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Abstract—The feasibility of large-scale decentralized networks
for local computations, as an alternative to big data systems
that are often privacy-intrusive, expensive and serve exclusively
corporate interests, is usually questioned by network dynamics
such as node leaves, failures and rejoins in the network. This is
especially the case when decentralized computations performed
in a network, such as the estimation of aggregation functions,
e.g. summation, are linked to the actual nodes connected in
the network, for instance, counting the sum using input values
from only connected nodes. Reverse computations are required
to maintain a high aggregation accuracy when nodes leave or
fail. This paper introduces an autonomic agent-based model
for highly dynamic self-corrective networks using decentralized
reverse computations. The model is generic and equips the nodes
with the capability to disseminate connectivity status updates
in the network. Highly resilient agents to the dynamic network
migrate to remote nodes and orchestrate reverse computations
for each node leave or failure. In contrast to related work, no
other computational resources or redundancy are introduced.
The self-corrective model is experimentally evaluated using real-
world data from a smart grid pilot project under highly dynamic
network adjustments that correspond to catastrophic events with
up to 50% of the nodes leaving the network. The model is highly
agile and modular and is applied to the large-scale decentralized
aggregation network of DIAS, the Dynamic Intelligent Aggrega-
tion Service, without major structural changes in its design and
operations. Results confirm the outstanding improvement in the
aggregation accuracy when self-corrective actions are employed
with a minimal increase in communication overhead.

Keywords-self-correction; adaptation; accuracy; reverse com-
putation; data analytics; decentralized network; aggregation;
agent; migration; robustness; fault-tolerance

I. INTRODUCTION

The pervasiveness and increasing computational capacity of

smart Internet of Things devices equipped with networking

capabilities allow complex distributed computations to be

performed over networks, for instance, sensor networks com-

puting the spread of oil spills [1], smart grids measuring power

peaks in energy demand [2] or monitoring of automotive

traffic [3]. Decentralized computations over dynamic networks

are highly challenging to perform accurately and fast under

changing input data, nodes temporarily leaving, failing or re-

joining the network [4], [5], [6], [7], [8]. However, algorithms

for computations in decentralized networks are by design

more privacy-preserving, scalable, respect users’ autonomy

and do not require significant investments in expensive big

data computational resources [9], [10], [11], [12].

This paper studies a complex and challenging problem of

decentralized computations: when computations performed in

each node of a network are linked to the connectivity status

of all other nodes, adaptive or corrective computations are re-

quired to roll-back computational results to the latest network

status in terms of connected nodes. However, orchestrating

adaptation and corrective actions is even more challenging

when nodes leave the network as there are lower computational

resources in the network to employ for this purpose. For

example, consider the problem of decentralized in-network

aggregation [7], [13]: each node in a network computes an

aggregation function, e.g. summation, given an input value

from every connected node. If a node leaves the network, all

summations computed with input from this leaving node need

to be reverted by subtracting its value. Such rollback actions

are referred to in this paper as reverse computations and

they are known for their significance in efficient distributed

systems [14], [15], [16], [17]. The goal of this work is to

design autonomic dynamic networks that are self-corrective

using decentralized reverse computations.

This paper introduces a new agent-based self-corrective

model for dynamic computational networks, which, in contrast

to related work [18], [19], [8], [12], does not rely on replication

servers, proxies, storage of checkpoints or big data analytics

for fault analysis. Each node in the network creates two

software agents, the status and the corrective agent. The

status agent publishes connectivity status information about

the parent node. The corrective agent migrates to other host

nodes from which it monitors the connectivity status of its

parent. If the parent node leaves or fails, its remote corrective

agent initiates and orchestrates reverse computations with the

other nodes in the network. If the parent node reconnects, the

corrective agent terminates its operations and has the option

to migrate back to the parent agent to update the parent’s

outdated state for the time period it has been disconnected. A

fully decentralized gossip-based communication supports the

information exchange and dissemination between the status

and the corrective agent.

The applicability of the proposed self-corrective model

is studied in decentralized in-network aggregation using the

DIAS system [20], [7]. The capability of DIAS to reverse

computations when nodes change the input values in the ag-



gregation functions is extended to nodes leaving and rejoining

the network. In contrast to related work in which agility

comes as a trade-off to resilience [21], the introduction of the

generic and modular self-corrective model in DIAS does not

require any major structural changes in its design. Extensive

experimental results verify the improvement potential of the

aggregation accuracy by the proposed self-corrective model

using real-world data from a smart grid pilot project. Evalua-

tion under lightweight and heavyweight network adjustments

corresponding to catastrophic events with up to 50% of the

nodes leaving the network provides the proof-of-concept.

Results show significant improvement in accuracy, while the

corrective agents manage to tolerate the network dynamics via

consecutive migrations. They eventually perform the required

reverse computations in a symbiotic and autonomic fashion,

while communication cost remains low.

The main contributions of this paper are outlined as follows:

• The introduction of a new agent-based self-corrective

model for orchestrating decentralized reverse computa-

tions in large-scale dynamic networks.

• The expansion of the DIAS functionality with reverse

computations in dynamic networks in which nodes tem-

porarily leaving and rejoining.

