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Decentralized Collective Learning for Self-managed Sharing

Economies

EVANGELOS POURNARAS, PETER PILGERSTORFER, and THOMAS ASIKIS,

Professorship of Computational Social Science

ETH Zurich, Zurich, Switzerland

The Internet of Things equips citizens with phenomenal new means for online participation in sharing

economies. When agents self-determine options from which they choose, for instance their resource consump-

tion and production, while these choices have a collective system-wide impact, optimal decision-making turns

into a combinatorial optimization problem known as NP-hard. In such challenging computational problems,

centrally managed (deep) learning systems often require personal data with implications on privacy and

citizens’ autonomy. This paper envisions an alternative unsupervised and decentralized collective learning

approach that preserves privacy, autonomy and participation of multi-agent systems self-organized into a

hierarchical tree structure. Remote interactions orchestrate a highly eicient process for decentralized collective

learning. This disruptive concept is realized by I-EPOS, the Iterative Economic Planning and Optimized Selections,

accompanied by a paradigmatic software artifact. Strikingly, I-EPOS outperforms related algorithms that in-

volve non-local brute-force operations or exchange full information. This paper contributes new experimental

indings about the inluence of network topology and planning on learning eiciency as well as indings on

techno-socio-economic trade-ofs and global optimality. Experimental evaluation with real-world data from

energy and bike sharing pilots demonstrates the grand potential of collective learning to design ethically and

socially responsible participatory sharing economies.
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1 INTRODUCTION

The Internet of Things brings unprecedented opportunities for an alternative paradigm of machine
learning that is ubiquitous and decentralized to ultimately preserve citizens’ autonomy and privacy.
A decentralized and unsupervised collective learning approach designed as a result of self-adaptive
and self-organizing actions of autonomous agents promises viable participatory sharing economies
emerging in the context of smart grids and smart cities, for instance, energy self-management by
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prosumers or improvement of urban qualities by citizens via bike sharing initiatives. Such complex
techno-socio-economic systems are large in size, online and involve decision-making processes
with combinatorial complexity, i.e. optimization of collective decisions is required to prevent a
blackout [Pournaras et al. 2017a; Pournaras and Espejo-Uribe 2017] or to balance the number of
bikes in stations [de Chardon et al. 2016]. In both cases, a large number of agents coordinate their
decision-making to collectively learn how to reduce a power peak or which stations to choose to
pick up a bike or return one to keep the utilization of the stations balanced.
When autonomous agents have a set of self-determined options to choose from, e.g. multi-

ple resource consumption and production levels, while the collective outcome of these choices
characterizes the overall system performance, the optimization problem is combinatorial and NP-
hard in complexity, for instance the knapsack problem [Puchinger and Raidl 2005]. ℧ost earlier
work focuses on computational aspects and (meta-)heuristics that eiciently compute solutions
by splitting the computational problem into smaller pieces and parallelizing computations. Such
approaches include branch and bound based algorithms, for instance, BnB-ADOPT [Yeoh et al.
2008], NCBB [Chechetka and Sycara 2006] and the dynamic programming approach of DPOP [Petcu
and Faltings 2005].

In contrast, this paper introduces the concept of decentralized collective learning, in which partic-
ipatory agents locally self-determine their options from which they make choices that determine
their resource consumption and production. In this context, learning is fully decentralized and it is
the emerging result of coordinated remote interactions that orchestrate collective decision-making
over a communication network, self-organized [Pournaras 2013] in a multi-level structure [Deng
et al. 2014; Goodfellow et al. 2016], i.e. a tree topology. In this highly challenging scope and prob-
lem setting, there is a very limited earlier work, mainly the EPOS [Pournaras 2013; Pournaras
et al. 2017b] and COHDA [Hinrichs et al. 2013, 2014] optimization systems, which face signiicant
scalability issues that limit their broader applicability, for instance EPOS performing expensive
non-local brute-force operations, while COHDA requiring a full information exchange between
agents.

This paper illustrates a generic, unsupervised and highly eicient collective learning algorithm
designed to solve fully decentralized combinatorial optimization problems: I-EPOS1, the Iterative
Economic Planning and Optimized Selections. Agents in I-EPOS autonomously self-determine (i)
possible plans that schedule the operations of an application and (ii) their preferences for these
plans. The possible plans represent agents’ operational lexibility. Agents are structured in self-
organized tree topologies [Pournaras 2013] over which they perform collective decision-making in
a bottom-up and top-down phase. This process repeats, agents self-adapt their choices and learn
new monotonously improving solutions. Information exchange is always at an aggregate level for
higher scalability and privacy preservation. The applicability of I-EPOS is studied in two application
scenarios of participatory sharing economies: energy management and bike sharing. Synthetic as
well as real-world data from state-of-the-art pilot projects are used for the experimental evaluation.
℧oreover, this paper illustrates the implementation of I-EPOS as a open paradigmatic software
artifact for promoting further research on decentralized collective learning and optimization as
well as the design of new application scenarios.

Experimental evaluation illustrates striking indings: I-EPOS monotonously and rapidly improves
solutions in the order of 10 iterations. A very few number of changes in agents’ selections are
required to maximize performance. The eiciency of I-EPOS starts from the top 33% of the solu-
tion space and converges to solutions below the top 4%. The agents themselves can regulate all
performance indicators such as global cost, average local cost, convergence speed and fairness.

1Available at http:⁄⁄epos-net.org (last accessed: September 2018)
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The cost-efectiveness in terms of communication and computational cost is superior to related
algorithms.

This paper is an extension of an earlier work [Pilgerstorfer and Pournaras 2017] with the following
additional novel contributions at both conceptual and experimental level:

• Three gradient descent learning schemes evaluated and compared against the main decen-
tralized collective learning scheme of I-EPOS.
• Theoretical insights and analytical results on cost functions and gradient descent learning
schemes.
• ℧easurements of convergence speed under varying number of agents in the network and
varying number of children in the tree topology.
• ℧easurements of global cost and convergence speed under varying number and size of
possible plans.
• A study of agent preferences and trade-ofs between global cost, average local cost, conver-
gence speed and fairness.
• A performance comparison between local and combinational selections in I-EPOS.
• A study of global optimality via comparisons of I-EPOS with an exhaustive brute-force search.

This paper is organized as follows: Section 2 formulates the optimization problem and the chal-
lenges this paper tackles. Section 3 introduces the decentralized collective learning approach of
I-EPOS. Section 4 discusses several design aspects of I-EPOS. Section 5 introduces three collective
learning schemes based on gradient descent. Section 6 experimentally evaluates I-EPOS, including
a performance comparison with three other algorithms and two application scenarios in participa-
tory sharing economies. Section 7 summarizes and discusses all experimental indings and their
implications. Section 8 illustrates the implementation of I-EPOS as a paradigmatic software artifact
for the broader community. Finally, Section 9 concludes this paper and outlines future work.

2 COMBINATORIAL OPTIMIZATION

Table 1 summarizes the mathematical symbols of this paper. Assume an agent a with a inite set
of possible plans Pa ⊂ R

d representing diferent operational schedules. A possible plan pi,a ∈ Pa
is a vector x of size d with real values representing the allocation of resources, for instance a
time schedule of energy utilization. An agent a has to select one and only one possible plan to
determine its future operation, the selected plan, referred to as sa . Figure 1a shows the selected plan
as one out of three possible plans. Plan generation can be performed with various methodologies
that include clustering [Pournaras et al. 2014a], classiication [Fröhling 2017], ℧arkov decision
processes [Pandey et al. 2016], or model checking of stochastic multiplayer games [Cámara et al.
2015].

(a) Selected plan. (b) Aggregated

response.

(c) Global response.

Fig. 1. Plans and responses. An individual box denotes a plan.

Each agent a ∈ A is connected to a network consisting of a set of agents A. The selected plans
of several agents summed up together by an agent a form the aggregated response aa as shown

AC℧ Transactions on Autonomous and Adaptive Systems, Vol. 1, No. 1, Article 1. Publication date: September 2018.
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Table 1. Mathematical notations used in this paper.

