
This is a repository copy of Using Generative Adversarial Networks to Break and Protect
Text Captchas.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/156512/

Version: Accepted Version

Article:

Ye, G, Tang, Z, Fang, D et al. (6 more authors) (2020) Using Generative Adversarial
Networks to Break and Protect Text Captchas. ACM Transactions on Privacy and Security,
23 (2). 7. ISSN 2471-2566

https://doi.org/10.1145/3378446

© 2020 Association for Computing Machinery. This is an author produced version of an
article published in ACM Transactions on Privacy and Security. Uploaded in accordance
with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

1

Using Generative Adversarial Networks to Break and

Protect Text Captchas

GUIXIN YE, ZHANYONG TANG, DINGYI FANG, Northwest University, China

ZHANXING ZHU, YANSONG FENG, Peking University, China

PENGFEI XU, XIAOJIANG CHEN, Northwest University, China

JUNGONG HAN, University of Warwick, United Kingdom

ZHENG WANG, University of Leeds, United Kingdom

Text-based CAPTCHAs remains a popular scheme for distinguishing between a legitimate human user and an
automated program. This article presents a novel genetic text captcha solver based on the generative adversarial
network. As a departure from prior text captcha solvers that require a labor-intensive and time-consuming
process to construct, our scheme needs signiicantly fewer real captchas but yields better performance in
solving captchas. Our approach works by irst learning a synthesizer to automatically generate synthetic
captchas to construct a base solver. It then improves and ine-tunes the base solver using a small number of
labeled real captchas. As a result, our attack requires only a small set of manually labeled captchas, which
reduces the cost of launching an attack on a captcha scheme. We evaluate our scheme by applying it to 33
captcha schemes, of which 11 are currently used by 32 of the top-50 popular websites. Experimental results
demonstrate that our scheme signiicantly outperforms four prior captcha solvers and can solve captcha
schemes where others fail. As a countermeasure, we propose to add imperceptible perturbations onto a captcha
image. We demonstrate that our countermeasure can greatly reduce the success rate of the attack.

CCS Concepts: · Security and privacy → Graphical / visual passwords; Authentication.

Additional KeyWords and Phrases: Text captchas, Generative adversarial networks, Transfer learning, Security,
Authentication

ACM Reference Format:

Guixin Ye, Zhanyong Tang, Dingyi Fang, Zhanxing Zhu, Yansong Feng, Pengfei Xu, Xiaojiang Chen, Jungong
Han, and ZhengWang. 2020. Using Generative Adversarial Networks to Break and Protect Text Captchas. ACM
Transactions on Privacy and Security 1, 1, Article 1 (January 2020), 30 pages. https:⁄⁄doi.org⁄10.1145⁄3378446

Extension of Conference Paper: a preliminary version of this article entitled "Yet Another Text Captcha Solver: A Generative
Adversarial Network Based Approach" by G. Ye et al. appeared in AC℧ Conference on Computer and Communications
Security, 2018 [74]. The work was partly supported by the National Natural Science Foundation of China (NSFC) through
grant agreements 61972314, 61672427, and 61872294; in part by the International Cooperation Project of Shaanxi Province
(2019KW-009) and the Ant Financial through the Ant Financial Science Funds for Security Research. Corresponding authors:
Zhanyong Tang and Zheng Wang.
Authors' addresses: Guixin Ye, Zhanyong Tang, Dingyi Fang, Northwest University, China, gxye@stumail.nwu.edu.cn,
{zytang,dyf,xjchen,pfxu}@nwu.edu.cn; Zhanxing Zhu, Yansong Feng, Peking University, China; Pengfei Xu, Xiaojiang Chen,
Northwest University, China; Jungong Han, University of Warwick, United Kingdom, jungong.han@warwick.ac.uk; Zheng
Wang, University of Leeds, United Kingdom, z.wang5@leeds.ac.uk.

https://doi.org/10.1145/3378446

1:2 Ye, G. et al

1 INTRODUCTION

The completely automated public Turing test, or CAPTCHA1 for short, is often used to distinguish
legitimate users from malicious bots [67]. Captchas exist in various forms, including texts [66ś68],
images [13], audio [55], video [56], and games [19]. Among these, text captcha is a popular scheme
and remains being used by the majority of the top-50 popular websites ranked by alexa.com,
including Microsoft, Google, eBay and many others.
Breaking a particular captcha scheme2 is rarely news today. This is a heavily studied area, and

many scheme-speciic captcha solvers have been proposed in the past. The seminal work presented
by Greg and ℧alik dated back to 2003 was among the irst attempts to automatically solve text
captchas [28]. However, most of the prior attacks are speciically tuned for a few speciic captcha
schemes and adapting them for a new scheme would require signiicant human intervention
for tuning the model and collecting training data ś manually-labeled captcha images. Just like
cryptography, text captchas are evolving and becoming more robust where many of the advanced
features make prior attacks no longer applicable [18].

By employing analytical models and algorithms, some of the more recent works have improved
the generalization ability of a captcha solver [8, 10, 18]. The idea behind such schemes is that a
captcha solver can be tuned to target a new scheme by changing and adapting the model parameters
and algorithm thresholds. These schemes, however, are only efective in solving text captchas with
simple security features. Their success often relies on a good character segmentation method [12],
but the recent development of text captchas has made character segmentation more challenging by
introducing advanced security features like more complex backgrounds as well as distorted and
overlapping characters.
In this article, we present a new approach for building text captcha solvers. Compared to prior

attacks, our approach requires signiicantly fewer numbers of manually labeled captchas but delivers
better performance for solving a wider range of schemes. Our work is inspired and enabled by the
recently proposed generative adversarial network (GAN) [24] and its breakthrough efectiveness in
image translation tasks [35]. To construct a solver for a given captcha scheme, we irst automatically
learn a GAN-based captcha synthesizer using a small set of labeled real captcha images. Next, we
use the learned synthesizer to automatically generate a large number of training samples without
human involvement, from which we learn a base solver. We then apply transfer learning [52] to
ine-tune and improve the base solver. As a signiicant departure from prior attacks, our approach
greatly reduces the cost and human eforts in creating and tuning a captcha solver as well as the
underpinning analytical models and algorithms. Our approach is generally applicable because the
process for building a solver is mostly automatic and is not coupled to a speciic scheme. We show
that our approach can result in a highly efective solver for a large set of currently used text captcha
schemes, making our attack a severe threat to text captchas.