• Verification of the improvement potential that reverse

computations have on the aggregation accuracy under

lightweight and heavyweight network adjustments.

This paper is outlined as follows: Section II formulates the

research problem. Section III introduces the self-corrective

model for reverse computations in dynamic networks. Sec-

tion IV illustrates the applicability of the self-corrective model

in the decentralized in-network aggregation of DIAS. Sec-

tion V experimentally evaluates the self-corrective model in

lightweight and heavyweight scenarios of nodes temporarily

leaving and rejoining the network. Section VI compares the

self-corrective model with related work. Finally, Section VII

concludes this paper and outlines future work.

II. DECENTRALIZED REVERSE COMPUTATIONS

Assume the extreme scenario of a decentralized dynamic

network with n nodes each with a local state si ∈ R. The net-

work is dynamic as nodes may temporary leave, fail or rejoin

during the overall system runtime. Each node i ∈ {1, ..., n} of

the network performs a number of n incremental operations

ai,j = f�(sj , ai,j−1) using the input state of every node

j ∈ {1, ..., n} and assuming that ai,0 = 0, for instance.

Given that the network is decentralized, nodes need to discover

each other and establish a remote peer-to-peer interaction

to exchange their local state si and sj . Gossiping protocols

provide effective node discovery in dynamic decentralized net-

works [22]. The sequence (ai,j)
n
j=1

of n updates completes the

required operations for each node i. Therefore, the presence of

a node in the network determines the required computations

of the other nodes present in the network.

However, assume without loss of generality that the jth

node leaves the network or fails, reverse computations are

required to roll back the result of the earlier computation

ai,j = f�(sj , ai,j−1). Such a reverse computation is defined

as ai,j−1 = f	(sj , ai,j), assuming that the two operations

f�() and f	 are constructive in nature as defined by the

fact that they require no history and only the most current

values of the variables can undo the primary operation [14].

Examples of such operations are the ++, −−, + =, − =,

∗ = and / =, with the two latter ones requiring special

treatment in case of multiplication or devide by zero as well as

overflow and underflow conditions. Reversible operations are

significant and common for several computations in distributed

systems and decentralized networks, for instance, in-network

aggregation for maintaining accuracy [20], parallel simulations

for efficiency in memory utilization [14], fault-tolerance in

large parallel systems [15] as well as data analytics and big

data scientific applications [16], [17].

Given this setting, a self-corrective system property for a

decentralized network with a varied number of participating

nodes due to leaves, failures or rejoins is defined as follows:

Definition 1. A dynamic decentralized network is defined

as self-corrective if for each node i ∈ {1, .., n} performing

once and only once all sequence operations (ai,j)
n
j=1

, where

ai,j = f�(sj , ai,j−1), ∀j ∈ {1, .., n}, a respective reverse

computation ai,j−1 = f	(sj , ai,j), ∀i ∈ {1, .., n} and ∀j 6=
i ∋ {1, .., n} is performed if and only if the jth node does not

anymore participate in the network, while node i participates.

Without loss of generality, reverse computations are applicable

for any node j. This paper focuses on the design, implemen-

tation and evaluation of an autonomic mechanism that builds

dynamic networks that are self-corrective by design according

to Definition 1.

III. SELF-CORRECTIVE DYNAMIC NETWORKS

This paper introduces an agent-based model for self-

corrective computations in dynamic decentralized networks.

The model is designed with two agents that every node

constructs to collectively form a self-corrective network: (i) the

status agent and (ii) the corrective agent. Figure 1 illustrates

a representative lifecycle of the proposed agent-based model.

The status agent is responsible for reporting the connectivity

status of the node: (i) rejoin, (ii) leave and (iii) failure. The

statuses of the node are disseminated in the network via the

peer sampling service by using the node descriptor. The node

descriptor contains base information such as the IP address, the

port number, the descriptor age, as well as registered applica-

tion information that can be carried within the descriptor. All

necessary information is periodically disseminated via gossip

exchanges of the node descriptor according to the execution

period of the peer sampling service. The failure status is

actually deductive: the status agent does not report an actual

failure but rather that is not failed, given that a node failure

terminates the status agent as well. The failure status is derived

from the age of the descriptor. At every gossip exchange,

a node i resets the age of its descriptor back to zero. The

follow up gossip exchanges by the other nodes increase the



1.	Birth	

2.	Status	update	 4.	Status	monitoring	

3.	Migra8on	

3.1.	Proac8ve	

3.2	Reac8ve	

Parent	 Host	

Correc8ve	Agent	

Status	Agent	

Correc8ve	Agent	

1.	Birth	 5.	Status	

6.	Start	reverse	

computa8ons	

5.1	Leave	

5.2	Failure	

5.3	Rejoin	

Peer	Sampling	Service	

6.	Stop	reverse	

computa8ons	

Dissemina8on	of	status	updates	

Figure 1. The proposed self-corrective agent-based model for dynamic
networks. Each parent node creates a status and corrective agent. The latter
migrates proactively or reactively in another host node. The status agent
registers status information in the network via the peer sampling service.
The migrated corrective agent can remotely receive this status information
and trigger reverse computations when the parent node leaves or fails. If the
node rejoins the network, the reverse computations are terminated.

age descriptor. The disseminated descriptors of a node i in the

network have on average a low age value if node i is connected

and can reset the age descriptor. In contrast, a disconnected

node does not perform gossip exchanges and therefore does

not update the age of the disseminated descriptors. The earlier

work [22] on the peer sampling service provides further

information about the healing process of gossiping using the

age descriptors. All in all, the status agent remains local and

it has minimal tasks for execution.