Notation Meaning

A inite set of all agents in the network

Ba = {0, 1} binary decision for agent a

Ca ⊆ Da set of children for agent a

Da ⊂ A set of descendants for agent a

O(Pa, A) =
∏

a∈A Pa all combinations of sets Pa for agents in A

Pa ⊂ R
d possible plans of agent a

a = |A | number of agents

c = maxa∈A |Ca | maximum number of children per agent

d ∈ N+ size of plans

p = maxa∈A |Pa | maximum number of plans per agent

t ∈ N+ number of iterations

o ∈ O(Pa, A) a combination

o⋆ ∈ O(Pa, A) an optimal combination

oa ∈ o plan of agent a in combination o ∈ O(Pa, A)

oc ∈ o delta value that encodes a branch approval or rejection for child c in combination o ∈ O(Bc, Ca )

a ∈ A an agent

c ∈ Ca a child of agent a

d ∈ Da a descendant of agent a

r ∈ A root agent in the tree

τ ∈ {1, ..., t } number of the current iteration

pi,a ∈ Pa possible plan i of agent a

s
(τ )
a ∈ Pa selected plan of agent a at iteration τ

g(τ ) =
∑

a∈A s
(τ )
a

global response of the network at iteration τ

a
(τ )
a =

∑

d∈Da s
(τ )
d

descendants’ aggregated response of agent a at iteration τ

t
(τ )
a = s

(τ )
a + a

(τ )
a

aggregated branch response of agent a at iteration τ

δ
(τ )
a ∈ {0, 1} approval or rejection of branch selection for agent a at iteration τ

s̃
(τ )
a , g̃

(τ )
a , ã

(τ )
a , t̃

(τ )
a , δ̃

(τ )
a preliminary s

(τ )
a , g(τ ), a

(τ )
a , t

(τ )
a and δ

(τ )
a

∇x̃(τ ) = x̃(τ ) − x(τ−1) change of preliminary value from the one of the previous iteration for x(τ ) ∈ {s
(τ )
a , g(τ ), a

(τ )
a , t

(τ )
a }

fG : Rd → R global cost function

fL : Rd → R local cost function

E
(τ )
G
= fG

(

g(τ )
)

global cost at iteration τ

E
(τ )
L

average local cost at iteration τ

U (τ ) unfairness at iteration τ

w : Rd → R preference weight; raises the cost of disliked plans

λ ∈ R controls the trade-of between global and local cost

ρi,a ∈ R dislike of plan i by agent a

in Figure 1b. The selected plans of all agents form a global response vector g =
∑

a∈A sa depicted
in Figure 1c. For example, a home appliance controlled by a software agent can have multiple
operating modes (possible plans) with diferent electricity demand over time. ℧ultiple such devices
connected to the smart grid result in a total electricity demand g that is the global response. A global
response comes with a global cost EG = fG (g), where fG is a global cost function. System-wide, a
global response with low global cost is preferred over one with a high global cost. The agents’
objective is to cooperatively select plans that minimize the global cost. Each possible combination
o ∈ O(Pa,A) =

∏

a∈A Pa consists of one plan oa ∈ Pa per agent a. The optimal combination o⋆

with the minimal global cost is selected. Cost minimization is deined as follows:

o⋆ = argmin
o∈O(P,A)

fG

(

∑

a∈A,oa ∈o

oa

)

, (1)

sa = o⋆
a

∀a ∈ A.

The number of combinations isO(pa), where p is the maximum number of plans per agent and a
is the number of agents in the network. Optimal solutions are computationally feasible only for a
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low number of possible plans and low in size networks. The overall problem can be classiied as
0-1 multiple-choice combinatorial optimization problem. A related problem is, for example, the
0-1 multiple-choice knapsack problem. In general, these problems are NP-hard, which require
approximation algorithms such as I-EPOS, the algorithm introduced in Section 3.
The aforementioned global optimization problem is especially applicable for non-linear global

cost functions. For instance the minimization of variance is a quadratic function [Rockafellar et al.
2000] of the plans size d . Appendix A provides a background on the cost functions studied in this
paper. The minimization of variance as a non-convex optimization problem [Allen-Zhu and Hazan
2016] is the focus of this paper as it can formulate several load-balancing and stability objectives
in application domains of sharing economies. For instance, Section 6.5 shows how variance can
represent the power peaks in energy demand-response programs or the uneven utilization of
bike-sharing stations. All indings of this paper can be extended to other (quadratic) cost functions
such as the minimization of the root mean square error [Pournaras et al. 2017b] as a matching
indicator between a price signal and a resource allocation or matching supply and demand of
resources, e.g. energy.
In contrast, linear global cost functions can be solved locally by each agent as proven in Theo-

rem 2.1.

Theorem 2.1. For the linear global cost function fG (x) = v⊤x, where v⊤x denotes the scalar product

of the vectors v and x, the selected plan sa = o⋆
a
,∀a ∈ A computed by the global combinatorial

optimization

o⋆ = argmin
o∈O(Pa,A)

v⊤
∑

a∈A,oa ∈o

oa, (2)

is the selected plan sa computed by the local optimization

sa = argmin
pi,a ∈Pa

v⊤pi,a, ∀a ∈ A. (3)

Proof. The global optimization problem can be reformulated as the minimization of the sum
over a independent cost functions:

o⋆ = argmin
o∈O(Pa,A)

v⊤
∑

a∈A,oa ∈o

oa = argmin
o∈O(Pa,A)

∑

a∈A,oa ∈o

v⊤oa . (4)

Since the summands are independent from each other, the minimization of the sum over all agent
selections is equivalent with the minimization of each agent selection:

o⋆ = argmin
o∈O(Pa,A)

∑

a∈A,oa ∈o

v⊤oa = argmin
pi,a ∈Pa

v⊤pi,a, ∀a ∈ A. (5)

Given that the optimization is now performed locally by each agent, the combinatorial search space
O(Pa,A) is limited to the local possible plans of each agent and therefore it holds that:

o⋆
a
= sa = argmin

pi,a ∈Pa

v⊤pi,a, ∀a ∈ A. (6)

□

Agents’ individual preferences for certain plans are controlled via the local parameter λ. A λ = 0
means no agents’ preferences are considered. The larger the λ, the stronger the preferences are.
The preference of agent a towards a plan is measured by the local cost function fL (sa) as depicted
in Figure 2. Each agent a orders the possible plans Pa =

{

p1,a, p2,a, . . . , pp,a
}

according to their

AC℧ Transactions on Autonomous and Adaptive Systems, Vol. 1, No. 1, Article 1. Publication date: September 2018.
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selectiontest possible plans

cost

preference weight
global cost

Fig. 2. Agent preferences in plan selection.

local cost fL(p1,a) ≤ fL(p2,a) ≤ · · · ≤ fL(pp,a). Plans with lower index are preferred over plans with
larger index. The local cost expands the system objective space with the following opportunities:

• Plan selections with a low average local cost EL , so that plan selections are tuned to meet the
agent preferences. The average µ local cost is computed as follows:

EL = µ{fL (sa) | a ∈ A}. (7)

• Plan selections, whose local cost has a low dispersion among agents, so any beneits that
agents derive by meeting their preferences are equally distributed among them [Pournaras
et al. 2014b]. A measure of unfairnessU is computed by the standard deviation σ normalized
with the mean µ of the local cost for all plan selections:

U =
σ {fL (sa) | a ∈ A}

µ{fL (sa) | a ∈ A}
. (8)

℧easurements of fairness can be performed after plan selections by all agents.

3 DECENTRALIZED COLLECTIVE LEARNING

The logical communication network of the agents is assumed (self-)organized in a hierarchical
structure: a tree topology. A dynamic and distributed network can be constructed and maintained
in a tree topology using AETOS [Pournaras 2013] or the ECHO [Chang 1982] algorithm, for
instance. A tree is a acyclic connected graph. It serves the purpose of computing the aggregated
and global response in an eicient and accurate way, by preventing double-counting. ℧oreover,
a tree topology provides structured bottom-up and top-down incremental interactions as in the
hierarchical structures of neural networks. The root agent is denoted as r. Each agent a has a set Ca
of c = |Ca | children and a set of descendants Da in a tree branch underneath, with Ca ⊆ Da . An
aggregated response aa =

∑

d∈Da sd of agent a corresponds to the descendants’ aggregated response
in the branch underneath.
The algorithm performs a number of iterations t . Each iteration consists of a bottom-up and a

top-down phase in which the agents change their selected plans to reduce the global cost compared
to the previous iteration. Algorithm 1 shows the pseudocode of I-EPOS. The bottom-up and top-
down phase for iteration τ ∈ {1, . . . , t} are explained below. To simplify the equations, the selected

plans at iteration 0 are assumed to be zero: s
(0)
a = 0, ∀a ∈ A.

3.1 Botom-up phase

In this phase, each agent has knowledge about the aggregated response computed as a result of the
changes in the selected plans of descendants in the branch underneath the agent. This information
propagates from the leaf nodes to the root node. Changes in selected plans of all other agents are
not known. All local decisions made by the agents are preliminary at this phase, as the efective
decisions are made during the top-down phase using knowledge about the parents’ decisions. A
preliminary plan selection is an actual estimated guess of the optimal one given the incomplete
agent knowledge. These guesses are evaluated by the ancestors, who decide which changes of plan

AC℧ Transactions on Autonomous and Adaptive Systems, Vol. 1, No. 1, Article 1. Publication date: September 2018.
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ALGORITHM 1: The I-EPOS algorithm.

Input: agent a, plans Pa , global cost function fG , local cost function fL , parameter λ

Result: selected plan s
(t )
a , aggregated response a

(t )
a , global response g(t )

s
(0)
a ← 0, a

(0)
a ← 0, g(0) ← 0, t

(0)
c ← 0 ∀c ∈ Ca ;

for τ =1 to t do
/* BOTTOM-UP PHASE */

if agent a is not a leaf node then
while messages from children are missing do

receive preliminary branch response t̃
(τ )
c from child c;

end

if τ = 1 then

δ̃
(τ )
c ← 1, ∀c ∈ Ca ;

else

compute the preliminary deltas δ̃
(τ )
c ∀c ∈ Ca from Equation 9 ;

end

end

compute the preliminary aggregated response ã
(τ )
a and global response g̃

(τ )
a according to Equation 10;

select preliminary plan s̃
(τ )
a according to Equation 12;

if this agent is not the root node then

send preliminary branch response t̃
(τ )
a = s̃

(τ )
a + ã

(τ )
a to the parent;

end

/* TOP-DOWN PHASE */

if this agent is the root node r then

g(τ ) ← s̃
(τ )
r + ã

(τ )
r ;

δ
(τ )
r ← 1;

else

receive global response g(τ ) and delta value δ
(τ )
a from the parent;

end

δ
(τ )
c ← δ

(τ )
a δ̃

(τ )
c , ∀c ∈ Ca ;

send global response g(τ ) and delta value δ
(τ )
c to each child c ∈ Ca ;

compute selected plan s
(τ )
a , aggregated response a

(τ )
a and branch response t

(τ )
c for each child c ∈ Ca according to Equation 14;

end

selections to approve and which ones to reject. This decision is encoded in the delta value δa of
an agent a, where δa = 1 means the preliminary selection of agent a is approved, in contrast to
δa = 0 for the rejection of the preliminary selection. In the latter case, the plan selection of the
previous iteration remains valid. In the bottom-up phase, each agent a receives the preliminary

branch response t̃
(τ )
c , ∀c ∈ Ca from its children and computes its own preliminary selection s̃

(τ )
a ,

preliminary aggregated response ã
(τ )
a , preliminary global response g̃

(τ )
a and the preliminary delta

values for its children δ̃
(τ )
c , ∀c ∈ Ca .