We evaluate the proposed scheme through extensive experiments. We apply our approach to 33
text captcha schemes, 11 of which were being used by 32 of the top-50 popular websites ranked by
alexa.com as of April 2019. We compare our approach to four prior captcha solvers [8, 10, 18, 20].
Experimental results show that our approach needs as few as 500 as opposed to millions [23] labeled
captcha images to learn a successful solver. Despite our approach uses a signiicantly fewer number
of real captchas, it gives a higher success rate. Experimental results show that our approach can
successfully crack all tested schemes, judged by the commonly used standard [10], and it can solve
a captcha in less than 50 milliseconds using a modest desktop GPU.

1To aid readability, we will use the acronym in lowercase thereafter.
2In this article, the term breaking captchas refers to automatically solve the captcha challenge using a computer program,
i.e., recognizing the characters of a text captcha image.

Using Generative Adversarial Networks to Break and Protect Text Captchas 1:3

3. Occluding line2. Character overlapping

6. Solid and hollow fonts5. Different font sizes and colors
4. Character rotating,

distortion or waving

(d) (e) (f)

1. Noisy background

(a) (b) (c)

Anti-segmentation

features:

Anti-recognition

features:

Fig. 1. Security features of current text-based captchas used in this work. Label 1, 2, 3 show the anti-

segmentation features and label 4, 5, 6 present the anti-recognition features.

As a countermeasure, we turn again to the GAN framework. We show that by inserting some
imperceptible perturbations or noise to the captcha images, one can signiicantly decrease the
efectiveness of our attack. This provides a new way to protect the popular text captcha schemes
against machine-learning based attacks before a better alternative is adopted.
To sum up, this article makes the following technical contributions. It is the irst to:

• employ the generative adversarial paradigm to build a successful solver for text captchas
based on a small number of real captcha images;
• apply transfer learning to ine-tune a captcha solver that learned from synthetic data;
• show how a generic learning-based approach can be applied to target a rich set of captcha
schemes, which not only requires less human eforts to construct but also leads to better
performance over prior attacks;
• propose a new countermeasure for text captchas based on the generative adversarial paradigm.

2 BACKGROUND

In this section, we present the threat model, introduce the preliminaries of text captchas and the
GAN architecture.

2.1 Threat Model

Like many prior works, our attack employs supervised learning techniques to build a captcha
solver. The quality of a machine-learned model depends on the volume and quality of the training
data. In this work, we assume the adversary has access to a small number of manually labeled
captcha images for the target scheme. We refer these captchas as real captchas because they
are generated by the target scheme. The real captchas can be labeled either by the attacker or
paid crowdsourcing workers. Speciically, our attack needs as few as 500 real captchas to build a
successful captcha solver. Prior attacks based on machine learning models often require thousands
or sometimes millions of examples to learn a good captcha solver [1, 22, 23]. For example, the work
presented in [23] requires millions of captcha images to learn an efective CNN model to solve
reCAPTCHA. Compared to these prior attacks, our approach incurs signiicantly less overhead and
cost for collecting and labeling the data.

We also assume the adversary has suicient computing power to runmachine learning algorithms.
In this article, we show that the learning can be performed on a typical GPU cloud server, and the
learned solver can run eiciently on a modest desktop GPU.

2.2 Security Features of Text Captchas

A text captcha image often consists of distorted characters, a noisy background or occluding
lines, which are coined as security features. Without loss of generality, to make our experiments

1:4 Ye, G. et al

real captchas synthetic captchas

Training

base solver

Fine

Tuning
refined solver

clean real captchas

3

4

Preprocessing

model

2

security features

Training

1

captcha

generation model

Fig. 2. Overview of our approach. 1 We first use a small set of real captchas and the security features of
the target scheme to learn a captcha generation model. 2 The captcha generation model is then applied
to automatically generate synthetic captchas (with and without confusing background paterns) to learn
a pre-processing model to remove security features, e.g., noisy backgrounds and occluding lines, from the
input captcha image. 3 At the same time, the synthetic captchas (without security features) are used to train
a base solver. 4 Finally, we use a few clean real captchas (that have been processed by the preprocessing
model) to fine-tune the base solver to build the final solver.

manageable, we restrict our scope to six widely used security features employed by the current
text captcha schemes. They are used by the top-50 popular websites ranked by alexa.com at the
time this work was conducted.
Figure 1 illustrates some of the security features targeted in this work. These include anti-

segmentation and anti-recognition features. The anti-segmentation feature, labeled as 1, 2 and 3
in Figure 1, aims to increase the diiculty of character segmentation. A anti-recognition feature,
on the other hand, makes it diicult for a computer program to recognize the characters. This is
achieved by using a variety of font styles and distorted characters, as depicted in Figure 1 with
labels 4, 5 and 6. Later in Table 1, we summarize how these security features are used in diferent
captcha schemes.

2.3 Generative Adversarial Networks

Our work is the irst to apply the recently proposed GAN architecture [24] to learn a captcha
solver. A classical GAN consists of two modules. The irst is a generative network for generating
synthetic data, and the second is a discriminator network to ilter out the synthetic examples from
the real ones. To train the generative and discriminator networks, we use backpropagation [31], a
well-established training method for neural networks. During each training iteration, the generator
aims to produce better synthetic samples while the discriminator would become more skilled
at lagging synthetic samples. GANs have demonstrated promising results in natural language
processing [42, 76] and image generation [35, 77] tasks.

3 OVERVIEW OF OUR APPROACH

Figure 2 depicts the four steps of building a captcha solver using our approach. Each of the steps
is described as follows.
1 Training data synthesis. To reduce the eforts for collecting and labeling real captchas and at
the same time provide suicient training data to build an efective captcha solver, we seek ways to
generate synthetic training data. We do so by learning a captcha synthesizer for a target captcha
scheme (Figure 2 1). Our captcha synthesizer is a neural network trained under the generative
adversarial paradigm. Our GAN consists of two components. The first is a captcha generation

Using Generative Adversarial Networks to Break and Protect Text Captchas 1:5

Generation

Model

Discriminator

Network

synthetic captchas

real captchas

classification accuracy

acc.>th.?

captcha generation
model

Yes

N
oAdjusting synthesizer parameters

Fig. 3. The training process of our GAN-based text captcha synthesizer.

model that tries to produce captchas which are as similar as possible to the target captchas. The
second is a discriminator that tries to identify the synthetic captchas from the real ones. This
generation-discrimination process terminates when the discriminator fails to identify a large
portion of the synthetic captchas. After training, we then use the learned captcha generation
model to automatically produce a large number of captchas together with their characters. This is
described in Section 4.1.

