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Abstract The representation of shallow trade wind convective clouds in climate models dominates the
uncertainty in climate sensitivity estimates. In particular the radiative impact of cloud spatial organization
is poorly understood. This work presents the first unsupervised neural network model which
autonomously discovers cloud organization regimes in satellite images. Trained on 10,000 GOES-16
satellite images (tropical Atlantic and boreal winter) the regimes found are shown to exist in a hierarchy of
organizational scales, with sub-clusters having distinct radiative properties. The model requires no
time-consuming and subjective hand-labeled data based on predefined structures allowing for objective
study of very large data sets. The model enables the study of environmental conditions in different
organizational regimes and in transitions between regimes and objective comparisons of model behavior
with observations through cloud structures emerging in both. These abilities enable the discovery of
previously unknown physical relationships in cloud processes, enabling better representation of clouds in
weather and climate simulations.

1. Introduction
By eye, it is clear from satellite imagery that clouds often organize into patterns (fronts, cyclones, cellu-
lar cloud decks, etc). Each of these affect the Earth's weather and climate in different ways, through their
precipitation and interaction with radiation and atmospheric circulation.

Clouds of one particular form, the shallow trade wind cumuli, substantially impact the Earth's climate due
to their ubiquity (Bony et al., 2004) and their overall cooling effect, stemming from the fact that they reflect
more of the Sun's short-wave radiation than the long-wave radiation emanating from the Earth's surface. Dif-
fering predictions, between different climate models, for how these clouds will respond to a warming climate
account for most of the variation in climate sensitivity between models (Bony & Dufresne, 2005; Medeiros
et al., 2008; Vial et al., 2013; Webb et al., 2006) and highlight an urgent need to better understand how
these clouds form and interact with their environment. This is further demonstrated by the World Climate
Research Programme making the interplay between clouds, atmospheric circulation, and climate sensitivity
(Bony et al. 2015) one of their Grand Science Challenges.

These shallow clouds organize into many forms of mesoscale (meso-𝛽, 20–200 km, Orlanski, 1975) struc-
tures, and based on Large-Eddy Simulations (LES), it appears that this spatial organization may play a key
role in determining the cloud fraction (Seifert and Heus, 2013; Vogel et al., 2016), which may in turn affect
their radiative impact (as has been shown to be the case for deep convection Tobin et al., 2012). However,
which forms of organization occur in nature and what drives each is still poorly understood, leading to a
difficulty in representing these clouds in climate models. Motivated by this challenge (and the upcoming
EUREC4A field-campaign aiming to study these clouds, Bony et al., 2017), recent work by (Stevens et al.,
2019) manually identified and named four distinct regimes of frequently occurring patterns: Sugar, Flower,
Fish, and Gravel. This work was extended in (Rasp et al., 2019) by training a neural network to recog-
nize these four specific forms of organization using ≈ 30, 000 hand-labeled training examples (using ≈ 250
man-hours) and allowed for the production of a global spatial map of their relative occurrence.

In current work it is not the aim to identify predefined cloud structures but instead to construct a compu-
tational model (a neural network) which can without supervision discover which structures exist in a given
image and thereby group images containing similar structures. Instead of predicting which structure is most
likely present in each input image, the model maps these images into a space where similarity between
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structures can be studied. This is thus a form of unsupervised learning, where the model is not informed
what the correct answer is (as would be the case for supervised learning) but rather the similarity in answers
between different inputs is used to constrain the model's behavior.

The method by which the neural network is produced will be detailed in section 2, together with some detail
of how neural networks are able to achieve such a task. The ability of the network to identify groups of similar
cloud structures will be investigated in section 3, first by studying the clustering that the model produces
and then by showing that the identified cloud structures have different physically relevant (radiative and
morphological) properties.

2. Methods
When we see patterns in satellite images and start grouping cloud structures in our mind, what we are implic-
itly doing is grouping the images by visible physical characteristics (e.g., cloud size, cloud -cover, and fractal
dimension). This grouping by visual characteristics amounts to placing each image into a high-dimensional
space with the dimensions mapped out by the characteristics we are observing.