3.1.1 Aggregation. The aggregation of the bottom-up phase aims at summing up the selected
plans from the descendants of each agent in the branch underneath that result in the maximal
improvement of the global response in comparison to the one of the previous iteration. An agent’s
knowledge about its children is illustrated in Figure 3.

previous selections preliminary selections

L R L R

Fig. 3. The input of an agent from its children.

AC℧ Transactions on Autonomous and Adaptive Systems, Vol. 1, No. 1, Article 1. Publication date: September 2018.
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For each child c ∈ Ca , the agent a knows the aggregated response of the child’s branch at the

previous iteration t
(τ−1)
c and receives the preliminary aggregated response of the branch t̃

(τ )
c for

the current iteration. The changes from the aggregated response of the previous iteration to the
preliminary aggregated response of the current iteration in the branch of child c are denoted as

∇t̃
(τ )
c = t̃

(τ )
c − t

(τ−1)
c . I-EPOS determines which preliminary aggregated response to approve and

which to reject by combining knowledge of the branches as shown in Figure 4.

approved⁄rejected selections

L R

test approve⁄reject combinations

cost

global response
L
R

preliminary aggregate

Fig. 4. Approval or rejection of branch selections.

An agent can only approve or reject changes on the aggregated response of a whole branch
and not individual plan selections as the latter ones are not known to agents. This makes the
algorithm highly decentralized and privacy-preserving in contrast to related work [Hinrichs et al.
2013, 2014] that relies on system-wide exchange of all selected plans (instead of aggregated ones).
At the irst iteration when there is no history, all changes are approved. In all next iterations, each
agent evaluates all possible combinations of branch approvals and rejections O(Bc,Ca) and selects
a combination that maximally improves the global response. The delta value, that encodes a branch
approval or a branch rejection, for child c in combination o ∈ O(Bc,Ca) is referred to as oc . Since
an approval is encoded with oc = 1 and rejection with oc = 0, the efect of a combination o on the

global response is evaluated as follows: g(τ−1) +
∑

c∈Ca oc∇t̃
(τ )
c . A combination o⋆ that results in the

lowest global cost is selected2. The delta values of o⋆ are chosen as the preliminary deltas δ̃
(τ )
c of

the respective child c. The delta value selection δ̃
(τ )
c can be formalized as follows:

o⋆ = argmin
o∈O(Bc,Ca )

fG

(

g(τ−1) +
∑

c∈Ca,oc ∈o

oc∇t̃
(τ )
c

)

, (9)

δ̃
(τ )
c = o

⋆

c
, ∀c ∈ Ca .

The changes approved by the preliminary deltas are applied to the aggregated response and global
response. This results in the preliminary aggregated response and the preliminary global response
as shown in the following equations:

ã
(τ )
a = a

(τ−1)
a +

∑

c∈Ca

δ̃
(τ )
c ∇t̃

(τ )
c , (10)

g̃
(τ )
a = g(τ−1) +

∑

c∈Ca

δ̃
(τ )
c ∇t̃

(τ )
c . (11)

Note that in the bottom-up phase the children are not aware about the approval or rejection of
their preliminary plan selections. This information is sent in the top-down phase.

2If multiple combinations are optimal, o⋆ is chosen uniformly at random out of all optimal combinations.
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3.1.2 Plan selection. Figure 5 illustrates the preliminary plan selection.

selection

global response

aggregate

test possible plans

agent

cost

Fig. 5. Preliminary plan selection.

Each agent a selects a plan that maximally improves the global response. The preliminary global
response is used as it includes the preliminary approved changes made by the descendants. The
plans are selected3 as follows:

s̃
(τ )
a = argmin

pi,a ∈Pa

(1 − λ) · fG

(

g̃
(τ )
a + ∇pi,a

)

+w(pi,a), (12)

where ∇pi,a = pi,a − s
(τ−1)
a ,

w(pi,a) = λ · ρi,a · σ
{

fG

(

g̃
(τ )
a + ∇pi,a

)

| pi,a ∈ Pa

}

,

ρi,a =
i

p
,

where the preference weight w(pi,a) is normalized using the standard deviation of the diferent
global costs for the respective possible plans. The ρi,a expresses the dislike

4 of an agent a towards
a plan i , given that fL(p1,a) ≤ fL(p2,a) ≤ · · · ≤ fL(pp,a). The (1 − λ) allows bounded input values of
λ in the range [0, 1], while omitting (1 − λ) leaves λ unbounded in the range [0,∞). Both schemes
are evaluated in Section 6.3. Equation 12 is referred to as the self-adaptive plan selection scheme.
Other schemes in the form of gradient descent are illustrated in Section 5.

3.1.3 Parent informing. Every non-root agent informs its parent about the selections of its

respective branch with the preliminary aggregated response t̃
(τ )
a = s̃

(τ )
a + ã

(τ )
a . This procedure is

shown in Figure 6.

A
R
L

A

RL

Fig. 6. Agent output during the botom-up phase.

3If multiple plans are optimal, the selected plan is chosen uniformly at random out of all optimal plans.
4The w (pi,a) in Equation 12 has the limitation of not capturing the actual value of local costs that possible plans have. In

other words, the magnitude of the preferences over the possible plans is not captured. Instead ρi,a encodes the index of the

plans after sorted according to their local cost as fL (p1,a) ≤ fL (p2,a) ≤ · · · ≤ fL (pp,a).
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3.2 Top-down phase

In this phase, all agents approve⁄reject the preliminary selections and they update a consistent for
all agents aggregated and global response. At the end of this phase, each agent has a selected plan,
the descendants’ aggregated response in the branch as well as the global response for the current
iteration.

The root agent computes the global response based on its preliminary plans and responses that
propagates downwards to all other agents in the network. For the root agent, the preliminary
selected plan as well as the preliminary aggregated response correspond to the efective selections:

s
(τ )
r = s̃

(τ )
r and a

(τ )
r = ã

(τ )
r .

The preliminary deltas δ̃
(τ )
c computed are used at this stage to determine the efective delta values

δ
(τ )
c . The selection of the root agent is always approved, hence δ

(τ )
r = 1. The delta value for the

other agents is determined by their respective parent agent a. The changes of a child c are approved

if two conditions hold: (i) The ancestors of the parent approve the changes with δ
(τ )
a = 1. (ii) The

parent agent itself approves the changes of the child and its branch with δ̃
(τ )
c = 1. Therefore, the

parent agent a computes the deltas for its children as follows:

δ
(τ )
c = δ

(τ )
a δ̃

(τ )
c , ∀c ∈ Ca . (13)

A plan selection by an agent is approved in the top-down phase if and only if all its ancestors
approve the preliminary plan selection. If one of the ancestors rejects the changes in the responses,
the plan selection of the previous iteration remains as the plan selection of the current iteration.
The two scenarios of an approval and a rejection are depicted in Figure 7. Based on the approved
changes, the efective plan selections and the aggregated responses are computed as follows:

s
(τ )
a = s

(τ−1)
a + δ

(τ )
a ∇s̃

(τ )
a (14)

a
(τ )
a = a

(τ−1)
a + δ

(τ )
a ∇ã

(τ )
a (15)

t
(τ )
c = t

(τ−1)
c + δ

(τ )
c ∇t̃

(τ )
c , ∀c ∈ Ca . (16)

4 DESIGN ASPECTS

Some other design aspects of I-EPOS are discussed below: (i) autonomy, self-determination and
participation, (ii) decentralization and privacy preservation, (iii) learning principle and monotonous
improvement, (iv) termination.

4.1 Autonomy, self-determination and participation

Possible plans are self-determined by the agents as they are locally generated without I-EPOS been
involved in this process. The learning algorithm does not impose (i) the plans, (ii) their number
or even (iii) the overall participation into the plan generation process at irst place. I-EPOS can
even operate with agents that have a single possible plan, in other words, inlexible agents that
acquire full control of their operation. Even in this extreme case, the decentralized learning process
of I-EPOS is designed to be self-adaptive by compensating with the collective decisions of the other
participating agents.

In contrast to the vast majority of optimization⁄learning systems, the design approach of I-EPOS
promotes autonomy and self-determination. Free-riding issues and fairness in participation can
be addressed in diferent application scenarios with incentive systems [Li et al. 2013] and reward
mechanisms [Scekic et al. 2013].
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(a) Ancestors send an approval signal.
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(b) Ancestors send a rejection signal.

Fig. 7. Approval and rejection during the top-down phase.