The corrective agent is responsible for orchestrating the

reverse computations. It operates remotely by migrating in

a secure way [23] from the parent node that creates it to

another connected node, the host node. Migration is performed

(i) proactively, so that the corrective agent does not terminate

when the parent node fails or (ii) reactively, as a result of the

parent node leaving on-demand. These are the two migration

modes of the corrective agent illustrated in Algorithm 1.

Algorithm 1 Proactive and reactive migration of the corrective

agent.

Require: migration mode, peer sampling service

1: loop

2: if migration mode is ‘proactive’ then

3: break

4: else

5: // migration mode is ‘reactive’

6: if local node leaves then

7: break

8: end if

9: end if

10: end loop

11: get random node j from peer sampling service

12: migrate to host j

Consecutive migrations can be performed in case the host

node is disconnected as well. In this case, a second proactive

migration may represent the relocation of the corrective agent

to another more reliable host agent, for instance, a host agent

with a lower age descriptor value. A second reactive migration

may represent the leaving of the host agent from the network.

The main operation of the corrective agent after it migrates

to the host node is to monitor the network for status updates

from its parent node. The corrective agent checks whether the

node descriptor of the parent node is present in the view of

the peer sampling service after every view update. The view

is a buffer list of limited size containing the node descriptors

received from other nodes via gossiping. If the parent node

descriptor is present with a status ‘leave’ or ‘failure’, then

reverse computations are initiated. If the status is ‘rejoin’,

reverse computations that are in-progress are terminated. The

failure status is not explicit and can be detected by an overpass

of a threshold1 in the age descriptor of the parent node.

Algorithm 2 illustrates the main operations of the corrective

agent in the host node.

Algorithm 2 Main operations of the corrective agent in the

host node.

Require: parent i, migration type, peer sampling service

1: for every view update in the peer sampling service do

2: if view has parent descriptor then

3: if parent descriptor status is ‘failure’ or ‘leave’ then

4: start reverse computations

5: else

6: if parent descriptor status is ‘rejoin’ then

7: stop reverse computations

8: if migration type is stateful then

9: migrate to parent i
10: end if

11: else

12: // parent descriptor status is ‘connected’

13: end if

14: end if

15: end if

16: end for

Depending on the computations f�(), f	() of an application

and the network scenario, the corrective agents may transfer

some information from the parent node to the host node

and back to the parent node, after reverse computations are

terminated, so that they guarantee a self-corrective network

according to Definition 1. This defines a stateful migration, in

contrast to a stateless migration in which the corrective agents

do not need to return back to the parent agent rejoining in

order the latter one to continue its operations. If an application

requires explicit historical information about each node j
involved in a computation ai,j = f�(sj , ai,j−1), for instance,

to prevent a double-counting in aggregation [20], [5], [7], a

stateful migration is required.

The proposed multi-agent system equips dynamic decen-

tralized networks with self-healing autonomic properties as

the self-corrective reverse computations are symbiotically per-

formed by the inner nodes of the network without introducing

1The threshold can be selected empirically by an analysis of the uptime
and downtime distributions of the nodes in the network [24], [25].



additional computational resources and redundancy, that are

common in related work [26], [27]. The virtue of this design

approach comes along with some challenges. The overall

system design does not guarantee a self-corrective network

given all uncertainties of large-scale dynamic decentralized

networks. Catastrophic failures can result in the loss of cor-

rective agents. Moreover, highly frequent join and leaves in

the network may turn out reverse computation to be infeasible

if the required convergence time of the peer sampling service

is slower than the observed network dynamics [22]. More-

over, note that the peer sampling service is a highly robust

decentralized protocol, yet it is a probabilistic mechanism.

The goal of this paper is to quantify system performance

and draw conclusions2 about how large-scale decentralized

dynamic networks can maximize the cost-effectiveness of their

self-corrective operations.

IV. DECENTRALIZED AGGREGATION WITH REVERSE

COMPUTATIONS

As a proof of concept, the proposed self-corrective model is

realized in a challenging application scenario of decentralized

in-network aggregation. The problem statement remains as

illustrated in Section II. The operations f�() and f	 computed

are aggregation functions, such as SUMMATION, AVER-

AGE, MAXIMUM, MINIMUM, etc. Reversed computations

in aggregation functions3 are crucial for maintaining a high

accuracy when the local states of the nodes change values.

By first performing reverse computations with the old values

and then aggregating the new values, accuracy is maintained.