In a similar way the aim in this work is to produce a computational model, a neural network (detailed below),
which, through training, will learn to group similar image tiles (the pixel intensities forming the input, x)
into a small neighborhood in Nd-dimensional space. Mathematically this amounts to devising a function
(Fnn, detailed below) which for an input image xi produces an Nd-dimensional vector yNd

= Fnn(xi).

In machine learning nomenclature this type of output 𝑦Nd
is called an embedding, a lower-dimensional vec-

tor representation of the input data which has the desired properties that a given application might require.
An example is the seminal word2vec paper (Mikolov et al., 2013), which introduced the concept of embed-
dings for words; individual words are represented as points in high-dimensional space and arithmetic with
these points produces predictive relationships. For example

Fnn(′′santa′′) − Fnn(′′christmas′′) ≈ Fnn(′′man′′),
Fnn(′′london′′) − Fnn(′′england′′) ≈ Fnn(′′copenhagen′′) − Fnn(′′denmark′′).

(1)

Training a model to produce an embedding is a form of unsupervised learning, which means, as mentioned
previously, that the model is not trained to pick among a finite set of predefined answers (in this case types of
cloud structures) but is free to utilize the embedding space to achieve the training objective (here grouping
images with similar cloud structures together). In the current work the dimensions in the embedding space
are automatically utilized by the model to create the required separation in Nd-dimensional space in order
to represent the structural differences between images as necessary.

The unsupervised nature of the training presents a key challenge when interpreting the output of the model
as the components of the embeddings do not have an a priori meaning. Instead, the embeddings produced
must be studied to identify what relationships the model has learnt. The extent to which the model has
produced clusters in the embedding space will be studied in section 3; interpretation of the individual
embedding dimensions will be left for future work.

The specific type of computational model used in this work to produce image embeddings is a deep neu-
ral network, the application of which has recently revolutionized computer vision applications (see, e.g.,
Krizhevsky et al. (2012)). A neural network is mathematically the sequential application of linear and
non-linear transformations (𝑓1, 𝑓2, 𝑓3, ..., 𝑓N ) to an input vector x, to produce an output vector

y = Fnn(x) = 𝑓N (...𝑓3(𝑓2(𝑓1(x)))).

These transformations make up the so-called layers of the network, and the notion of a deep neural network
comes from the large number of layers used. Each layer transforms the previous layer's output vector, either
through multiplication by a matrix (the contents, or weights, of which must be learnt) or through scaling by
a non-linear function (e.g., max(x, 0)). Based on the output y of the neural network, a loss function (L(y), see
below) is formulated, and learning is achieved by incrementally altering the matrix contents (weights) so as
to minimize the loss function. Mathematically this is done by applying the chain-rule to expand how the loss
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Figure 1. Overview of tile generation and neural network model training process. Top: map of the studied domain (red
box) in tropical Atlantic with example anchor (green) and neighbor (blue) tiles from a single triplet highlighted (distant
tile sampled from same domain on different day). Bottom: for each tile in the triplet the neural network produces a 1D
embedding vector. The loss function ensures that anchor and neighbor tiles are close in embedding space compared to
distant tile.

function changes given changes in the matrix weights for each training example (x) seen (see Goodfellow
et al., 2016, for more details).

Research has shown which transformations, when applied in grouped succession, work well for particular
applications. For the present work, a Convolution Neural Network (CNN) is used as these have been very
successful in computer vision applications. In a CNN, successive layers build increasingly higher abstrac-
tions (edges, arcs, composite shapes, etc.) from compositing spatially localized gradient calculations over
multiple layers. The particular type of CNN used in this work is a so-called residual network, ResNet-34
(implemented in the pytorch framework, Paszke et al., 2017).