2 Preprocessing. To assist the captcha solver, we build a preprocessing model (Figure 2 2)
to remove as much captcha security features as possible. The preprocessing model also tries to
standardize the font style by e.g., illing hollow characters and standardizing spaces or gaps between
characters. We leverage a speciic GAN called Pix2Pix [34] to build the pre-processor model. The pre-
processor model is trained by using solely synthetic captcha samples. Each training sample contains
two captcha images: one has security features, and the other does not. We learn a preprocessing
model for each captcha scheme and the training process is fully automatic. We describe this process
in more details at Section 4.2.

3 Training the base solver. In this step, we use the preprocessed synthetic captcha images together

with their corresponding character labels to learn a base solver (see Figure 2 3). Our base solver
is a standard Convolutional Neural Network (CNN). The trained solver takes in a pre-processed
captcha image and outputs the corresponding label. This is detailed in Section 4.3.

4 Fine-tuning the base solver. In this inal step, we apply transfer learning to further improve

the base solver (see Figure 2 4). Speciically, we use the set of manually labeled real captchas that
we used to train the captcha synthesizer to update the weights at some network layers of the base
solver. This is described with more details in Section 4.3.

4 IMPLEMENTATION DETAILS

This section provides details on how to build a captcha synthesizer to generate synthetic training
data (Section 4.1), and how to learn a preprocessing model (Section 4.2) and a captcha solver
(Section 4.3) using synthetic captcha images.

4.1 Training Data Synthesis

Prior work shows that to learn an efective CNN-based solver for text captchas would require as
many as 2.3 million of labeled training samples [20]. Collecting and labeling such large volume of
captchas would require intensive human eforts and incur signiicant cost. Our approach overcomes
this issue by using synthetic training data. To this end, we irst learn a captcha synthesizer and use
the synthesizer to populate the training data with a large number of synthetic captchas which are
similar to the target captchas. This allows the training dataset to cover the problem space far more
inely than what could be achieved by exclusively using manually-labeled real captchas.

1:6 Ye, G. et al

Security Feature On/Off #Options Value Range

Noisy background(s) On 5 [10, img.width]

Occluding lines On 2 {Line, Sin, Quadratic, Bezieer}

Char. Overlapping On - [-3, 10]

Character set On 4 [A ʹ Z]

Font style(s) On 1 Solid

Font color(s) On 1 RGB (65, 103, 141)

Distortion On - {[0.1, 0.2], [0.2, 0.3]}

Rotation On - [-30, 30]

Waving Off - -

(a) Real Baidu captchas of

different security features
(b) Synthetic parameters

(c) w/ security

features

Generated synthetic captchas

(d) w/o security

features

Fig. 4. Example synthetic captchas for Baidu scheme. Our captcha synthesizer is trained using a set of real

captchas (a). The parameter seting (b) defines the security feature space. The trained captcha synthesizer is

used to produce synthetic captchas with (c) and without (d) the security features (i.e., noisy backgrounds and

occluding lines in this example) included.

Captcha Image

Synthesizer

Parameter settings

LCxW

Random captcha words

+
GAN-captcha-

generator

1 2

Fig. 5. Overview of our captcha generation model. Our generator model includes an image synthesizer (1)
and a GAN-captcha-generator (2). The image synthesizer takes in a word of characters and the security
feature seting to produce an initial captcha image. The GAN-captcha-generator then modifies the initial
captcha image at the pixel level, aiming to make the resultant captchas are similar to the ones of the target
scheme. Once the training process is completed, the captcha generator model can be used to automatically
generate the captcha images based on any given word of characters.

As we have briely described in Section 3 , our GAN-based captcha synthesizer consists of a
captcha generation model and a discriminator. Figure 3 illustrates the process of training a captcha
synthesizer. The training process is largely automatic except that it needs 500 manually labeled
real captcha images of the target scheme and a set of user-deined security features. The security
feature deinition is given by setting a set of pre-deined parameters. As an example, Figure 4 lists
all pre-deined parameters of the Baidu captcha scheme. For this example, the waving feature is
turned of as it is not used by the Baidu scheme. It is to note that these parameters can be easily
extended and adjusted to target other captcha schemes.

Captcha generation model. Figure 5 shows that our captcha generation model is comprised of
a captcha image synthesizer and a GAN captcha generator. The image synthesizer automatically
generates captcha images for a given parameter setting and a sequence of characters (i.e., a word),
while the GAN captcha generator modiies the synthetic captcha at the pixel l evel. The image
synthesizer takes in a security feature coniguration and tries to ind a set of parameter values so
that the synthetic captchas are as similar as possible to the ones from the target captcha scheme.
We use the grid search method presented in [4] to ind the optimal parameters for a given captcha
scheme. Like the image generator, the GAN captcha genertor learns how to modify the generated
images at the pixel level so that the resulting captcha contains security features that are similar to
the real ones of the target scheme. The similarity is measured by the ratio of synthetic captchas
that cannot be distinguished from the real ones by the discriminator. In other words, the more

Using Generative Adversarial Networks to Break and Protect Text Captchas 1:7

synthetic captchas that can “fool" the discriminator, the higher quality the generated synthetic
captchas will be. We also use the similarity score to update the parameter values of the captcha
image synthesizer during the grid search process. Speciically, if the similarity score is above 0.65,
the parameter values will be reduced according to a given attenuation coeicient, or vice verse. It is
to note that once the captcha generation model is learned, it can automatically generate a synthetic
captcha image based on any given characters.