DIAS, the Dynamic Intelligent Aggregation Service [20], [7]

is designed to perform accurate in-network aggregation even

when the local state si = pi,s ∈ {pi,1, ..., pi,k} of a node

i changes among a finite set of k possible states. This is

achieved via reverse computations orchestrated by a distributed

efficient memory system of probabilistic data structures, the

bloom filters [28]. Although this powerful capability of DIAS

is exceptional among very few other related methodologies on

decentralized in-network aggregation [13], [5], [6], it cannot

be applied when nodes leave and rejoin the network as well.

The proposed self-corrective model fills this gap by extending

the capability of DIAS to perform reverse computations in

dynamic networks with nodes leaving and rejoining.

The self-corrective model is the new contributed feature

of DIAS and it is applied as follows. Each node i in DIAS

may have an aggregator, a disseminator or both. The dis-

seminator is a software agent that has information about the

possible states (pi,u)
k
u=1

, the local selected state pi,s = si and

historic information forming the distributed memory system.

The aggregator is also a software agent that computes the

aggregation functions and performs reverse computations. It

2Such measurements and conclusions can be used to design empirical
heuristics, e.g. decision trees, to customize system performance as earlier
shown [2], [7]. The design of such heuristics is out of the scope of this paper.

3Although MAXIMUM and MINIMUM are not constructive in nature,
reverse computations can be applied using the TOP-K and BOTTOM-K
respectively as shown in earlier work [7]. In this case, a memory buffer of
size k supports the reverse computations under changes in local states.

stores the output of the aggregation functions and shares part

of the distributed memory system with the disseminators.

Aggregation is performed as follows: disseminators discover

aggregators using the peer sampling service and share their

latest local selected state pi,s = si. Therefore, the introduced

self-corrective model reuses the peer sampling service of

DIAS that is already part of its design. A peer-to-peer remote

interaction between a disseminator and an aggregator that

results in a potentially new incremental computation of an

aggregation function is defined as an aggregation session.

Given that the disseminator is the agent that initiates the

aggregation sessions in the DIAS network, the disseminator

extends all functionality of the corrective agent. It is then capa-

ble of stateful migrations to host nodes when its parent nodes

leaves the network. A migrated disseminator4 to a remote host

initiates aggregations sessions that involve reverse computa-

tions as shown in Figure 2. It is these aggregation sessions

performed between migrated disseminators and aggregators

that create a highly self-corrective DIAS network according

to Definition 1. Migrations are stateful as DIAS relies on

the distributed memory system of bloom filters5. Therefore,

when a parent node rejoins, the disseminator migrates back

with consistent information about all reverse computations

performed during the time period the parent node has been

disconnected.
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Figure 2. An example of how aggregation accuracy is preserved in DIAS via
migration and corrective actions. When a disseminator with a selected state
of value 3 leaves the network, the corrective agent migrates to another host
to apply corrective actions. In this example, the value 3 is removed from the
sum of all other nodes in the network.

The reverse computations are implemented within the main

DIAS runtime of Algorithm 1, 2 and 3 illustrated in earlier

work [7]. The new features are the following: (i) Algorithm 1

is executed by the migrated disseminator that selects aggrega-

tors with which an aggregation session has been earlier per-

formed (classified as exploited or outdated but not unexploited,

line 5). (ii) The computation of the aggregation functions in

Algorithm 2 is an actual reverse computation as defined in

Section II. (iii) The disseminator and aggregator involved in

4It is implemented in DIAS as a serializable object transfered via an Apache
MINA TCP socket.

5Bloom filters offer both space savings and privacy-preservation as no
explicit historic information is migrated [7]. The self-corrective model does
not result in additional information reveal.



the aggregation session are removed from the memory by

decreasing the counters of the counting bloom filters (line 2

and 1 of Algorithm 1 and 2 respectively).

The introduction of the self-corrective model in DIAS

requires almost no changes in its design and main operations.

The distributed memory system remains intact: no new bloom

filters are introduced, consistency in the computations is

guaranteed via the existing bloom filters used in the very

initial design of DIAS [20]. The same exactly holds for the

interactions: an aggregation session is performed in the same

way whether a corrective agent is employed or not. The addi-

tional messages exchanged for the migration of disseminators

is functionality inherited from the introduced corrective agent.

V. EXPERIMENTAL EVALUATION

The self-corrective model in DIAS is implemented in Java

using the Protopeer distributed prototyping toolkit [29]. A

Protopeer implementation6 of the peer sampling service is

part of the DIAS design and it is reused by the self-corrective

model. Both DIAS and the peer sampling service are deployed

in the Euler7 HPC cluster infrastructure of ETH Zurich.

DIAS is fed with real-world data8 from ECBT, the Elec-

tricity Customer Behavior Trial that is a state-of-the-art pilot

project about the electricity consumption in Ireland. The

project ran during the period 2009-2010 with 6435 residential

and small-medium enterprise consumers, from which 3000

residential consumers are used for shorter execution times of

the experiments. Consumption data are collected from smart

meters every 30 minutes. The data of date 4.1.2009 are used

for the experiments. The total records of raw data used in the

experiments are 2 records/hour*24 hours=48 records. Possible

states are extracted from the raw data by performing clustering

with k-means, where k = 5, using the Weka library9.