The ability of the neural network to cluster similar images in the embedding space comes from how the
neural network is trained (see figure 1 for a schematic of the training process). Instead of each training
example consisting of only one input, three image tiles (a triplet) are used, and the embeddings produced
from each of these three images are compared. This technique was pioneered by (Jean et al., 2018). The tiles
of the triplet are sampled from satellite imagery, in such a way that two are likely to contain very similar cloud
structures (the anchor ta and neighbor tn tiles) whereas the third (the distant tile, td) is likely to contain very
different cloud structure compared to the former two. This is achieved by picking the anchor and neighbor
tiles from the same image so that they are spatially close (here we use ≈ 50% overlap by displacing the
neighbor tile's center half a tile width in a random direction from the anchor tile's center), and the distant
tile is picked at a random location on a different day (this is in contrast to Jean et al. (2018) which used
the same source image for the distant tile but sampled at a predefined distance to the anchor tile). The
comparison of the three embeddings is formulated in the loss function L(ta, tn, td), which encourages similar
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embeddings for the anchor and neighbor but penalizes similar embedding for the anchor and distant tiles.
This can mathematically be written as

L(ta, tn, td) = max(||Fnn(ta) − Fnn(tn)||2 − ||Fnn(ta) − Fnn(td)||2, 0) + m,

where ||...||2 denotes the L2-norm (Euclidean distance) and m is the margin (setting the desired separation
between the anchor and distant tile). We use m = 1.0.

The input image tiles (256 × 256 pixel) were sampled from RGB composites, which were generated with
“satpy” (Raspaud et al., 2019) from radiance channels 1, 2, and 3 from GOES-16 observations. In this work,
as the primary focus was trade wind cumulus clouds, tiles were generated from a domain spanning across
the Tropical Atlantic (60◦ W to 30◦ W and 10◦ N to 30◦ N) during the boreal winter. Three months between 1
November 2018 and 31 January 2019, using observations spanning an hour over local zenith at 60◦ W (four
sets of observations per day). From the four satellite images per day one random image per day was retained
to use for studying the clustering of the model (the study set), the rest were used for training (training set).
The tile size was set to Lt = 200 km, so that any cloud structures up to the meso-𝛽 scale could be sampled.

The embedding length was set to Nd = 100, as this provided the neural network with adequate space
to satisfy the loss function by creating the necessary clustering in the embedding space. Below Nd = 20,
the training speed decreased and inter-cluster variance in both cloud structures seen and metrics of their
properties (section 3) increased. While fewer embedding dimensions may have been sufficient, the focus of
this work was on creating a functional rather than optimal model. One-cycle learning (Smith, 2018) with
adaptive learning rate was used, with max rate (𝜆 = 0.01) identified from the largest loss rate.

3. Results
In this section, the neural network's ability to group tiles with similar cloud structures into similar regions
of the embedding space will be shown. This is done first by demonstrating how the clustering can be studied
and visualized, using hierarchical clustering and second by investigating the extent to which the neural
network produces clusters of tiles with different radiative properties. The results shown here are based on
first training the neural networking using 10,000 triplets (generated as detailed in section 2) and using the
network to produce embeddings for 1,000 tiles produced from satellite imagery spanning the same period
and domain but were not included in the training set.

3.1. Clustering of Cloud Structures
To assess the ability of the neural network to group images with similar cloud structures, traditional mea-
sures such as cloud cover and cloud size will be used in this section to subjectively describe and compare
the clusters produced. A quantitative analysis of the clusters will be given through their radiative properties
in subsection 3.2.

In figure 2 a so-called dendrogram (Jones et al., 2001) displays the outcome of performing hierarchi-
cal clustering on the 1,000 embeddings produced by the trained neural network model. In hierarchical
clustering points are incrementally merged into progressively larger clusters, each merge combining the
two clusters which minimize a given clustering metric. Here the Ward metric, which aims to minimize
the intra-cluster variance in distance between embeddings (measured using the Euclidean distance as in
the loss function used to train the model), is used. The last 12 merges are shown for brevity, with each of the
resulting clusters labeled using a letter (A to L) and the number of tiles in each cluster. To demonstrate the
type of cloud structure represented by each cluster, 12 random tiles from each cluster have been rendered
below each of the leaf nodes of the dendrogram.