Captcha discriminator. Our discriminator model is also a CNN deined in [59]. The last layer of
the CNN gives the probability of an input captcha being a synthetic one. We use batches of captcha
images to train the discriminator, where each mini-batch consists of randomly sampled synthetic
captchas, x , and real captchas, y, and the target labels are 1 for every xi and 0 for every yj . The
discriminator network updates its parameters by minimizing the following loss function:

LD = −
∑

i

logD (xi) −
∑

j

log(1 − D (yj)) (1)

where D (·) is the probability of the input being a synthetic captcha, and 1 − D (·) is that of a
real one. In this work, we use the Jensen-Shannon divergence [15] to evaluate the diference of
the distribution between the synthetic and real captcha images when training the discriminator.
We have also considered the Wasserstein distance [2] during our initial experiment but found
that the Jensen-Shannon divergence works better in our problem setting. Speciically, we found
that the Jensen-Shannon divergence metric can be used to better distinguish between two real
and synthetic captures that are visually similar. This capability helps us to better optimize the
generation parameters to improve the performance of the captcha generation model.

Training. We use the minibatch stochastic gradient descent (SGD) and the Adam solver [38] with
a learning rate of 0.0002 to train our captcha synthesizer. The objective of our captcha synthesizer
can be expressed as:

LcGAN = Ex,y∼pdata (x,y)[loдD (x ,y)] + Ex∼pdata (x),z∼pz (z)[loд(1 − D (x ,G (x ,y)))] (2)

where x and y are a synthetic and a real captcha respectively, and z is the noise.
Our overall training objective follows the general GAN approach [59], using the L1 norm with the

regularization term λ set to 0.0001. The training objective is deined as:

G∗ = argmin
G
,max

D
LcGAN (G,D) + λLL1 (G) (3)

where the generator, G , tries to minimize the diference between the generated captchas and the
real ones, while the discriminator, D, seeks to maximize it.
Here, the L1 loss function is deined as:

LL1 (G) = Ex,y∼pdata (x,y),z∼pz (z)[| |y −G (x , z) | |1] (4)

During training, when updating the parameters of the synthesizer, we ix the parameters of
the discriminator; and when updating the discriminator, we ix the parameters of the synthesizer.
Training terminates when the discriminator fails to identify more than 5% of the synthetic captchas.
Once the synthesizer is trained, it can be used to quickly generate synthetic captchas. In our case,
it takes less than one hour to generate a million captcha images.

Working example. We use the Baidu captcha scheme as a working example to illustrate the
process for training a captcha sythesizer. The training process consists of multiple steps. In the
initial step, we provide some (i.e., 500) real captchas for the GAN learning engine. We also give the
initial parameter values for the captcha image synthesizer. Similarly, the GAN captcha generator is

1:8 Ye, G. et al

+
Discriminator

training

Discriminator

training

Generator

training

+

accuracy

+
Generator

training

(a) Pre-training (b) Generator training

(c) Discriminator training

Fig. 6. The training process of our GAN-based pre-processing model. The generator tries to remove as much
noisy backgrounds and occluding lines from the input captchas, while the discriminator tries to identify
which of the input clean captchas are produced by the generator. All the captchas used in the training are
generated by our captcha generation model.

initialized with random weights. During each iteration of the GAN training process, the captcha
generation model (that consists of the captcha image synthesizer and the GAN captcha generator) a
batch of synthetic captchas which are examined by the captcha discriminator. If the discriminator
can successfully distinguish a large number of synthetic captchas from the real ones, the grid search
method is employed to adjust the parameter values for synthesizing another batch of captchas. This
iteratively training process continues until the discriminator can distinguish less than 5% of the
synthetic captchas from the real ones (see Section 6.5). When the process is terminated, the learning
engine will output the optimal parameter values to be used by the captcha image synthesizer and
the GAN captcha generator for synthesizing captcha images with security features. To generate
captchas without security features, we simply turn of the feature option of the captcha image
synthesizer. For examples, Figure 4 (a) shows real Baidu captchas and (c) and (d) in Figure 4 are
the synthetic captchas with and without background security features produced by our captcha
generation model. As can be seen from the igure, the security features of the synthetic captchas
are visually similar to the real captchas.

4.2 Captcha Preprocessing
℧odern captcha schemes often integrate advanced security features like a noisy background

(Figure 1a, b, and c) and distorted hollow fonts (Figure 1d, e, and f). These features make prior
pre-processing methods like [17, 73] invalid (see Section 6.4). In our work, we build a GAN-based
preprocessing model to remove these security features. Like the synthesizer, we train a preprocessing
model for each captcha scheme. In our initial experiment, we also tried to build a general pre-
processing model across diferent captcha schemes. However, we found that a scheme-speciic
model performs better. Note that we use only synthetic captchas to train the preprocessing model.
Speciically, we adopt the Pix2Pix image-to-image translation framework [34] which was originally
developed to transform an image from one style to another. In our case, the images to be translated
are captcha images with background noise such as the Baidu captcha shown in Figure 1b or
diferent font styles such as the Microsoft captcha shown in Figure 1d. Note that our model
removes multiple security features (e.g., Figure 4b) at once.

Using Generative Adversarial Networks to Break and Protect Text Captchas 1:9

E J R A

Synthetic captchas

and their labels

Target captchas

and their labels

(a) Train the base solver

(b) Train the fine-tuned solver

Output

H X L M

Output

Convolutional Pooling Fully connected

Retrained LayersReused Layers

Fig. 7. Our CNN-based captcha solver. We first use synthetic captchas to train the based solver (a) which is

then refined using a small number (500 in this work) of real captchas (b).

Our GAN-based preprocessing model also consists of a generator and a discriminator. Figure 6
depicts the training process. The generator works at the pixel level, which tries to amend some
pixels of the input captcha images (e.g., removing noise from the background shown as Figure 6b).
By contrast, the discriminator tries to distinguish the preprocessed captchas from the clean captchas
that are produced by the captcha generation model described in Section 4.1.

Training. Before training, we irst pre-train an initial generator and discriminator using some
synthetic captchas (Figure 6a). The captchas used in the pre-training process are organized as pairs
where each pair contains (1) a synthetic captcha image with the target security features and (2) a
corresponding image without these security features. Once the pre-training process is inished, we
continue to train them under the generative adversarial framework. The training process is similar
to how we train our captcha synthesizer (Section 4.1). Over time, the generator would become
better in removing security features, and the discriminator would become better in recognizing
security features (even the changes are small). Training terminates when the discriminator fails to
identify more than 5% of the preprocessed images from the clean counterparts (Figure 6c). After
that, we use the trained generator to preprocess unseen captcha images of the target scheme.