The epoch duration is selected as 30 minutes/14 DIAS

executions=2.14 minutes (2.14/4=0.5 minutes for the peer

sampling service) to match the data records used. A high

execution rate of DIAS improves convergence speed but also

increases the communication rate, which is though minimized

to zero after convergence. Each experiment runs for 800

epochs in total. The first 100 epochs are used for system boot-

strapping. Aggregation is performed in the next 14*48=672

epochs. The view size of the peer sampling service is 50 with a

swap parameter of 24 and a healer parameter of 1 [13]. Each of

the 3000 nodes of DIAS is equipped with both a disseminator

and an aggregator to test the most demanding scenario. A

maximum of 40 aggregation sessions per epoch are initiated by

each disseminator. Results for the AVERAGE, SUMMATION

and MAXIMUM aggregation functions are presented.

The goal of the experimental evaluation is to show how the

self-corrective model performs in DIAS under a lightweight

6Available at https://github.com/epournaras/PeerSamplingService (last ac-
cessed: January 2017

7Available at http://brutuswiki.ethz.ch (last accessed: January 2017).
8Available at http://www.ucd.ie/issda/data/

commissionforenergyregulationcer/ (last accessed: February 2017)
9Available at https://weka.wikispaces.com (last accessed: February 2017)

and heavyweight scenario of network adjustments focusing10

on leaves and rejoins of nodes. In both scenarios, the specific

nodes leaving the network are fixed between the different

experiments to compare the results. In the lightweight sce-

nario, the number of connected nodes in the network are

incrementally varied by a maximum of 20% as follows:

1) UP-DOWN: During bootstrapping, 20% of the nodes

leave the network. In the first half of the aggregation

time (the first 336 epoch after bootstrapping), nodes

incrementally rejoin the network. The reverse process

follows with 20% of the nodes incrementally leaving

the network for the second half of the aggregation time.

2) DOWN-UP: After bootstrapping and during the first half

of the aggregation time, meaning the first 336 epoch

after bootstrapping, 20% of the nodes incrementally

leave the network. The reverse process follows for the

rest of the second half of the aggregation time with all

left nodes incrementally rejoining the network.

The incremental leaves and rejoins are uniformly distributed

in each UP and DOWN phase, yet, they are performed in

varying batches of leaving and rejoining nodes, the departure

steps (DS). The following departure steps are defined: (i)

DS-75, (ii) DS-120, (iii) DS-200 and (iv) DS-300. DS-300

completes the leaves and rejoins of 20% (600) of the nodes in

2 steps, whereas, DS-75 performs 8 steps. Figure 4a and 4b

illustrate the number of connected nodes in the network for

UP-DOWN, DOWN-UP and varying departure steps.

In contrast, the heavyweight scenario of network adjust-

ments incrementally removes 50% (1500) of the nodes in the

network with varying speed referred to as departure period.

The following departure periods are used in the experiments:

(i) DP-10, (ii) DP-15 and (iii) DP-20. The number of nodes

removed in each incremental step is controlled by the depar-

ture steps, as in the case of the lightweight scenario. In the

heavyweight scenario, the following departure steps are used:

(i) DS-50, (ii) DS-100, (iii) DS-150 and (iv) DS-250. Figure 8a

to 8b show the number of connected nodes in the network for

varying departure steps and periods.

The following measurements characterize the performance

of the self-corrective model on DIAS:

• Accuracy: This is the average relative error of the ag-

gregation functions in DIAS, defined by the absolute

difference between actual and estimated values divided by

the actual values. The accuracy evaluates the effectiveness

of the self-corrective network according to Definition 1.

• Communication cost: The total number of DIAS mes-

sages and the number of messages originated by the

migrations are measured. The communication cost of the

peer sampling service is not shown as it is constant and

it is governed by the execution period.

• Rate of migration success: This is the number of success-

ful (consecutive) migrations divided by the total number

10Due to space limitations the focus is on nodes leaves and rejoins. Failure
scenarios simply require activation of proactive migrations. Therefore all
findings shown in this paper indicate the model performance under failures.



of migrations initiated in each epoch. An unsuccessful

migration occurs when the local node of the corrective

agent has to leave the network, the agent chooses a new

random host node from the peer sampling service to

migrate, however, this new host node has already left the

network and as a result, the corrective agent is lost.

The rest of this section illustrates the experimental results

under the lightweight and heavyweight network adjustments.

A. The improvement potential of accuracy

Table I and II verify the improvement potential in the accu-

racy of DIAS by the self-corrective model. A self-corrective

DIAS network is compared to a network in which no corrective

actions are employed, yet all input values from the connected

nodes are counted in the aggregation functions. These are the

actual ‘true’ values. Errors originated from non-convergence

are excluded and the evaluation focuses on errors coming

from node leaves. Results are shown for the SUMMATION

that is highly influenced by node leaves. Results for the other

aggregation functions confirm the conclusions of this section.