The vertical axis in the dendrogram measures the intra-cluster variance after each merge, and thus, the
length of the vertical vertices connecting each merge indicates the similarity between clusters (larger
intra-cluster variance meaning larger variance in distance between points in the embedding space). This
similarity measure shows that the model separates some groups more strongly than others, based on com-
mon characteristics between clusters. For example, clusters A and B are much more similar to each other
than to any other cluster, supported visually by the dominance of small scattered clouds as compared to the
other clusters. This can be similarly observed for the smaller cellular structures in clusters G and H and to
some extent the larger broken structures in clusters J, K, and L.
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Figure 2. Demonstration of clustering for embeddings produced by the trained neural network. Top: dendrogram showing hierarchical structure of the
clustering, with height representing intra-cluster variance in embedding distance in a cluster resulting from a specific merge of two child clusters. Only the
clusters present before the last 12 merges are showed for brevity. Bottom: 12 random tile examples from each cluster belonging to the leaf immediately above in
the dendrogram. Each leaf node cluster is annotated with the number of tiles in that cluster and a label to aid discussion. The persistence in the dendrogram
indicates for example clusters A and B are much more similar to each other than to any other cluster. A number of visibly distinct structures have been
identified, for example, scattered small clouds (A, B) cellular structures (C, D, G, and H in order of scale) and larger cloud cellular (D–F) and broken (I–L) cloud
structures.
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In general clusters A, B, G, and H contain smaller cloud structures as compared to C–F and I–L. Clusters
A and B are distinguished from G and H by the latter containing a more regular cellular pattern of clouds
where clouds in A and B are more scattered. Similarly D–F contain more cellular structures as compared to
the broken larger clouds in I–L. Another feature that separates the different clusters is the amount of cloud
cover, for example, clusters A and B have very little cloud, whereas cluster C has almost complete cloud
cover. The aim here is not to quantify exactly what features the model has used to create different clusters, as
these visible features are likely not independent but simply to describe the clusters and assert that they are
in fact different. Although by eye the model may appear to have misclassified some images the strength of
the model lies in applying it effortlessly to very large data sets and providing insight through the statistical
properties of each cluster identified (as will be shown in the next section).

At first glance it appears that another feature used by the model is the presence or absence of a light-gray
shading (which is likely high-level dust being swept from the coast of Africa) seen in G and H. However,
the fact that the clusters G and H contain both tiles with and without shading suggests that the model is in
fact able to discern the underlying structure even when it is obscured. The prevalence of a dust-like overlay
in clusters G and H may instead indicate that the cloud structures in these clusters are more common in
regions where dust is prevalent.

The relative number of tiles in each cluster provides an indication of the relative frequency of different
cloud structures in the studied region. It suggests that scattered small clouds (clusters A and B) are much
more common than full cloud cover with occasional cellular structures (cluster C). A systematic study of
the climatology of different cloud structures will be carried out in future work.

The hierarchical clustering used here becomes a means to study the continuum of different cloud structures,
which to a lesser extent is dominated by discrete forms of cloud structure but instead can be viewed as
different types of structures and sub-types within these and so on. Depending on the specific cloud type of
interest, a branch of the dendrogram may be isolated and studied further through further sub-clustering,
adding more training data to improve the statistics where necessary.

Figure 2 demonstrates that the neural network without supervision discovers different types of cloud struc-
tures and groups images with similar features together in the embedding space. As there was no pre-selection
to determine which tiles to use and so many tiles contain many different scales of cloud structures, it is
remarkable how well the clustering works. Through experimentation with training data used, model archi-
tecture (depth), embedding length and further development of means to study the embedding space, this
can be used to study cloud structures across a hierarchy of scales in any region across the globe.