4.3 Build and Fine-tune the Solver

To build a captcha solver, we follow a two-step approach. We irst train a base solver from
synthetic captchas. We then ine-tune the base solver using the same set of real captchas used to
build the captcha synthesizer.

Network structure of our solver. Our captcha solver is built upon a classical CNN called LeNet-

5 [41], and it tries to identify the characters of the preprocessed captchas. Unlike LeNet-5 which
was initially designed to recognize single characters, we introduce some additional layers (2×
convolutional and 3× pooling layers) to extend its capability to recognize multiple characters.
Figure 7a shows the structure of our solver which has ive convolutional layers, ive polling layers
followed by two fully-connected layers. Each of the convolutional layers is followed by a pooling

1:10 Ye, G. et al

layer. We use a 3 × 3 ilter for the convolutional layer and a max-pooling ilter for the pooling layer.
We use the default parameters of LeNet-5 for the rest of the network structures.

It is to note that we have also considered other inluential CNN structures including ResNet [30],
Inception [64] and VGG [60]. We found that there is little diference in solving text captchas among
these models. We choose LeNet-5 due to its simplicity, which gives the quickest inference (i.e.,
prediction) time and requires the least training samples for ine-tuning the base solver.
Training the base solver. We train a base solver for a target captcha scheme. In case that the
number of characters of a captcha image is not ixed for a scheme, we also train a base solver for
each possible number of characters. We use 200,000 synthetic captchas generated by our captcha
generation model to train the base solver. Each training sample consists of a clean captcha (produced
by the preprocessing model) and an integer vector that stores the character IDs of the captcha.
Note that we assign a unique ID to each candidate character of the target captcha scheme. We use
a Bayesian based parameter tuner [21] to automatically choose the hyperparameters for training
the base solver. Training a base solver takes around ive hours using four NVIDIA P40 GPUs on a
cloud server (see Section 5.3). The trained base solver can then be applied to any unseen captcha
image of the target scheme.

Reining the base solver. To ine-tune the base solver, we apply transfer learning [75] to update
later layers (i.e., those that are closer to the output layer) of the base solver, by using the 500 labeled
real captchas that were previously used to train the synthesizer. The idea of transfer learning, in a
nutshell, is that in neural network classiication, information learned at the early layers of neural
networks (i.e., closer to the input layer) will be useful for multiple classiication tasks. The later
the network layers are, the more specialized the layers become [52]. We exploit this property to
calibrate the base solver to minimize any bias and over-itting that may arise from the synthetic
training data.

Figure 7b illustrates the process of applying transfer learning to reine the base solver. Transfer
learning in our context is as simple as keeping the weights of the early layers and then update the
parameters of the later layers by applying the standard training process using the real captchas.
This process takes less than 5 minutes on our training platform.

5 EXPERIMENTAL SETUP
5.1 Captcha Schemes

Our evaluation targets 11 current text captcha schemes used by 32 of the top-50 popular websites
ranked by alexa.com3. We note that some of the websites use the same captcha scheme, e.g.,
Youtube uses the Google scheme, and Live, Office and Bing use the Microsoft scheme. The
websites we examined cover a wide range of domains including e-commerce, social networks,
search, and information portals. Table 1 gives some examples of the captcha schemes tested in this
work. We note that many captcha schemes exclude some speciic characters that are likely to cause
confusion after performing the character distortion, for improving the usability of the captchas.
Examples of such characters include ‘o' and ‘0', ‘1' and ‘l', etc (See Table 1).

In addition to the 11 current schemes, we also extend our evaluation to 22 other captcha schemes
(See Table 5) used in prior studies to provide a fair comparison with previous attacks. It is worth
mentioning that while we collected the captchas from the oicial websites, many of the captcha
schemes we tested are also used by third-party websites and applications as a security mechanism.

3We have refreshed the captcha dataset used in our previous work [74] when conducting this evaluation.

Using Generative Adversarial Networks to Break and Protect Text Captchas 1:11

Table 1. Text-based captcha schemes tested in our experiments.

Security Features
Scheme Website(s) Example

Anti-segmentation Anti-recognition
Excluded
Characters

Google

google.{com,co.in,co.jp,

co.uk,ru,com.br,fr

com.hk,it,ca,es,com.mx}

youtube.com

Overlapping characters,
Enligh letters

Varied font sizes & color,
rotation, disortion
and waving

ś

Microsoft
{live, bing, miscosoft,

office, linkedin}.com

Overlapping characters,
solid background

Diferent font styles,
varied font sizes,
rotation, waving

0, 1, 5
D, G, I, O, U

Alipay

{alipay, tmall,

taobao, login.tmall,

alipayexpress}.com

English letters and
arabic numerals,
overlapping characters

Rotation and distortion
0, 1

I, L, O

eBay ebay.com
Overlapping characters,
Only arabic numerals

Rotating, distortion
and waving ś

Wikipedia wikipedia.org
Overlapping characters,
Enligh letters

Rotation, distortion
and waving ś

Baidu {baidu, qq}.com

Occluding lines,
character overlapping,
only Enligh letters

Varied font size, color,
rotation, disortion
and waving

Z

Sina sina.cn

English letters and
arabic numerals,
overlapping characters

Rotation, distortion
and waving

1, 9, 0
D, I, J, L, O, T
i, j, l, o, t, g, r

Weibo weibo.cn

English letters and
arabic numerals,
overlapping characters,
occluding lines

Rotation and distortion
0, 1, 5

D, G, I, Q, U

Sohu sohu.com

Complex background,
occluding lines,
and overlapping

Varied font size, color
and rotation

0, 1
i, l, o, z

Qihu360 360.cn

English letters and
arabic numerals,
overlapping characters

Varied font sizes,
rotation and distortion

0
I, L, O, T
i, l, o, t, q

JD jd.com

English letters and
arabic numerals,
overlapping characters

Rotation and distortion
0, 1, 2, 7, 9
D, G, I, J,

L, O, P, Q, Z

5.2 Collecting and Synthesizing Captchas

We use two sets of captchas in evaluation: one for training and the other for testing. ℧ost of
training data are synthetic captchas generated by our captcha generation model. The testing data
are collected from the target website for training and testing our GAN-based synthesizer and the
ine-tuned solver.