The measurements of the relative errors are counted after the

computation of the aggregation functions is converged and at

the epochs when nodes leave the network. These are the epochs

500-800 and 250-400 in the UP-DOWN and DOWN-UP

phases of the lightweight scenario respectively (see Figure 4a

and 4b). In the heavyweight scenario, errors are measured after

the 250th epoch and as long as the network size remains lower

than 3000 (see Figure 8a and 8b).

Table I
AVERAGE RELATIVE ERRORS UNDER LIGHTWEIGHT NETWORK

ADJUSTMENTS IN A NON-CORRECTIVE VS. A SELF-CORRECTIVE

NETWORK OF DIAS.

Departure Step Adjustment Non-corrective Self-corrective

DS-75 UP-DOWN 0.17 0.07

DS-75 DOWN-UP 0.19 0.18

DS-120 UP-DOWN 0.17 0.07

DS-120 DOWN-UP 0.19 0.18

DS-200 UP-DOWN 0.16 0.07

DS-200 DOWN-UP 0.20 0.18

DS-300 UP-DOWN 0.15 0.09

DS-300 DOWN-UP 0.20 0.16

Table II
AVERAGE RELATIVE ERRORS UNDER HEAVYWEIGHT NETWORK

ADJUSTMENTS IN A NON-CORRECTIVE VS. A SELF-CORRECTIVE

NETWORK OF DIAS.

Departure step Departure period Non-corrective Self-corrective

DS-50 DP-10 0.16 0.12

DS-50 DP-15 0.28 0.13

DS-50 DP-20 0.43 0.10

DS-100 DP-10 0.25 0.12

DS-100 DP-15 0.22 0.12

DS-100 DP-20 0.17 0.12

DS-150 DP-10 0.25 0.11

DS-150 DP-15 0.25 0.12

DS-150 DP-20 0.24 0.13

DS-250 DP-10 0.25 0.09

DS-250 DP-15 0.25 0.10

DS-250 DP-20 0.25 0.10

Results confirm the significant improvement potential of

accuracy. A self-corrective network decreases the errors 29%

and 55% on average in the lightweight and heavyweight

scenarios respectively.

B. Lightweight network adjustments

Figure 3 illustrates the average accuracy of the self-

corrective model on DIAS under lightweight network ad-

justments. The following key observations are made: (i) In

SUMMATION, the average relative error decreases by 6.46%

and 15.23% during the UP phases by increasing the departure

step from DS-75 to DS-300, while it increases by 20.27%

and 3.19% during the DOWN phases. (ii) AVERAGE shows

the same, but less significant trend with the respective val-

ues of 3.36% and 7.99% during UP and 5.57% and 1.28%

during DOWN. (ii) In MAXIMUM, the average relative error

decreases in all individual phases. The accuracy of SUMMA-

TION over runtime is illustrated in Figure 4c and 4d. The

baseline performance of FIXED refers to DIAS operating with

all the 3000 nodes connected.��������������������������������������
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Figure 3. Average accuracy of the aggregation functions under leightweight
network adjustments.

Figure 4e and 4f illustrate the number of messages ex-

changed for varying departure steps. The number of mes-

sages for UP-DOWN and DOWN-UP decreases 9.28% and

9.09% on average compared to FIXED despite the additional

messages consumed for the migrations when nodes leave and

rejoin. This is also confirmed in Figure 5a. The decrease in

the communication cost is maximized when the number of

nodes reaches the minimum during the DOWN phases. There

are certain time points in which the communication costs

under leaves and rejoins overpasses FIXED. This is when the

network recovers its full size, while migrations that are still

in progress cause the additional communication overhead.

Figure 5a illustrates the total number of messages aggre-

gated over runtime. DS-300 has on average 2.89% lower

communication cost than DS-120 in DOWN-UP, whereas, it is

1.41% higher in the UP-DOWN phase. The UP phase of UP-

DOWN has the communication cost level of the DOWN phase

in DOWN-UP. Respectively, the same holds for the DOWN

phase of UP-DOWN and the UP phase of DOWN-UP.

Figure 6a and 6b illustrate the communication cost origi-

nated from the consecutive migrations of the corrective agents.
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(a) Connected nodes, UP-DOWN.

��������������������������������������������� ���� ���� ���� ���� ���� ���� ���� ������
�
��
����������

�����

�����
������
������
��������������������������������������������������� ���� ���� ���� ���� ���� ���� ���� ������

�
��
����������

�����
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(c) SUMMATION accuracy, UP-
DOWN.
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(d) SUMMATION accuracy, DOWN-
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(e) Total number of messages, UP-
DOWN.
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(f) Total number of messages,
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(g) Rate of migration success, UP-
DOWN.
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(h) Rate of migration success,
DOWN-UP.

Figure 4. Performance of the self-corrective model on DIAS over its
runtime under leightweight network adjustments. (a)-(b) Number of nodes
in the network. (c)-(d) Accuracy of SUMMATION. (e)-(f) Total number of
messages. (g)-(h) Rate of migration success.

Migrations back to the parent nodes are indicated in the plots
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(a) Total number of messages.
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(b) Rate of migration success.