4.2 Decentralization and privacy preservation

℧ost centralized machine and deep learning techniques operate with all system-wide data available
for processing. These data though can be personal and sensitive. Proiling or discriminatory
actions [Hajian et al. 2016] can be performed when both personal data and the deep hierarchical
structure are managed by a single centralized authority. The majority of deep learning structures
have nomapping or association with the data locality and agents’ physical distribution. Unavoidably,
this design approach entails risks and ethical implications for the future of artiicial intelligence
and digital democracy [Helbing et al. 2017; Helbing and Pournaras 2015].
In contrast, this paper envisions a digital interconnected society as a fully decentralized and

self-organizing neural network. Collective learning processes such as the ones of I-EPOS can be a
result of citizens’ active participation and wisdom of the crowd. Techniques such as diferential
privacy [Alaggan et al. 2011] and homomorphic encryption [Parmar et al. 2014] can further enhance
privacy-preservation when agents exchange aggregated plans.

4.3 Learning principle and monotonous improvement

In contrast to the earlier self-optimizing approach of EPOS [Pournaras 2013; Pournaras et al. 2017b],
I-EPOS extends to a self-adaptive learning process: Plan selections are a collective result of the
bottom-up and top-down learning phase at each iteration by using the aggregated responses as
well as by using the previous global responses across diferent iterations.

I-EPOS overcomes a challenging artifact of distributed optimization: the composition of two
optimal solutions does not guarantee a combined overall optimal solution, i.e. combining opti-
mization solutions from diferent tree branches. I-EPOS ensures that independently determined
improvements of the global response by diferent tree branches do not cancel out when aggregated.
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To certain extent, the learning concept draws parallels from backpropagation [Bryson and Ho
1969] in neural networks: In the forward pass (bottom-up phase) agents predict their new selections.
In the backward pass (top-down phase) the error is backpropagated in the form of delta values.
An error of 1 means the agent changes its selection, whereas, an error of 0 means no change is
required.
The global cost in one iteration cannot be larger than the global cost of the previous iteration,

i.e. the global cost decreases monotonously. Consider the selection process at the root agent. The
option to reject preliminary changes ensures that I-EPOS either reduces the global cost or at least
maintains the same global cost if the root agent selects the responses of the previous iteration.

4.4 Termination

I-EPOS terminates after a ixed number of iterations to empirically control the communication and
computational cost. However, other criteria may be chosen.

• Termination if no agent performs a plan change. This solution can be implemented with a
boolean lag that agents pass in the top-down phase. This termination approach can cut out
some further improvements: agents may choose a diferent possible plan with equal cost5

that may lead to new solutions with further improvements in the next iterations. For the
same reason, termination is not guaranteed as selections may change without improvement
in global cost.
• Termination once the global cost equals the one of the previous iteration. This is similar to the
previous approach, however, termination is guaranteed given that the global cost decreases
monotonously.
• Termination once the global cost is lower than a threshold. The two aforementioned termination
approaches may result in a large number of executed iterations fromwhich only a few of them
result in a signiicant performance improvement. In this case, a threshold can signiicantly
decrease the communication and computational cost. However, if the threshold is not chosen
efectively or does not match the empirical data in use, it may lead to signiicant overhead as
well.

5 GRADIENT DESCENT COLLECTIVE LEARNING

This section introduces the applicability of gradient descent for the plan selection in I-EPOS. The
gradient of the global cost function ∇fG

(

g(τ−1)
)

is a vector pointing to the direction with the
maximum increase in the global cost. I-EPOS uses the gradient descent to move the global response
vector into the negative gradient direction in order to reduce the global cost. A standard gradient
descent update at iteration τ is performed as follows:

g(τ ) ← g(τ−1) − ∇fG

(

g(τ−1)
)

. (17)

In the context of gradient descent, I-EPOS solves the non-convex [Allen-Zhu and Hazan 2016]
combinatorial optimization problem as follows: agents select plans that match the negative gradient
direction as shown in Figure 8. The collective decisions of I-EPOS make sure that the gradient
steps are not too large by determining the subset of agents that change their selected plan in the
top-down phase.
Three gradient descent schemes are introduced and evaluated in this paper:

(1) Global gradient: All agents move the global response to the same negative gradient direction.
(2) Local gradient: Each agent performs a diferent plan selection with the same gradient step.

5Recall that more than one optimal possible plans are selected uniformly at random.
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Fig. 8. Gradient descent plan selection.

(3) Adaptive gradient: Each agent uses the preliminary global response of Equation 10 with
the new selections of all descendants in the tree.

For the global gradient, the preliminary plan selection of Equation 12 is transformed as follows:

s̃
(τ )
a = argmin

pi,a ∈Pa

∇fG

(

g(τ−1)
)⊤

pi,a . (18)

For simplicity in the illustration, the term w(pi,a) is omitted. The local gradient is computed as
follows:

s̃
(τ )
a = argmin

pi,a ∈Pa

∇fG

( a

a − 1

(

g(τ−1) − s
(τ−1)
a

))⊤

pi,a . (19)

Note that the factor a
a−1 is required so that the average gradient of the agents is equivalent to the

global gradient as proved in Theorem 5.1.

Theorem 5.1. For quadratic cost functions it holds that the average local gradient is equal to the

global gradient:

1

a

∑

a∈A

∇fG

( a

a − 1

(

g(τ ) − s
(τ )
a

))

= ∇fG

(

g(τ )
)

. (20)

Proof. Let a quadratic cost function deined as follows:

fG (x) = x⊤Qx + x⊤L +C, (21)

with the following gradient:

∇fG (x) = Q̃x + L, (22)

where Q̃ = (Q + Q⊤) and Q, L and C are the quadratic factor, linear factor and constant scalar
respectively of a quadratic function as discussed in Section A. The average local gradient that is the
irst term of Equation 20 can be written in the gradient quadratic form of Equation 22 as follows:

1

a

∑

a∈A

( a

a − 1
Q̃

(

g(τ ) − s
(τ )
a

)

+ L
)

. (23)

By expanding Equation 23, the following hold:

AC℧ Transactions on Autonomous and Adaptive Systems, Vol. 1, No. 1, Article 1. Publication date: September 2018.



1:14 Pournaras et al

1

a

∑

a∈A

∇fG

( a

a − 1

(

g(τ ) − s
(τ )
a

))

=

1

a

∑

a∈A

( a

a − 1
Q̃

(

g(τ ) − s
(τ )
a

)

+ L
)

=

∑

a∈A

1

a

a

a − 1
Q̃

(

g(τ ) − s
(τ )
a

)

+ a
1

a
L

= Q̃
1

a − 1

∑

a∈A

(

g(τ ) − s
(τ )
a

)

+ L

= Q̃
1

a − 1
(
∑

a∈A

g(τ ) −
∑

a∈A

s
(τ )
a ) + L

= Q̃
1

a − 1
(ag(τ ) − g(τ )) + L

= Q̃
1

a − 1
(a − 1)g(τ ) + L

= Q̃g(τ ) + L. (24)

which is the deinition of the gradient quadratic function of Equation 22:

Q̃g(τ ) + L = ∇fG

(

g(τ )
)

. (25)

Therefore it is proven that:

1

a

∑

a∈A

∇fG

( a

a − 1

(

g(τ ) − s
(τ )
a

))

= ∇fG

(

g(τ )
)

, (26)

□

Finally the plan selections in the adaptive gradient are performed as follows:

s̃
(τ )
a = argmin

pi,a ∈Pa

∇fG

( a

a − 1

(

g̃
(τ−1)
a − s

(τ−1)
a

))⊤

pi,a . (27)

All gradient descent schemes are actually applied in the second iteration, with the irst iteration
performing initialization. By using the gradient descent, it is not required to compute the global
cost for each plan at each iteration. Upon computation of the gradient, the selected plan can be
computed with a linear cost function that has lower computation cost. ℧oreover, the gradient of
possible plans that represents the utilization of resources by agents can be used as price information
and therefore can encode monetary incentives [Kim et al. 2011; Traber and Kemfert 2011].

6 EXPERIMENTAL EVALUATION

Experimental evaluation is performed in a network of 1000 agents randomly organized in height-
balanced binary tree, i.e. a binary tree of minimal height. Each experiment is repeated 50 times with
diferent seeds in the random number generators. Evaluation is performed with both (i) synthetic
and (ii) real-world data from two application domains as illustrated in Section 6.5. The synthetic
data concern 16 possible plans of size 100 generated from a standard normal distribution at every
experiment repetition. Unless stated otherwise, the synthetic data are used by default as well as
agents adopt an unbounded λ = 0 that deactivates agent preferences over the possible plans. The
variance reduction is used as a global cost function that reduces oscillations in the global response.
The self-adaptive learning scheme of Section 3 is used for the plan selections by default, which is
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also compared with the gradient descend schemes of Section 5. The default experimental parameters
are outlined in Table 2.

Table 2. Default experimental setup

Experimental Parameter Default Choice

Network topology height-balanced binary tree

Number of agents 1000

Dataset Synthetic Gaussian

Number of possible plans per agent 16

Size of possible plans 100

Parameter λ (unbounded) 0

Global cost Variance

Number of repetitions 50

Plan selections scheme Self-adaptive

The performance evaluation covers the following six aspects:

(1) Convergence and scalability: Evaluation of the level and speed of global cost reduction
under varying system size and tree topology.

(2) Number and size of plans: Evaluation of the global cost reduction under varying number
and size of possible plans.