Synthesizing training captchas.We irst initialize the security feature parameters as described
in Section 4.1 and then use the initial parameters to generate the irst batch of synthetic captchas ś
which are then used together with 500 real captchas to train our synthesizer. After we have trained
the synthesizer, we then use it to generate synthetic samples to learn the preprocessing model and
the base solver. Speciically, we use 20,000 and 200,000 synthetic captchas to train the preprocessing
model and the base solver respectively.

Collecting testing captchas. The real captchas are automatically collected using a web crawler
written in Python. Each collected captcha is manually labeled by three paid participants (nine
participants in total) recruited from our institution. We use only captchas where a consensus has
been reached by all the three annotators. In total, we have used 1,500 real captchas for each target
scheme. We randomly divided the collected captchas into two sets, one set of 500 captchas for
training our synthesizer and the inal solver, and the other set of 1,000 captchas for testing our
solver. It takes up to 30 minutes (less than 10 minutes for most schemes) to collect 500 captchas

1:12 Ye, G. et al

Table 2. The overall success rate and solver running time.

Success rate
Scheme

Base Solver Fine-tuned Solver

Running Time per

Captcha (ms)

Sohu 83% 92% 43.78
eBay 52% 86.6% 4.22
JD 60% 86% 43.18
Wikipedia 7% 78% 4.71
Microsoft 36.6% 69.6% 46.06
Alipay 23% 61% 3.75
Qihu 360 48.6% 56% 41.03
Sina 40.6% 52.6% 42.81
Weibo 4.7% 44% 3.41
Baidu 6% 34% 41.57
Google 0% 3% 4.02

and less than 2 hours to label them by one user. This suggests that the efort and cost for launching
our attack on a particular captcha scheme is low.

5.3 Implementation and Hardware Platforms

Our prototype system4 is implemented using Python. The preprocessing model is built upon
the Pix2Pix framework [34], implemented using Tensorlow v.1.12, and the captcha solver is coded
using Keras v.2.1. We use two diferent hardware platforms. For training, we use a cloud server
with a 2.4GHz Intel Xeon CPU, four NVIDIA Tesla P40 GPUs and 256GB of RA℧, running the
Centos 7 operating system with Linux kernel 3.10. The trained models are then run and tested on a
desktop PC with a 3.2GHz Intel Xeon CPU, a NVIDIA Titan GPU and 64GB of RA℧, running the
Ubuntu 16.04 operating system with Linux kernel 4.10. All trained models run on the Titan GPU
for inference.

6 EXPERIMENTAL RESULTS
In this section, we irst present the overall success rate of our approach for solving 11 current

captcha schemes. We then compare our approach against prior attacks on another 22 schemes.
Next, we analyze the working mechanism of our approach before discussing the impact of security
features on user experience and the generalization ability of our approach.

6.1 Evaluation on Current Captcha Schemes

Table 2 presents the success rate and the average running time in solving a captcha image for
11 current schemes. There is no diference in solving time between the base and the ine-tuned
solvers because they use the same network structure. For each captcha scheme, we report the
average running time across 1,000 captchas. We observe little variation in the running time, less
than 0.5% across test runs. Note that in this evaluation, all captcha images of a scheme contain the
same number of characters. In Section 6.3, we show how our approach can be extended to target a
variable number of characters.

6.1.1 Overall success rate. Our base solver, built from synthetic data, is able to solve most of the
captcha schemes with a success rate of over 20%. This demonstrates the capability of CNN models in
4Code and data are available at: https:⁄⁄goo.gl⁄92VxXC.

https://goo.gl/92VxXC

Using Generative Adversarial Networks to Break and Protect Text Captchas 1:13

Table 3. Example text-based captchas that are incorrectly labeled by our fine-tuned solver.

Scheme Captcha Image Ground Truth Solver Output Human Attempts

Sohu d4sk d4sh 1.6

eBay 934912 994912 1.8

JD BHER BFER 1.5

Wikipedia druidsemi druidseml 1.5

Microsoft XK6NK XK6VK 1.2

Alipay B7JK B7YK 1.6

Qihu 360 s34Ea s3VFa 1.8

Sina nG3uu nG3uv 1.4

Weibo 4TXB 4TX8 1.4

Baidu WFIH WFEH 1.8

Google irgandoca igiruloca >10

(a) Original Google captchas with different fonts and strong security features

(b) Synthetic Google captchas using our captcha generator

Fig. 8. Examples of real Google captchas (a) and the synthetic versions (b).

performing image recognition. However, it gives a low success rate for some of the schemes such as
Weibo (4.7%) and Google (0%). The ine-tuned solver, reined using transfer learning, signiicantly
boosts the performance of the base solver. In particular, it improves the success rate for Wikipedia
from 7% to 78%, Weibo from 4.7% to 44%, Alipay from 23% to 61% and Microsoft from 36.6% to
69.6%. This result shows that transfer learning in combination with captcha synthesis can reduce
the data collection eforts for building an efective text captcha solver.
The reined solver also improves the success rate for Google captcha from 0% to 3%. This

relatively low success rate is because of the strong security features like distorted, overlapping,
waving characters and dynamic font styles employed by the scheme. These features make it diicult
for our captcha generation model to generate high-quality synthetic data. Figure 8 shows that our
synthetic captchas are not suiciently similar to the real captchas (especially for the font styles).
We also observe that some security features like overlapping, rotated, distorted characters and
dynamic font styles can provide stronger protection under our attack over features like noisy
background and occluding lines. Nevertheless, 3% is still above the 1% threshold for which a captcha
is considered to be inefective [10]. We stress that no prior attack before ours can successfully crack
the current Google captcha scheme under this criterion.

1:14 Ye, G. et al

Table 4. How oten a common English prefix and sufix appears at the 5, 000 captcha images from Google

and Wikipedia.