Figure 5. Total number of messages and rate of migration success aggregated
over runtime under leightweight network adjustments.

as ‘returns’. The peaks in the plots correspond to the steps

of node rejoins and the return migrations back to the parent

nodes. Although the number of migrations from parent to host

and from host to parent should be approximately the same11

as shown in Figure 6c, the plots show that returns are highly

spread over time given the convergence delay for discovering

that rejoining parent nodes. In contrast, the migrations from

parent to host happen in steps that justify the fewer samples
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(a) Number of messages from migra-
tions, UP-DOWN.
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(b) Number of messages from migra-
tions, DOWN-UP.������
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(c) Number of messages originated from migrations aggregated over runtime.

Figure 6. The communication cost of migrations under leightweight network
adjustments.

Figure 6c illustrates the number of messages originated from

11With the exception of consecutive migrations from host to host that add
additional communication overhead.



migrations aggregated over runtime. The baseline shows the

optimal case of 600 messages consumed for parent to host

migrations and host to parent returns. The baseline means

that no consecutive migrations need to be performed and no

corrective agents are lost in migrations. Results show that

parent to host migrations are 13.69% higher than baseline,

whereas host to parent returns are 3.42% lower than baseline.

Figure 4g and 4h show the rate of migration success that

remains on average at high values for all departure steps

in both UP-DOWN and DOWN-UP. Figure 5b summarizes

the rate of migration success for varying departure steps. As

the departure step increases, the rate of migration success

decreases on average, suggesting that self-corrective actions

are more effective when network adjustments are performed

incrementally at several small steps. This is also confirmed by

the number of return messages that are closer to the baseline in

Figure 6c. The rate of migration success increases on average

5.57% as the departure steps changes from DS-300 to DS-75.

C. Heavyweight network adjustments

Figure 7 illustrates the average accuracy of the self-

corrective model on DIAS under heavyweight network ad-

justments. The following key observations are made: (i) The

departure period does not influence significantly the accuracy.

(ii) In SUMMATION, the average relative error decreases

21.17% on average as the departure step changes from DS-300

to DS-50. In MAXIMUM, the respective decrease is 48.01%.

(iii) In AVERAGE, no significant differences are observed.

The accuracy of SUMMATION over runtime is illustrated in

Figure 8c and 8d.��������������������������������������
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Figure 7. Average accuracy of the aggregation functions under heavyweight
network adjustments.

Figure 8e and 8f illustrate the influence of the departure

period on communication cost. As shown in Figure 8e for DS-

50, nodes leave the network till the 700th epoch in DP-20,

in contrast to DP-10 that completes the network adjustment

in almost 400 epochs. The number of messages exchanged

decreases when the duration of the network adjustment is

longer as also confirmed in Figure 9a that shows 15.52%

decrease from DP-10 to DP-20 for DS-50.

Figure 9a illustrates the aggregated total number of mes-

sages for varying departure steps and periods. The communica-

tion cost for different departure periods remains approximately
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(a) Connected nodes, DS-50.
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(c) SUMMATION accuracy, DS-50.
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(e) Total number of messages, , DS-
50.
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(f) Total number of messages, , DS-
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(g) Rate of migration success, DS-50.
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(h) Rate of migration success, DS-
150.

Figure 8. Performance of the self-corrective model on DIAS over its
runtime under heavyweight network adjustments. (a)-(b) Number of nodes
in the network. (c)-(d) Accuracy of SUMMATION. (e)-(f) Total number of
messages. (g)-(h) Rate of migration success.

the same, however, as in the case of the lightweight network

adjustment, higher departure steps have a lower communica-



tion cost, for instance, DS-300 has on average 6.29% lower

number of messages than DS-50.����������������������������������������
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(a) Total number of messages.
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(b) Rate of migration success.

Figure 9. Total number of messages and rate of migration success aggregated
over runtime under heavyweight network adjustments.

Figure 10 illustrates the number of messages originated

from migrations aggregated over runtime. The baseline shows

the optimal case of 1500 messages consumed for parent to host

migrations and host to parent returns. As in the lightweight

scenario of network adjustments, the baseline means that no

consecutive migrations need to be performed and no corrective

agents are lost in migrations. Results show that parent to host

migrations are 26.59% higher than the baseline, whereas host

to parent returns are 5.51% lower than the baseline.��������������������������
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Figure 10. Number of messages aggregated over runtime originated from
migrations under heavyweight network adjustments.

Figure 8g and 8h show the rate of migration success

for different departure steps and periods. Strikingly, the rate

remains over 70% in all cases even under heavyweight network

adjustments, showing that the corrective agents manage to find

a host and perform their operations even when half of the

network fails. Figure 9b confirms the high average rates of

migration success that increases for lower departure steps as

also in the case of lightweight network adjustments. DS-50

has 7.2% higher rate of migration success than DS-300.

VI. COMPARISON WITH RELATED WORK

To the best of authors’ knowledge, there is no other correc-

tive model for large-scale decentralized dynamic networks for

a fair and meaningful quantitative comparison. Therefore, this

section focuses on a qualitative comparison.