3.2. Radiative Properties of Clouds
A key aspect of clouds is their impact on the Earth's radiation budget and so showing that different clus-
ters have different cloud radiative properties, in particular their differing effects on outgoing short-wave and
long-wave radiation, provides a clear measure of merit for the neural network based unsupervised classifi-
cation. At the time of writing, no long-wave (LW) and short-wave (SW) products were available for GOES-16
and so the raw band-centered radiances are utilized here by choosing bands representative of SW and LW
radiation. For SW channel 1 (𝑓1 = 0.47 μm) which is in the visible frequency range is used and for LW
channel 9 (𝑓9 = 6.95 μm) in the long-wave infrared range is used. Although channel 1 was also used in
generation of composite RGB images used for training the model, the image tiles used to study the behavior
of the model here have not been seen by the model.

Figure 3 plots the per-tile mean for all 1,000 tiles in the study data set. Alongside this, the per-cluster mean
is plotted for the tiles belonging to each cluster shown in figure 2, with the error in the mean for each cluster
represented by x-𝑦 error bars. For each of these clusters, the tile nearest to the mean (distance normalized by
the variance in the two channels) is added as an annotation, so that the radiative properties of the clusters
may be related to the cloud structures.

Although there is a large degree of overlap in the radiative properties of the clusters identified with the
unsupervised neural network their mean radiative properties (and so climatic impact) are clearly distinct.
If this was not the case, the error bars for each cluster would overlap across clusters, which, although not
shown in this work, was verified by randomly shuffling which tiles were assigned to each cluster.

The separation in radiative properties shows that with increasing cloud cover there is in general a decreasing
amount of long-wave emissions to space and an increase of short-wave emissions. As well as this general
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Figure 3. Per-tile mean radiance of channels 1 (in short-wave range) and 9 (in long-wave range) for all 1000 tiles in
study set together with the per-cluster mean and error (standard error of the mean) across all tiles in each cluster
produced by hierarchical clustering (figure 2) colored by cluster. Each cluster is annotated with the nearest tile. The
clusters show a clear separation between different cloud structures, more cloudy tiles having less long-wave and more
short-wave emission is radiated into space, and each cluster has distinct radiative properties.

trend, the cellular structure and organization of clouds also appear to be important (compare for example
clusters G and H), this will be studied further and quantified in further work.

The fact that each cluster containing tiles with similar cloud structures has specific radiative properties
suggests that with the neural network it is possible to automatically identify and group cloud structures
by physically meaningful properties. As mentioned above the further study of each cluster can simply be
achieved through providing more training and test data from the ample satellite observations available.

3.3. Spatial Structure and Organization of Clouds
To further support that the neural network has produced clustering in the embedding space represent-
ing distinct organizational states, the Iorg spatial organization metric (Tompkins and Semie, 2017) and
Minkowski-Bouligand fractal dimension DMB (Falconer, 2004) were calculated for all tiles in the study set
(plotted by color figure 4 with mean and standard error of the mean for each cluster). Iorg quantifies whether
the spatial distribution of clouds is regular (Iorg < 0.5), random (Iorg = 0.5), or organized (Iorg), by compar-
ing the nearest-neighbor cumulative distribution function to that of a random process. DMB quantifies the
spatial form of clouds by measuring the fractal dimension, expected to be between that of a line (DMB = 1)
and a plane (DMB = 2), by counting the number of successively smaller boxes that cover the cloud mask.
Both metrics require that a cloud mask is defined; here the tile RGB images were converted to gray-scale,
and 50% intensity was used.

The clusters of cloud types identified by the neural network are seen to occupy different parts of the Iorg -
DMB space, and the cluster means are clearly separated, affirming that the neural network has learnt dis-
tinct cloud regimes. Comparing the tiles highlighted for each cluster, as expected, more elongated and larger
structures have larger fractal dimension and more regularly spaced cloud patterns have smaller Iorg. Com-
paring the cluster means (e.g., clusters G, I, and J or clusters A, J, and F) it is clear that some forms of cloud
structures can only be distinguished by considering both metrics together. This highlights a further limi-
tation of applying existing metrics of organization based on inter-cloud distance (from cloud centers), to
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Figure 4. Cloud organization (Iorg) and fractal dimension (DMB) for all 1,000 tiles in study set produced by hierarchical
clustering (figure 2), colored by cluster, together with per-cluster mean and standard error in the mean. Each cluster is
annotated with nearest tile.

quantify the type of cloud structures present, as these do not take into account the spatial form (e.g., frac-
tal dimension) of clouds. Only by producing more complicated metrics (with further inherent thresholds)
or by applying a neural network which autonomously learns which spatial features to extract and use for
clustering can full identification of distinct regimes be achieved.