Number Number
Preixes

Google Wikipedia
Suixes

Google Wikipedia

dis- 76 21 -ing 337 95
pre- 49 10 -est 166 105
mis- 44 9 -ion 129 26
anti- 15 3 -ness 77 6
semi- 7 2 -tion 63 12
fore- 3 2 -less 28 5
inter- 3 1 -ation 21 4
under- 1 0 -ative 8 2
trans- 0 1 -itive 3 0

6.1.2 Incorrectly labeled captchas. Table 3 gives some example captchas that are incorrectly labeled
by our ine-tuned solver. For most of these captchas, our solver only incorrectly recognize one
character and the mis-identiied character is similar to the ground truth. For example, for the eBay
captcha shown in Table 3, our solver incorrectly label character "3" to "9" due to character overlap-
ping. For the Google scheme, our solver often fails to label several characters in the middle due to
excessive character distoration and overlapping. However, our annotators were also struggling to
recognize the characters for those captchas. To quantify the diiculty, we asked ten annotators to
label those captchas and count the number of attempts required to succeed. The last column of
Table 3 gives the averaged number of attempts required by our annotators to successfully recognize
images of a captcha scheme. The results suggest that our annotators found it diicult to recognize
most of the captcha schemes in the irst attempt. In particular, due to the strong distorted and
occulting lines of the Google captcha scheme, more than half of our annotators failed to recognize
a Google captcha image within ten attempts.

6.1.3 Exploiting captcha paterns to improve the success rate. Some captcha schemes like Google
and Wikipedia have more than eight characters in a single captcha image. We call these long-
character captcha schemes. We notice that the characters of a long-character captcha image tend
to follow some patterns, where some English word preixes or suixes appear frequently. We think
this might be a feature for helping a human user to better recognize the characters. To verify our
hypothesis, we collected and manually labeled 5, 000 captcha images in addition to the 1, 000 testing
captchas used for the Google and the Wikipedia schemes. We then count how often a commonly
used English word preix and suix appears in the 5, 000 captchas for each of the two schemes, by
using the list of preixes and suixes suggested in [45].
Table 4 lists some of the frequently appeared preixes and suixes, containing at least three

characters. We see that a three-character preix or suix appears at least 9 times (up to 76) in the
5, 000 captcha images of a scheme. This is greater than the averaged frequency of 1.99 if those
characters are evenly and randomly distributed across the 26 English alphabet letters over the 5, 000
captchas of a scheme. We also observe a similar pattern for preixes or suixes with four or more
characters, although they have less frequency of appearance over the three-character counterparts.
Heuristics. We wondered if one can exploit this observation to improve the success rate of a
captcha solver. In other words, can we build a context-sensitive captcha solver to correct some of

Using Generative Adversarial Networks to Break and Protect Text Captchas 1:15

(b) reCaptcha 2013 (c) Microsoft

(d) QQ (f) Yahoo!

(a) eBay

(e) Amazon

Fig. 9. Examples of the captcha schemes (let) tested in prior work, and the synthetic versions (right) generated

by our captcha generation model. Our generation model is highly efectively in synthesizing captcha images.

the characters after performing image recognition? To this end, we develop a heuristic to post-
process the characters given by the ine-tuned solver to target the English word preixes and suixes
listed in Table 4. Speciically, for a solved captcha word, we irst identify whether the word contains
a candidate pattern. A candidate pattern is a sequence of characters which similar to a word preix
or suix, but only with a few characters that are diferent from a standard word preix or suix. For
example, “trani" is a candidate pattern for word preix “ trans" as both words are only diferent in
the last character, ‘i'. A solved captcha word can also contain multiple. In this case, we will use
the preixes and suixes listed in Table 4 to search for the possible candidate patterns. Using this
strategy, our heuristic would correct the candidate pattern “seml" to “semi". Doing so gives a correct
prediction for the Wikipedia captcha shown in Table 3. Applying this strategy to the 1, 000 test
captchas images for Google and Wikipedia, we improve the success rate for the Google scheme
from 3% to 5.1% and the Wikipedia scheme from 78% to 79.8%.

6.1.4 Training and deployment overhead. It took us around 2 days to train a captcha synthesizer
and the preprocessing model together on our training platform, and less than 50 milliseconds
to solve a captcha on our evaluation platform using a desktop GPU. For captcha schemes with
a confusing background or occluding lines (e.g., Baidu and Sina captchas in Table 2), our solver
can take 10× longer than others to solve process a captcha image. This overhead comes from the
preprocessing model. As we train a scheme-speciic preprocessing model with diferent network
structures, the stronger the security features are, the more complex the preprocessing will be (and
hence longer running times). Nonetheless, our approach can solve all the testing schemes under
the commonly used criterion [10] with a quick running time.

6.2 Comparison to Prior Atacks

We now compare our approach with four state-of-the-art methods [8, 10, 18, 20] on 24 distinct
captcha schemes, including the eBay and Wikipedia schemes from Table 1 and other 22 schemes.
To provide a fair comparison, we try to use captchas that prior methods were tested on. When
possible, we use the same dataset or captchas from the original scheme on which the prior work
was evaluated. For those obsolete captcha schemes (21 out of 24 schemes), we collected the test
data from public datasets, or using captcha generation tools developed by independent researchers.
Speciically, we use (1) public datasets of previous captcha schemes, (2) online captcha generators,
such as captchas.net which was used by some of the previous captcha schemes, and (3) open
source captcha generators used by prior work.

For each captcha scheme, we collected 1,500 samples ś from which we use 500 for training and
1,000 for testing. Figure 9 gives some examples of the real captchas and the one produced by our
generation model. The igure suggests that our generation model can produce captchas that are
visually similar to real examples from the target scheme.

Table 5 compares our ine-tuned solver to previous attacks. Our approach outperforms all
comparative schemes by delivering a signiicantly higher success rate. For many of the testing

1:16 Ye, G. et al

Table 5. Comparing our approach against four prior atacks [8, 10, 18, 20] on 24 captcha schemes where prior

methods were tested on. Here B-11 and B-14 represent the method of [10] and [11] respectively.