(3) Agent preferences: Evaluation of the global cost reduction, average local cost and fairness
by varying an unbounded and bounded λ parameter.

(4) Performance comparison: Comparison of the plan selection schemes as well as compar-
isons of the computational and communication cost between I-EPOS and three other state of
the art methods, namely EPOS, COHDA and Greedy optimization.

(5) Application scenarios on sharing economies: Evaluation of the I-EPOS applicability in
energy management and bike sharing.

(6) Global optimality: Evaluation of the optimality in the global solutions between I-EPOS and
brute-force search.

The rest of this section illustrates each of these performance aspects.

6.1 Scalability and convergence speed

Figure 9a shows how the global cost, i.e. the variance, changes over the course of 30 iterations. The
low in size area around the line is plus⁄minus the standard deviation of the measured variance over
all experiment repetitions.
On average, the variance is reduced from 480 ± 70 in the initial iteration to 3.2 ± 0.30 after

30 iterations. As a scale of comparison: randomly choosing standard normally distributed plans
results in an approximate variance of 1000 ± 140 on average6. The second termination criterion of
Section 4.4 completes the algorithm in 14 ± 2.3 iterations.
Figure 10a evaluates the global cost, i.e. variance, and Figure 10b the convergence speed, i.e.

number of iterations until termination, under varying system size, i.e. incremental increase in the
number of agents as {21, 22, ..., 213}.
Figure 10a shows that a low number of agents results in a low number of combinations and

therefore the variance increases as more agents (and therefore more plans) are introduced. After a
critical point, the combinations explode and therefore variance starts decreasing as the number

6The sum of 1000 standard normally distributed plans is normally distributed with zero-mean and a variance of σ 2
= 1000.

Based on the fact that the empirical variance σ̂ 2 follows a chi-squared distribution d−1
σ 2 σ̂

2 ∼ X2
d−1

, the empirical variance

is expected to be 1000 with a standard deviation of about 142.
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Fig. 9. Variance reduction and changes of plan selections.
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Fig. 10. Performance evaluation under increasing number of agents a.

of agents increases and a larger solutions space is explored. The convergence speed in Figure 10b
increases from 2 to 13 iterations as the number of agents scales to 210 = 1000, and approaches the
15 iterations for larger scales. Note also that the standard deviation increases for higher system
scales due to the larger solution spaces.

The computational performance of I-EPOS relies on the topological structure of the tree networks
and speciically on the number of children per agent. During the top-down phase, all combinations
are evaluated via an exhaustive search with computational complexity ofO(2c ). Figure 11 evaluates
the efectiveness in reducing variance as well as convergence speed. Given a ixed network size of
1000 agents, measurements are made with c ∈ {1, 2, ..., 13}, with c = 1 corresponding to a list of
agents and therefore a maximal tree depth.

Figure 11a shows that for c ≥ 2 performance improves at a very low extent while the convergence
speed in Figure 11b increases for 2 iterations approximately. Therefore, this observation shows
that there is no signiicant gain in variance reduction or convergence speed by increasing the
computational complexity via a larger number of children in the tree topology. Other aspects can
be taken into account such as the communication latency that can be controlled by the depth of
the tree.
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Fig. 11. Performance evaluation under increasing number of children c

6.2 Number and size of plans

In Figure 6.7 of the earlier work on the EPOS optimization [Pournaras 2013], it is shown that an
increasing number of possible plans achieves higher reduction in global cost. Varying the number
of possible plans has a social inluence and relevance as well: a very low number of plans may be
perceived as a low level of system lexibility and therefore as overtake of human autonomy, which
can result in low participation and satisfaction. On the other hand, a very high7 number of possible
plans may result in information overwhelming, low comprehension and feelings of regret as earlier
shown in real-world applications of discrete choice theory, for instance, privacy choices [Korf and
Böhme 2014]. This paper revisits this critical feature of the computational problem by conirming
whether the variance reduction and convergence speed increase in the case of the I-EPOS learning.
℧oreover, this section sheds light on the inluence the size of the possible plans has on performance.
Figure 12a conirms the signiicant decrease of the global cost, i.e. variance reduction, under

an increasing number of possible plans: p ∈ {21, 22, ..., 213}. The variance reduction is over 60%
when the possible plans increase from 2 to 100. This is because of the larger degree of freedom to
choose solutions with lower variance, given that the variance is bounded to zero. Along with this
improvement, a striking inding is shown in Figure 12b. Convergence speed signiicantly decreases
as the number of possible plans increase.
Earlier work shows that as data dimensionality increases, the distance of the data point in the

closest proximity approaches the distance of the one in the farthest proximity, in other words, the
distance between two randomly sampled data points is approximately equal [Beyer et al. 1999].
This inding has the following implications in the context of an increasing size of the possible
plans: the impact of changing the selected plan to improve the variance reduction turns out to be
insigniicant, i.e. each possible plan result in approximately the same variance reduction.

This rationale is relected in Figure 13. The size of the possible plans increases asd ∈ {21, 22, ..., 213},
while the variance steadily increases. The convergence speed also increases with a signiicant
increase in standard deviation for higher plan sizes. Beyond this performance degrade, choosing
a large size for the possible plans may turn out to be impractical: If the possible plans are time
schedules, uncertainties increase as the scheduling horizon increases. ℧oreover, a higher size of
plans increases the communication, computational and storage cost in the agents.

7Very high numbers of possible plans require an automated and intelligent processing by an information system rather

than by humans. For instance, computing groups of possible plans according to features such as the average local cost is a

way for citizens to manage a large number number of possible plans.

AC℧ Transactions on Autonomous and Adaptive Systems, Vol. 1, No. 1, Article 1. Publication date: September 2018.



1:18 Pournaras et al

10 100 1000
number of plans

0

1

2

3

4

5

6
v
ar
ia
n
ce

(a) Global cost

10 100 1000
number of plans

0

5

10

15

20

n
u
m
b
er

o
f
it
er
at
io
n
s

(b) Convergence speed

Fig. 12. Performance evaluation for diferent numbers of plans p.
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Fig. 13. Performance evaluation for diferent plan size d .

6.3 Agent preferences

In this studied aspect, the agent selections of I-EPOS are biased by the local λ parameter that
represents the agent preferences as shown in Equation 12. Despite the fact that the generated plans
of the synthetic dataset are equivalent, i.e. equal mean values, for the purpose of this analysis it
is assumed that the local agents’ cost is the index of the selected plans and agents prefer plans
with low index. The goal of this evaluation is to illustrate the performance trade-ofs by varying8

the λ parameter as follows: (i) unbounded λ tested in the range [0, 80] without the use of (1 − λ)
in Equation 12 and (ii) bounded λ in the range [0, 1] according to Equation 12. When λ = 1 for
λ ∈ [0, 1], the global cost optimization is ignored and the minimization of the local cost is maximized
with all agents selecting the plan with index 0. Given the Gaussian distribution with which the
synthetic dataset is generated, the λ = 1 is equivalent to agents making random selections, in terms
of global cost.
Figure 14 illustrates the frequency of plan selections for various unbounded and bounded λ

values. The shift of the distribution to low plan indices demonstrates the increasing algorithmic
biases introduced towards these plans as the λ value increases.

8The same λ value is set for all agents. Diferent λ values among agents is part of future work.
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(b) Unbounded, λ = 5.0
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(c) Unbounded, λ = 56.0
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(d) Bounded, λ = 0.05
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(e) Bounded, λ = 0.69
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(f) Bounded, λ = 0.98

Fig. 14. Histogram of the selected plan indices for diferent values of λ, unbounded λ ∈ [0,∞) and bounded

λ ∈ [0, 1].

Figure 15 illustrates the performance of I-EPOS for diferent unbounded and bounded λ values.
The following observations can be made for the unbounded and bounded schemes of λ: Both
schemes regulate the trade-of of global vs. local cost. Higher λ values decrease local cost as shown
in Figure 15c, while global cost increases (Figure 15a). For unbounded λ, a range of possible λ values
is determined empirically by searching for the range of λ values in which global and local cost
have high sensitivity. These ranges are [20, 50] for global cost in Figure 15a and [0, 10] for local cost
in Figure 15c. In contrast, the bounded λ has a ixed range by design, although global cost shows
sensitivity for very high λ values (Figure 15a).
High λ values show faster convergence times as shown in Figure 15b. Unfairness increases

signiicantly for high λ values as Figure 15d shows. This is because of the unequal distribution of
the selected plan indices for high λ values as depicted in Figure 14. The cutof of unfairness values
for the unbounded λ indicates the selection of a single plan index by all agents.

The results can be interpreted as follows: when individuals make choices in favor of their comfort
(high λ values), collective eiciency is sacriiced in terms of global cost and fairness. Nevertheless,
unbounded λ values around 10 to 20 or bounded values around 0.8 to 0.9 achieve a good trade-of
for individuals: very high reduction in local cost, while global cost remains low and fairness high.

6.4 Performance comparison

This section compares the plan selection schemes of I-EPOS. ℧oreover, performance comparisons
are shown with other state-of-the-art systems of decentralized combinatorial optimization.
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Fig. 15. Performance evaluation for diferent values of λ, unbounded λ ∈ [0, 80] and bounded λ ∈ [0, 1].

Table 3 illustrates the comparison of the evaluated plan selection schemes. All approaches
perform the initialization on the irst iteration and therefore the global cost has the value of
480 in all schemes. However, the self-adaptive scheme has the lowest global cost and the highest
convergence speed together with the adaptive gradient. The local gradient achieves lower global cost
than the global gradient as it operates on replacing individual selections to make an improvement.
These replacements cause the lowest convergence speed for the local gradient.