4. Conclusions
This work demonstrates that a neural network can, without labeled training data, automatically discover
different forms of cloud organization and through this learn to group input images containing similar
cloud structures together. This was demonstrated by first training a neural network with 10,000 triplets of
input image tiles sampled from 3 months of GOES-16 data and then studying the clustering of predictions
produced by the network on 1,000 image tiles not seen during training.

Using hierarchical clustering, it was shown that not only does the model identify different cloud structures
and group images with similar structures but also generates a representation where the similarity between
different structures can be studied. Through the use of two channels of the GOES-16 radiance measurements
in the long- and short-wave frequency range, as well as common metrics of cloud structure, it was shown
that different cloud structures have distinct radiative and morphological properties. This indicates that the
neural network discovers cloud structures which have unique physical characteristics.

To the author's knowledge, this work presents the first unsupervised approach to the identification of cloud
structures from satellite imagery. The benefits of using an unsupervised model are numerous, stemming
from the fact that the model (1) can be applied to any spatial data set with limited effort as no hand-labeling is
required; (2) automatically discovers the types of structures present in the input; and (3) produces a represen-
tation of the similarity between these structures. These properties open up a number of new opportunities
to provide further understanding.

First, the application to new spatial domains without needing hand-labeled training data and the automatic
discovery of the cloud structure types present enables systematic study of very disparate cloud types (e.g.,
mesoscale convective systems, cold-air outbreaks, cirrus, and ship-tracks) and regimes of cloud organization
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across the Earth. For example, having quantified the type of cloud structures present at a given location
and time, the environmental conditions may be extracted from reanalysis data sets and analyzed to provide
insight into what conditions are required for different forms of convective organization to occur.

Second, the temporal evolution of one type of cloud structure into another (e.g., closed- to open-cell
strato-cumulus) can be studied by combining the model's ability to represent similarity between cloud struc-
tures together with observations from high-temporal resolution geostationary satellite images (GOES-16
Δt = 10 min). This can be done by studying the trajectory of a given spatial domain through the embed-
ding space of the neural network (see section 2 for details), enabling quantitative analysis of the transition
between different regimes.

Third, the model can be applied to simulations of weather and climate as well as to satellite observations.
Through the ability to quantify scales and structures in simulation output, the model will provide quan-
titative objective measures of similarity across models and with observations, which will facilitate model
inter-comparison (by quantifying the structures present across modeling hierarchies) and will help bridge
the challenging gap in comparison of simulations with reality.

Finally, by using a model which itself identifies the distinguishing features that separate different types of
clouds structures, rather than features that are obviously visible to the human eye (e.g., cloud size and fractal
dimension) it is possible for the model to learn features that are as of yet not known. As an example, the
model could be trained on all 13 radiance channels from GOES-16, rather than the composite RGB channels
used in this work and through this discover structures invisible to the human eye. This may lead to new
insight into cloud processes and better methods for satellite retrieval of cloud properties.

In addition, the technique presented in this work is applicable beyond the study of clouds and their inter-
action with the environment and can be applied to autonomously discover coherent structures of a given
length-scale in any 2D geophysical field. This opens up the possibility of identifying structures which drive
physical behavior which are currently unknown, and only appear when different fields are composited
together, and eliminates the need for hand-labeling of training data to study patterns in geophysical data.

In summary this paper presents a tool with the potential to provide new insight into clouds and their
interaction with the environment by enabling the systematic study of very large data sets from models
and observations. The source code and training data in this work will be released to be freely used by the
community.
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