs with ǫ=0.1. In-

stead, the galaxy bolometric power arising from star
formation (LSF) is calculated by converting the (ob-

scured) SFR into rest-frame 8–1000 µm luminosity, via
a (Kennicutt 1998) scaling factor. While LAGN is al-

ways sub-dominant relative to LSF, their ratio increases

and displays a turnover in MDM at LAGN/LSF≈10%,

above which it slowly approaches energy equipartition.

Adding some contribution from unobscured star forma-

tion, particularly towards low M⋆, would strenghten

the resulting trends. We also note that assuming

LX–dependent bolometric corrections for deriving the

BHAR (e.g. Lusso et al. 2012) would further steepen

the resulting BHAR/SFR trend with M⋆, amplifying

the twofold behavior with MDM.

We acknowledge that our toy model is not able to re-
produce BHs as massive as 109−10 M⊙ already at z∼6

(e.g. Mortlock et al. 2011), even in the unlikely scenario

of continuous SB-like evolution since z=10. Indeed, our

toy model would form BHs with MBH .108 M⊙ at z=6,

but the galaxy would overgrow in M⋆ if extrapolating

down to z=0 (Renzini 2009). As for local dynamical
MBH measurements, we believe that also high-redshift

observations are likely biased towards the brightest AGN
and most massive BHs that swamp the host-galaxy light,
a critical condition to ensures reliable MBH estimates.

Therefore, we argue that such quasars at z∼6, if their

MBH are not overestimated (but see Mej́ıa-Restrepo et

al. 2018), must have grown at a BHAR/SFR ratio about
10× higher than that assumed in this work. If such a

notable ratio was followed by the overall AGN popula-
tion at z∼6, we would severely overestimate the observed

XLF (D19) and the declining BHAR density constrained
by deep X-ray data at z>3 (Vito et al. 2018). This leads

us believe that the most massive quasars at z∼6 followed

very peculiar and uncommon evolutionary paths.

At z=0, Fig. 3 shows that our toy model agrees well
with proposed de-biased MBH–M⋆ relations (Shankar et

al. 2016) and representative local AGN samples (Reines

& Volonteri 2015). Nevertheless, we note a significant

(>10×) discrepancy at M⋆ .1011 M⊙ relative to em-
pirical MBH–Mbulge relations based on dynamical MBH

measurements (Kormendy & Ho 2013). This apparent
conflict might arise from multiple reasons: (i) The lo-

cal MBH–Mbulge relation is likely biased towards the

largest BHs hosted within massive quiescent systems,

for which the BH sphere of influence can be spatially

resolved (Gültekin et al. 2009; Shankar et al. 2016,

2019). This biases the intrinsic MBH–Mbulge relation

towards a flatter slope and higher normalization (Volon-

teri & Stark 2011). (ii) While in the most massive

galaxies Mbulge ≈ M⋆, at M⋆=1010 M⊙ the B/T de-

creases to ≈0.3 for local MS galaxies (Dimauro et al.

2018). This behavior causes a M⋆–dependent steepen-
ing of the MBH–Mbulge relation (green dashed line in

Fig. 3), though not crucial for reconciling the observed

difference. (iii) A significant fraction of SMBH accre-

tion might be heavily obscured, thus unaccessible via

X-ray observations. However, this elusive contribution

might boost the average BHAR by at most factor of .2,

thus not filling the observed gap at low M⋆ (Comastri
et al. 2015). (iv) The average radiative efficiency might

be much lower than ǫ=0.1 (possibly M⋆ dependent).

As a consequence, the corresponding mass accreted by

SMBHs at fixed luminosity would be higher. How-

ever, the lowest theoretically-expected value of ǫ=0.06

(Novikov & Thorne 1973) proves still insufficient to jus-

tify the observed discrepancy. Therefore, we favor the
combination of points (i) and (ii) as possible reasons to
explain the conflicting MBH–M⋆ trends at z=0.

Concluding, the proposed empirically-motivated

BHAR/SFR trend with M⋆ (D19) enables us to de-

scribe the cosmic SMBH-galaxy assembly in normal SF

galaxies, in agreement with high-z cosmological simu-

lations and intrinsic MBH–M⋆ relations at z=0. Our
study suggests that the DM halo mass primarily regu-

lates the amount of cold gas available for triggering and

sustaining the cosmic non-linear BH-galaxy growth.
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