Table 3. Performance of the standard self-adaptive plan selection scheme of I-EPOS against the gradiend

descent schemes.

Plan Selection Scheme E
(1)
G

E
(t )
G

Convergence

Self-adaptive 480 ± 70 3.2 ± 0.30 14 ± 2.3

Adaptive gradient 480 ± 70 3.3 ± 0.27 14 ± 2.3

Local gradient 480 ± 70 3.3 ± 0.52 18 ± 3.4

Global gradient 480 ± 70 12 ± 1.9 15 ± 4.0

A fair comparison of I-EPOS with related work is not straightforward as the problem setup
is highly challenging and there is a very limited number of algorithms designed to operate in a
similar fashion as I-EPOS. Although several earlier algorithms and their applications draw parallels
with the distributed design of I-EPOS, for instance ant colony optimization for routing in wireless
sensor networks [Ducatelle et al. 2005; GhasemAghaei et al. 2007], reinforcement learning for traic
light control [Dusparic and Cahill 2009] and load-balancing in cell tower of mobile networks [Hu
et al. 2010], these algorithms are not directly applicable to the optimization problem illustrated in
Section 2. For this reason, this section focuses on three state-of-the art algorithms and conigurations
capable of performing decentralized combinatorial optimization: (i) EPOS, (ii) COHDA and (iii)
Greedy. The rest of this section compares the design features of the algorithms and illustrates
performance comparisons that underline the supreme performance of I-EPOS.

6.4.1 EPOS. EPOS [Pournaras 2013; Pournaras et al. 2017b] is an actual earlier design of I-EPOS
that does not include learning capabilities and focuses entirely on optimization within a single
bottom-up and top-down phase. EPOS and I-EPOS solve the same decentralized combinatorial
optimization problems and have common domains of applicability [Pournaras et al. 2014a,b]. Their
design though has a few signiicant diferences, for instance, decision-making in EPOS takes place
at the parents on behalf of the children, whereas, the decision-making in I-EPOS is fully localized.
EPOS performs a non-local brute-force computation of all possible plan combinations of the children.
This imposes certain computational constraints for tree topologies with a high number of children.
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℧oreover, I-EPOS is capable of improving solutions dynamically, thanks to a fully decentralized
iterative backpropagation mechanism. In contrast, EPOS operates in a single iteration and the
top-down phase is an actual propagation of the global response computed.

6.4.2 COHDA. COHDA [Hinrichs et al. 2013, 2014] is an iterative asynchronous algorithm. In
contrast to EPOS and I-EPOS, it does not rely on a tree topology for its operations. Because of this
higher abstraction, the agents of COHDA incrementally exchange and merge with their neighbors
complete sets of selected plans9, referred to in COHDA as the knowledge base, in contrast to EPOS
and I-EPOS respectively that only exchange local and aggregated plans. A complete exchange of
information is unscalable with the increase of network size and has a signiicant communication
overhead in resource-constraint networks. For the purpose of the performance comparison, COHDA
is conigured to run over a tree topology.

6.4.3 Greedy. Greedy is a particular coniguration of I-EPOS running for one iteration with at
most one child per agent, i.e. agents in a sequence. This particular coniguration corresponds to a
sequential greedy optimization algorithm.

6.4.4 Evaluation. The three algorithms are compared with respect to the following two metrics:
(i) computational and (ii) communication overhead. The former is computed by the number of
global cost computations performed. The latter10 measures the amount of data transmitted in the
network and it is computed by the number and size of plans exchanged. These metrics can provide
performance benchmarks and indicate the suitability of each algorithm for networks with scarce
processing or energy resources, i.e. Internet of Things. Table 4 compares the performance of the
four algorithms in respect to both metrics.

Table 4. Performance comparison of the four algorithms.

Algorithm
global cost computations vectors transmitted

per agent critical path per agent critical path

I-EPOS O (pt ) O (pt loga) O (t ) O (t loga)

EPOS O (pc ) O (pc loga) O (p) O (p loga)

COHDA O (pt ) O (pt ) O (at ) O (at )

Greedy O (p) O (ap) O (1) O (a)

Performance is given for each agent and the critical path deined by the required sequence of
agent executions. For instance, in the bottom-up phase of I-EPOS, the critical path corresponds
to the tree height that is logarithmic to a. The shorter the critical path, the faster the algorithm
execution is.
I-EPOS, COHDA and Greedy perform local plan selection and therefore the computational

complexity is linear to the number of plans p. EPOS has a higher computational load to perform
given the combinational selections it performs. The computational complexity of I-EPOS and
COHDA depends on the number of iterations executed. The computational complexity over the
critical path depends on the network size. For I-EPOS and EPOS, it is the tree height that inluences
the computational complexity and it is logarithmic to the number of agents a. Agent selections in
COHDA require an equal or higher number of iterations t than the tree height. The Greedy algorithm
is computationally more expensive than the other algorithms given its sequential execution. I-EPOS

9COHDA uses counters for each agent selection to distinguish the most recent one.
10The communication overhead for building and maintenance of the tree or another dynamic topology for COHDA is

not counted in these measurements as it is out of the scope of this work and subject of the network reliability and the

application domain.

AC℧ Transactions on Autonomous and Adaptive Systems, Vol. 1, No. 1, Article 1. Publication date: September 2018.



1:22 Pournaras et al

and Greedy transmit a constant amount of data per agent and iteration. In contrast, the transmitted
data of EPOS depend on the number of plans sent to the parent. COHDA has in principle the highest
communication overhead by scaling linearly to the network size given that messages contain all
agent selections.
Figure 16 illustrates the performance comparison on the critical path for the four algorithms.

Trade-ofs of cost-efectiveness are illustrated by showing the resulting overhead for diferent levels
of variance reduction. The consecutive iterations are the ones that increase the computational
and communication overhead in Figure 16. This shows how fast I-EPOS and COHDA achieve a
certain performance level, i.e. a variance reduction. I-EPOS outperforms all algorithms and shows a
striking cost-efectiveness for a decentralized learning algorithm. After several iterations, meaning
an invested computational and communication cost, the two algorithms converge at the same
variance level. Results for each agent show a similar trend to the ones of the critical path except
Greedy that is fully outlined in Table 4.
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Fig. 16. Performance comparison of the four algorithms over the critical path.

While I-EPOS and COHDA eventually converge to a similar performance level, the traversal of the
optimization space varies signiicantly. Figure 17 visualizes this algorithmic efect by depictingwhich
agents change their plan selection over runtime. For a clearer visual illustration, an experiment
with 100 agents is shown. It is worth noticing that while I-EPOS outperforms COHDA by inding
optimal solutions faster, it also performs a signiicantly lower number of changes in plan selection
(190 in total). In COHDA all changes of plan selections are propagated to the neighbors. In contrast,
changes in I-EPOS are performed in branches that over the passage of iterations get rapidly shorter.
At the end, only a few single isolated changes in the selected plans maximize performance.

6.4.5 Local vs. combinational selections. Compared to the localized selections of I-EPOS, EPOS
performs combinational selections by letting parents aggregate and sum up all combinations of
possible plans generated by children. Combinational selections are applied to I-EPOS to compare
the reduction of the global cost with localized selections. Table 5 summarizes the results.

Table 5. Performance comparison of I-EPOS with local and combinational plan selections.

Plan selections E
(1)
G

E
(t )
G

Convergence

Local 480 ± 70 3.2 ± 0.30 14 ± 2.3

Combinational 300 ± 39 3.3 ± 0.27 12 ± 2.3
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(a) τ = 2 (b) τ = 3 (c) τ = 4 (d) τ = 5 (e) τ = 6 (f) τ = 7 (g) τ = 8 (h) τ = 9

(i) τ = 2 (j) τ = 12 (k) τ = 22 (l) τ = 32 (m) τ = 42 (n) τ = 52 (o) τ = 62 (p) τ = 72

Fig. 17. (a)-(h) I-EPOS vs. (i)-(p) COHDA. Network snapshots showing the agents (in black) changing their

selection and agents (in white) that do not change their selection.

The global cost in the irst iteration as well as the convergence speed are superior for the
combinational plan selections. This justiies the initial design of EPOS, which operates in a single
iteration. However, the local plan selections eventually achieve a lower global cost on convergence.

6.5 Application scenarios on sharing economies

I-EPOS is applicable in the broader context of large-scale multi-agent systems. This paper shows the
broad and signiicant impact of the proposed generic algorithm on two very diferent scenarios of
participatory sharing economies in the context of smart grids and smart cities: (i) energymanagement

and (ii) bike sharing. The evaluation uses real-world data from state-of-the-art smart grid and smart
cities pilot projects.