A majority of fault-detection, replication and fault-tolerance

mechanisms for multi-agent systems are managed in a central-

ized fashion by dedicated, for this purpose, replication servers,

proxies and storage of checkpoints [18], [19], [8]. In contrast,

the agents of the proposed self-corrective model rely on the

peer sampling service for a fully decentralized detection and

orchestration of reverse computations. No additional resources

are required as the corrective agents operate in a symbiotic

fashion within the nodes of the network.

A self-healing web of things agent-based architecture is

earlier introduced [30] that models detection, diagnosis and

recovery processes. The architecture is mainly conceptual

and is not experimentally validated. It focuses on healing

aspects rather than corrective computations. It is not clear how

it can be applied in large-scale decentralized computational

networks, in contrast to this work that extensively illustrates

experimental findings on self-corrective aggregation networks

under challenging network scenarios of leaving and rejoining.

There is a class of fault-tolerance algorithms for computa-

tional problems with large numbers of parallel processes. Such

algorithms are based on checkpoint rollback-recovery and

restart mechanisms [31]. An earlier algorithmic checkpoint-

free fault-tolerance approach is introduced to significantly de-

crease the high memory overhead of periodic checkpoints for

parallel matrix computations [32]. Hybrid methods combining

checkpoints and checksum storage are designed to cope with a

broader range of dense matrix factorization problems [33]. In

contrast to all these methods designed for failures of parallel

computational processes, the proposed self-corrective model

focuses on large-scale decentralized networks in which nodes

may temporarily leave, fail or rejoin and do not share a

common memory space or local data transfers.

Other earlier work argues that the tremendous growth in the

volume of control data and application measurements, such as

mobile cellular networks, often turns self-healing and fault-

tolerance infeasible and unscalable without the employment of

big data models and technologies [12]. In contrast, this work

shows that accurate network analytics in dynamic networks

can be performed out of the context of big data based on

autonomic self-corrective mechanisms, i.e. the realization of

the proposed self-corrective model in DIAS.

Finally, there are significant links between privacy and

self-corrective computations under network adjustments. For

instance, consider the computation of aggregation functions

using differential privacy that is relevant in the context of

reverse computations and DIAS as well. Even in the case

of a single node failure, the noises in the input values are

not canceled out and therefore aggregations functions cannot

be computed. Grouping of nodes and data structures such

as binary interval trees can make the privacy-preservation of

aggregation more resilient to node failure [34], [35].

VII. CONCLUSION AND FUTURE WORK

This paper concludes that designing large-scale dynamic

computational networks with autonomic self-corrective ca-

pabilities enabled by decentralized reverse computations is



feasible. This is experimentally evaluated using real-world data

from a smart grid pilot project under extreme network adjust-

ments corresponding to catastrophic events with up to 50%

of the nodes leaving the network. In contrast to related work,

the proposed model does not employ additional computational

resources for redundancy. Instead it utilizes the inner network

resources in a symbiotic autonomic fashion to collectively

orchestrate reverse computations that enable a network to be

self-corrective by-design. The model proves to be generic and

modular when applied in the DIAS aggregation system as no

major structural changes are required in the design.

Future work includes the experimental evaluation of the

self-corrective model under node failures. Expanding the scope

of the model to other network dynamics, for instance, revers-

ing computations of malicious nodes infected during system

runtime can provide new insights for self-defense mechanisms

in large-scale computational networks [36], [23].

REFERENCES

[1] A. Loukas, M. Zuniga, I. Protonotarios, and J. Gao, “How to identify
global trends from local decisions? event region detection on mobile
networks,” in IEEE INFOCOM 2014-IEEE Conference on Computer

Communications. IEEE, 2014, pp. 1177–1185.
[2] E. Pournaras, M. Vasirani, R. E. Kooij, and K. Aberer, “Decentralized

planning of energy demand for the management of robustness and
discomfort,” IEEE Transactions on Industrial Informatics, vol. 10, no. 4,
pp. 2280–2289, 2014.

[3] B. Hoh, M. Gruteser, R. Herring, J. Ban, D. Work, J.-C. Herrera,
A. M. Bayen, M. Annavaram, and Q. Jacobson, “Virtual trip lines
for distributed privacy-preserving traffic monitoring,” in Proceedings of

the 6th international conference on Mobile systems, applications, and

services. ACM, 2008, pp. 15–28.
[4] K. Sohrabi, J. Gao, V. Ailawadhi, and G. Pottie, “A self organizing wire-

less sensor network,” in Proceedings of the Annual Allerton Conference

on Communication Control and Computing, vol. 37. The University;
1998, 1999, pp. 1201–1210.

[5] A. Guerrieri, A. Montresor, and Y. Velegrakis, “Top-k item identification
on dynamic and distributed datasets,” in European Conference on

Parallel Processing. Springer, 2014, pp. 270–281.
[6] L. Nyers and M. Jelasity, “A comparative study of spanning tree

and gossip protocols for aggregation,” Concurrency and Computation:

Practice and Experience, vol. 27, no. 16, pp. 4091–4106, 2015.
[7] E. Pournaras, J. Nikolic, A. Omerzel, and D. Helbing, “Engineering

democratization in internet of things data analytics,” in Proceedings

of the 31st IEEE International Conference on Advanced Information

Networking and Applications-AINA-2017.
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