6.5.1 Energy management. This application scenario envisions a highly participatory demand-
response program for increasing system reliability by, for instance, preventing power peaks that
can cause high energy costs and catastrophic blackouts [Pournaras et al. 2017a; Pournaras and
Espejo-Uribe 2017]. Residential consumers participate by equipping one or more controllable
household appliances, e.g. refrigerators, water heaters, heating⁄cooling systems etc., with software
that can operate the appliance according to plans selected by I-EPOS. Technology for this control
level is feasible as discussed in earlier work [Kailas et al. 2012]. Each household is represented by
an I-EPOS agent that generates possible demand plans representing comfort and lifestyle lexibility,
for instance, diferent times of taking a shower, or varied levels of thermostat setpoints. The global
response corresponds to the total energy demand of all households aggregated. One way to reduce
power peaks is to stabilize the demand by distributing it uniformly over time. This can be formalized
as minimizing the variance of the global response. The variance is therefore used as the global cost
function.
Real-world data from the Paciic Northwest Smart Grid Demonstration Project (PNW) by Bat-

telle11 are used for the experimental evaluation. The data contain 5-minute electricity consumption
measurements from 1000 residential households on 23.07.2014. Two plan generations are performed
within the day and therefore the dataset is split in two parts, the PNW-℧ORNING for the duration
01:00-13:00 and the PNW-EVENING for 11:00-23:00 respectively. The cut of duration is reserved
for plan generation. A set of 13 possible plans is generated as follows: the measured demand is the
irst plan; the other 12 plans are generated by shifting the measured demand 5, 10, . . . , 25 or 30

11Available upon request at http:⁄⁄www.pnwsmartgrid.org⁄participants.asp (last accessed: September 2018)
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minutes into the past or into the future12. The local cost of each plan is the amount of minutes
shifted compared to the original demand.
The original power demand vs. I-EPOS global response for the PNW-℧ORNING and PNW-

EVENING are illustrated in Figure 18. I-EPOS13 reduces power peaks from 935 ± 0 to 792 ± 2 for
PNW-℧ORNING and from 802 ± 0 to 713 ± 2 for PNW-EVENING resulting in lower high-peak
costs and instabilities in the power grid.
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Fig. 18. Power peak-shaving by I-EPOS on the PNW dataset.

The peak-shaving capability of I-EPOS is also evaluated under preferences over the plans given
that the possible plans are generated by a varied amount of shift. Figure 19 shows the trade-of
between peak demand reduction and the amount of shift in the selected plans averaged over all
agents. The trade-of is empirically controlled via the unbounded λ parameter. A λ = 0 corresponds
to the default I-EPOS optimization without plan preferences and λ = 100 to the original demand.
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Fig. 19. Trade-of between peak demand reduction and average demand shit in the selected plans λ ∈

{0, 0.5, . . . , 4, 5, 6, 100} ater t = 60 iterations for the PNW datasets.

12For example, the plan shifted 30 minutes into the future is the measured demand for the duration 01:00-12:00.
13The algorithm terminates after 26± 3.6 and 38± 4.1 iterations according to the second termination criterion of Section 4.4.
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6.5.2 Bike sharing. In the context of smart cities, bike sharing is an important asset for improving
urban qualities as citizens can use environmental friendly means of transportation, improve their
individual health and decrease traic congestion in densely populated cities. At the same time, they
do not have to use their own bikes that can challenge the available parking spaces and increase the
risk of stealing.
The broad establishment of bike sharing requires a high quality of service and low operational

costs by making sure that citizens can always pick up a bike in a station and can always return it
back to another one without the station exceeding the capacity of parked bikes. In other words,
station should remain load-balanced under various conditions, such as population density, mobility,
weather etc. ℧anual relocation of bikes by system operators is not viable in the long term and can
increase operational costs signiicantly.
In the context of bike sharing, the possible plans may concern citizen recommendations about

the stations from which bikes are picked up and to which they are returned. The possible plans are
encoded as a vector with values the incoming minus the outgoing bikes of a citizen in each station
at a certain time slot. For example, a citizen traveling from station 1 to station 3 and from station 4
to station 3 has the following plan: (−1, 0, 2,−1, . . . ). I-EPOS can select recommended stations for
each citizen’s agent14 such that the number of bikes among the stations remains balanced. This can
be formalized as minimizing the variance of the global response. The possible plans represent the
utilization of the stations by each citizen in contrast to the energy domain in which load-balancing
is performed over possible plans containing the residential energy demand over time.

I-EPOS generates bike sharing plans by reasoning based on real-world historical data15 from the
Hubway bike sharing system in Paris. Although this dataset does not contain personalized records,
citizen trips are extracted from citizen information: zip-code, year of birth and gender. All trips that
have common values in these ields are assumed to be made by the same citizen. A random subset
of 1000 unique citizens represents the agents in I-EPOS, with a diferent seed for each run of the
algorithm. The timeslot is chosen from 8:00am to 10:00am. All historic unique trips16 a citizen did
in the deined timeslot of a week day are considered as the possible plans for that day. The distance
of the stations is encoded in the trips of the citizens. The local cost of each plan is deined by the
likelihood that the citizen does not make the trip instructed in the plan. For instance, if three plans
are chosen 4, 5 and 1 days of the measured time period respectively, the local cost for these plans is
0.6, 0.5 and 0.9 respectively.

Figure 20a illustrates the load-balancing of the stations using I-EPOS after 15 iterations. I-EPOS
reduces the variance from roughly 230 to 0.58. This indicates a signiicant potential to reduce
the number of manual bike relocations. However, recommendations may not be followed if the
citizen is unlikely to choose a certain trip, i.e. a trip with high local cost. Figure 20b shows the
trade-of between global and local cost empirically controlled via the unbounded λ parameter after
30 iterations. A λ = 0 is the one extreme in which the local cost is not considered, in contrast to
λ = 100 that results in a global response equivalent to the original data.

Results show that making plan selections with the average likelihood of the selected plan reduced
in half is followed by a reduction of the variance by a factor of more than 100.

6.6 Global optimality

The evaluation of global optimality is challenging for large-scale systems due to the exponential
explosion O(pa) of the solution space. Two experiments are conducted with a feasible solution

14Such an agent can be implemented as a mobile app, for instance.
15The dataset is made available in the context of the Hubway Data Visualization Challenge: http:⁄⁄hubwaydatachallenge.org⁄

(last accessed: September 2018).
16As citizens do not travel each day, plans with no trips can be deined as well. These plans are not included in the dataset.
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Fig. 20. I-EPOS performance for the bike sharing dataset.

space computed by a brute-force search. In the irst experiment, the synthetic dataset is used with
a ixed number of agents a = 10, while the number of possible plans vary as p = 2, p = 3 and
p = 4. The total number of combinations is 210 = 1024, 310 = 59049 and 410 = 1048576 respectively.
In the second experiment, a ixed solution space of size pa = 410 = 220 = 1048576 is created, in
which the number of agents and the number of possible plans vary such that the total number of
combinations remains constant. The second experiment involves the synthetic, bike-sharing and
energy datasets.
Figure 21 illustrates the results of the irst experiment. The solutions are sorted according to

the global cost, i.e. the variance. The projected ×, ♦,▽ points show the solutions found by I-EPOS
during convergence and the ■ points show the top 33% of the solution space. An increase in the
number of plans creates a solution space with solutions of higher as well as lower variance. This
observation is in line with the results of Figure 12a. In the case of p = 2 and p = 3, I-EPOS inds the
optimum solution, while for p = 4 I-EPOS inds the 368th solution, which is approximately the top
0.035% of the solution space.

Figure 22 illustrates the second performed experiment. A striking inding is observed: the larger
the number of agents, the better the solutions found are, despite the larger values of variance. This
may now better explain Figure 10a: Although variance increases for a low number of agents, this
does not necessarily mean that the solutions found are worse. Instead, the variance cancellations
when summing up the selected plans for a larger population of agents may explain this data artifact.

Another striking inding is the eiciency of I-EPOS to explore the optimization space from the
very irst iteration. The worst solution of I-EPOS during convergence, meaning the one found
on the irst iteration remains lower that the top 33% of all solutions and it is the one of PNW-
EVENING with a=20 and p=2. In the irst iteration, the level-by-level coordinated choices made in
the bottom-up and top-down learning phase contribute signiicantly on the eicient exploration of
the optimization space.

7 SUMMARY OF FINDINGS AND DISCUSSION

The key indings of the performed experiments are summarized as follows:
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Fig. 22. I-EPOS vs. brute-force optimality for diferent datasets. The numbers in parenthesis denote the top %

of solutions found in the total solution space of size pa = 410 = 220 = 1048576.

• A very few number of learning iteration, i.e. around 10 or fewer, are required for the conver-
gence of I-EPOS. The irst iterations contribute the highest to the reduction of global cost
(Figure 9).
• An increase of a low number of agents increases global cost (Figure 10a) and lowers con-
vergence speed (Figure 10b), while the global cost decreases by increasing further a high
number of agents. An increase of the global cost is not related though with the optimality
that actually improves for a higher number of agents (Figure 22).
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• An increasing number of children in the tree topology decreases the global cost and increases
the convergence speed, though to a very low extent (Figure 11). Exception is the organization
of the network in a sequence, i.e. one child, that shows very high convergence speed and
higher global cost.
• A larger number of plans decreases the global cost (Figure 12a and 21) and increases conver-
gence speed (Figure 12b).
• Increasing the plans size increases global cost and decreases convergence speed (Figure 13).
• The λ parameter controls the trade-of between global cost, average local cost, convergence
speed and fairness. Increasing λ results in lower average local cost, faster convergence, higher
global cost and lower fairness (Figure 15, 19 and 20b).
• The self-adaptive plan selection scheme outperforms all other ones based on gradient descent.
• Strikingly I-EPOS outperforms other systems in both computational and communication
cost, even if these systems perform heavy brute force operations or exchange the complete
information (Figure 16).
• Combinational plan selections achieve better solutions than local selections in the irst
iterations, while local selections converge eventually to solutions with a lower global cost
(Table 6.4.5).
• I-EPOS can efectively perform (i) peak-shaving of energy demand (Figure 18) to improve
the reliability of smart grids and (ii) load-balancing of bike-sharing stations (Figure 20a) to
minimize operational costs.
• The global optimality of I-EPOS in the solution spaces of size pa = 410 = 220 = 1048576 for
diferent datasets is the following: (i) below the top 33% of all solutions in the irst learning
iteration and (ii) below the top 3.35% of all solutions in the last learning iteration (Figure 22).

On the one hand, the monotonously decreasing learning curves along with the fast convergence
of I-EPOS suggest that a supportive mechanism or an enhancement for the better exploration of
the solution space has the potential to improve optimality even further. On the other hand, the
design of such an improvement without sacriicing communication cost and convergence speed is
highly challenging as also shown in the plan selection schemes based on gradient descent.
Linking the design of the learning algorithm with the design of a self-organizing tree network

that adapts the topology as the means to discover better solutions seems a promising future line of
research. Although the learning process of I-EPOS relies so far on a tree topology to perform the
aggregation of the selected plans, more densely connected hierarchical structures as the ones of
neural networks are worth further investigation. Furthermore, the impact of failures on the learning
performance is out of the scope of this paper but addressed in related and ongoing work [Pournaras
et al. 2018].

Although I-EPOS relies on a universal cost function for agents that may have diferent roles [Buc-
chiarone et al. 2016] in a socio-technical system of sharing economies, the local λ parameter
personalizes the agents’ objectives by regulating the trade-of of individual (local) vs. collective
(global) criteria based on which the plan selections are performed. Reward mechanisms are means
to incentivize agents for changing the choices of λ. The performance inluence by the agents’
positioning in the hierarchical network according to diferent criteria, for instance according to the
agents’ λ value, is the subject of future evaluation.

8 I-EPOS AS A PARADIGMATIC ARTIFACT

Section 6.5 conirms that solutions to decentralized combinatorial optimization problems have a
tremendous potential to build more sustainable and resilient digital societies. Authors here move
a step forward to contribute a paradigmatic software implementation of I-EPOS together with
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other supporting software relevant for the broader research communities of distributed systems,
optimization, artiicial intelligence, machine learning, autonomic computing, multi-agent systems,
game theory and others. The contributed exemplar17 is a generic and modular open source Java
implementation18 of I-EPOS that provides the following opportunities for system evaluations:
(i) Several diferent global and local cost functions. (ii) Possible plans of the same as well as
diferent application domains generated from real-world and synthetic datasets. (iii) Diferent
network settings, such as varying the topological properties of the network. The exemplar is also
accompanied by a tutorial19 and high-quality videos for a visual comprehension of the self-adaptive
learning process. The software suite comes with a simulation and live software environment, which
is prototyped with the Protopeer distributed toolkit [Galuba et al. 2009] for deployment in real-
world testbeds such as Planetlab20. The community can also make use of integrated plotting and
graph visualization capabilities as in Figure 17. Finally, the software suite comes with a graphical
user interface for interactive executions as shown in Figure 23.

(a) Input (b) Output

Fig. 23. The graphical user interface of I-EPOS.

The object-oriented implementation of I-EPOS allows a straightforward experimentation without
any change in the core I-EPOS code (black box use). Well-documented interfaces provide a high level
abstraction and modularity, while allowing customization in diferent system setups and application
domains. This is achieved with the inheritance design pattern that enables easy prototyping of
combinatorial algorithms and cost functions. The base class of an algorithm implementation is
the agent.Agent that deines the set of possible plans and the selected plan. It also deines a
global and local cost function as well as the functionality for remote distributed communication

17Available at http:⁄⁄epos-net.org⁄shared⁄I-EPOS.zip (last accessed: September 2018).
18Available at https:⁄⁄github.com⁄epournaras⁄EPOS (last accessed: September 2018).
19Available at https:⁄⁄github.com⁄epournaras⁄EPOS-℧anual (last accessed: September 2018)
20Available at https:⁄⁄www.planet-lab.org. The toolkit is successfully used in the Euler high-performance cluster of ETH

Zurich: Available at https:⁄⁄scicomp.ethz.ch⁄wiki⁄℧ain_Page (last accessed: September 2018).

AC℧ Transactions on Autonomous and Adaptive Systems, Vol. 1, No. 1, Article 1. Publication date: September 2018.

http://epos-net.org/shared/I-EPOS.zip
https://github.com/epournaras/EPOS
https://github.com/epournaras/EPOS-Manual
https://www.planet-lab.org
https://scicomp.ethz.ch/wiki/Main_Page


1:30 Pournaras et al

by maintaining a limited neighbors list. Subclasses have to implement an active and passive
state that deine the algorithmic operations and the reactions to diferent received messages
respectively. Two such classes are the agent.IeposAgent and agent.CohdaAgent for the I-EPOS
and COHDA algorithms. The base class of a cost function is the func.CostFunction. It deines
a method that receives as input a plan and returns the computed cost. The computations are
speciied in the subclasses, for instance, the minimum variance func.VarCostFunction or the
func.SqrDistCostFunction cost function that minimizes the squared Euclidean distance from
a target incentive signal [Pournaras et al. 2014a,b]. Logging follows the observer design pattern

with the abstract class agent.logging.AgentLogger corresponding to the observer. It deines
and writes to logs a serializable object containing the state of an agent. The logged information
is deined in the subclasses. After each iteration, an agent sends its state to all its observers that
handle the logging.

Although the contributed artifact is still a research prototype, several target groups can make an
efective use of it. System developers guided by the contributed tutorials and interfaces can extend
the artifact, design new optimization algorithms and use the implemented benchmarks for evalua-
tion. In addition, policy-makers and non-computer scientist can interact with the software artifact
via the graphical user interface to evaluate datasets and several system scenarios. Entrepreneurs
can also use the I-EPOS artifact as a virtual laboratory of innovation by evaluating the feasibility of
new application and business use-cases. Finally, the interplay of the scientiic aspects of I-EPOS
with art can provide new means for the general public to conceive decentralized collective learning
processes that are too complex or non-intuitive for the mainstream thinking and general perception
in society. Such work is the soniication of output data from I-EPOS to construct a constitution-
ally narrative of complex decentralized systems towards their equilibrium [Koutsomichalis and
Pournaras 2017].

9 CONCLUSION AND FUTURE WORK

This paper concludes that the decentralized collective learning approach of I-EPOS for multi-agent
combinatorial optimization problems is feasible and can even signiicantly outperform related
algorithms that either make use of non-local brute-force operations or exchange full information.
The hierarchical structure over which an unsupervised learning is performed preserves by design
autonomy and privacy, while it allows informational self-determination, active participation and
a fully decentralized operation. These system properties enable new novel disruptive designs for
participatory sharing economies in the context of smart grids and smart cities such as energy self-
management or bike sharing initiatives. Experimental evaluation using real-world data from two
state-of-the-art pilot projects in these domains provide a proof-of-concept for the broad applicability
of I-EPOS. A software implementation of I-EPOS as an exemplar aims at settling a milestone for
further work on collective learning and combinatorial optimization.

Future work includes the design of self-organizing hierarchical structures as themeans to improve
the learning performance. The introduction of agents’ mobility [Bosse 2017] for more robust live
deployments in the Internet of Things as well as an empirical performance analysis of agents
residing on low power devices are part of future work. The evaluation of equilibria originated
from reward mechanisms that incentivize the agent preferences is ongoing work. Finally, further
applications and real-world prototypes such as charging coordination of electrical vehicles as
well as mobile apps for scheduling of citizens’ activities are in progress. Ultimately, the collective
engagement of the broader research communities with decentralized learning is imperative for the
creation of a more viable, ethically designed and socially responsible artiicial intelligence.
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A COST FUNCTIONS

The cost functions studied in this paper receive as input a d-dimensional vector denoted as x =
(x1,x2, . . . ,xd ) and their output is a scalar denoting the cost of vector x.

A quadratic cost function is non-linear and consists of a quadratic, a linear and a constant term.
The quadratic term weights correlations between diferent dimensions i and j with the quadratic
factors qi j . The linear term weights the values of each dimension with the linear factors li . The
constant termC is independent of the input to the cost function. The resulting cost function can be
formalized as follows:

fquad (x) =

d
∑

i=1

d
∑

j=1

qi jxix j +

d
∑

i=1

lixi +C (28)

The variance cost function computes the empirical variance of the input vector with each
dimension representing one sample. The typical deinition for the empirical variance is given as
follows:

fvar (x) =
1

d − 1

d
∑

i=1

(xi − x̄)
2
, x̄ =

1

d

d
∑

j=1

x j . (29)

Table 6 illustrates the formalism of the cost functions considered in this paper. The deinition of
the cost functions is reformulated using a vector notation as well as the gradient deinitions.

Table 6. The cost functions considered in this paper.

Cost function Deinition Gradient

Quadratic fquad (x) = x⊤Qx + x⊤L +C ∇fquad (x) = (Q + Q
⊤)x + L

Linear flin (x) = x⊤L +C ∇flin (x) = L

Variance fvar (x) = x⊤Q̃x ∇fvar (x) = 2Q̃x

Q ∈ Rd×d quadratic factors

L ∈ Rd linear factors

C ∈ R constant scalar

Q̃ = 1
d−1

(

I −
(

1
d

)

d×d

)

quadratic factors of the variance cost function
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