Success rate Success rate
Captcha Scheme Captcha Example

B-11 [10] Ours
Captcha Scheme Captcha Example

Gao’s Ours

℧egaupload 93% 100% Baidu (2016) 46.6% 97.5%

Blizzard 70% 100% QQ 56% 94%

Authorize 66% 100% Taobao 23.4% 90.7%

Captcha.net 73% 99.6% Sina 9.4% 90%

NIH 72% 99% reCAPTCHA (2011) 77.2% 87.4%

Reddit 42% 98% eBay 58.8% 86.6%

Digg 20% 95% Amazon 25.8% 79%

eBay 43% 86.6% Wikipedia 23.8% 78%

Slashdot 35% 86.4% ℧icrosoft 16.2% 72.1%

Wikipedia 25% 78% Yahoo! (2016) 5.2% 63%

Success rate Success rate
Captcha Scheme Captcha Example

B-14 [11] Ours
Captcha Scheme Captcha Example

George’s Ours

reCAPTCHA (2013) 22.3% 90% PayPal 57.1% 92.4%

Baidu (2013) 55.2% 89% reCAPTCHA (2011) 66.6% 87.4%

reCAPTCHA (2011) 22.7% 87.4% Yahoo! (2016) 57.4% 63%

eBay 51.4% 86.6%

Baidu (2011) 38.7% 83.1%

Wikipedia 28.3% 78%

Yahoo! (2014) 5.3% 75.1%

CNN 51.1% 51.6%

schemes, our approach boosts the success rate by 40%. It can successfully solve all the captchas of
Blizzard, ℧egaupload and Authorize used in [10]. Our approach achieves a success rate of 87.4%
and 90% for reCAPTCHA 2011 and 2013 respectively. This scheme was previously deemed to be
strong where the human accuracy is 87.4% [20]. That is to say, our solver matches the capability
of humans in solving reCAPTCHA. To achieve a comparable accuracy for reCAPTCHA, a CNN-based
captcha solver [23] would require 2.3 million unique real captcha images [20], but our approach
needs only 500. We note that unlike all the competitive approaches which require manually tuning

Using Generative Adversarial Networks to Break and Protect Text Captchas 1:17

Wikipedia Google
0%

20%

40%

60%

80%

100%
Pr

ed
ic

tio
n

su
cc

es
s

ra
te

Different Captcha Schemes

 8characters 9characters 10characters mean

Fig. 10. The success rate of our prediction model when targeting captchas with variable number of characters.

a character segmentation method, we forgo this process. Thus, our approach requires less expert
involvement but gives better performance.

6.3 Targeting Schemes with A Variable Number of Characters

One potential criticism of our approach described so far is that it only targets captcha schemes
with a ixed number of characters. However, our approach can be extended to target schemes with
a variable number of characters. One way for doing that is to have a model to predict how many
characters a preprocessed image may contain, and then use a captcha solver that is speciically
built for that number of characters.

To test this strategy, we use a CNN to build a character number predictor. Our model consists of
four convolutional layers, four pooling layers and a fully connected layer, and a max-pooling layer
follows each of the convolutional layers. The ilter size in each convolutional layer is 5 × 5, and
other parameters are the same as our base captcha solver.

We evaluated our predictor using Google and Wikipedia captchas, both use a variable number
(8, 9 or 10) of characters. For each scheme, we use 100, 000 synthetic captchas (around 33, 333
captchas per character length) for training the predictor and 3, 000 (1, 000 per character length)
real captchas for testing. Figure 10 shows the accuracy for predicting the number of characters in
a captcha image. Our predictor gives an accuracy of 90.9% and 80.8% for Wikipedia and Google

schemes respectively.
When combining the predictor with our ine-tuned solver (but not using the context-aware

heuristic described in Section 6.1.3), we see a slight drop in the accuracy. This is expected as our
character-number predictor is not perfect. The combination gives a success rate of 70.9% and 2%
for Wikipedia and Google schemes respectively. The resulting success rates are still higher than
the 1% threshold for which a captcha scheme is seen to be inefective [10].

6.4 Preprocessing Security Features

Recall that the second step of our attacking pipeline is to remove the security features and stan-
dardize the font style of an input captcha. In this experiment, we compare our preprocessing model
against prior preprocessing methods on removing noisy backgrounds [8, 10, 36], and standardizing
font styles [12, 17] and character gaps [18].

Removing security features. The classical methods used in prior attacks for preprocessing
captchas is iltering [8, 10, 36]. The idea is to apply a ix-sized window, or ilter kernel, throughout
the image to remove the occluding lines and noise while keeping edges of the characters. As can

1:18 Ye, G. et al

(a) Input Baidu captchas

(c) Applying our pre-processing model

(b) Applying a 2 1, 2 2, 3 1 filter kernel respectively × × ×

Fig. 11. For the input images (a), a filter-based method fails to remove security features (b) while our approach

can (c).

(b) Results given by Gao's approach

(a) Example hollow captchas from Sina and Microsoft schemes

(c) Results given by our pre-processing model

Fig. 12. Comparing font style standardization between a state-of-the-art hollow captcha solver [17] and our

preprocessing model. Our preprocessing model is able to fill the hollow parts more efectively.

be seen from Figure 11, inding the right ilter kernel size is diicult. This is because the ilter
either fails to eliminate the background and occluding lines or it overdoes it by eroding edges of
the characters (Figure 11b). While iltering was efective for prior text-based captchas, the latest
captcha schemes have introduced more sophisticated security features which make it no longer
feasible. In contrast to iltering, our preprocessing model can successfully eliminate nearly all the
background noise and occluding lines from the input image, leading to a much cleaner captcha
image while keeping the character edges, as depicted in Figure 11c.

Filling hollow characters. Figure 12 compares our preprocessing model against a state-of-the-art
hollow captcha solver [17]. The task in this experiment is to ill the hollow parts of the characters.
Here, we apply both schemes to the testing hollow captchas from Sina and Microsoft schemes.
Figure 12a gives some of the examples from these two schemes, while Figures 12b and 12c present
the corresponding results given by the hollow illing method in [17] and our approach respectively.
As can be seen from the diagrams, our preprocessing model is able to ill most of the hollow strokes,
but the state-of-the-art method leaves some hollow strokes unilled. Therefore, our approach is

AC℧ Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2020.

Using Generative Adversarial Networks to Break and Protect Text Captchas 1:19

(a) Wikipedia (b) Microsoft

(c) Sina (d) Baidu

Fig. 13. Character segmentation produced by our preprocessing model. For each scheme, the let image is

the input captcha, and the right image is the output of our preprocessing model.

78.5%
70.5%

31%
25%23.8%

9.4%
16.2%

5%

78.5%
70.5%

31%
25%23.8%

9.4%
16.2%

5%

Wikipedia Sina Microsoft Baidu
0%

20%

40%

60%

80%

100%

T
he

su
cc

es
s

ra
te

cha schemes

 Our approach Gao'sapproach

Fig. 14. Using our character segmentation approach can help to improve the success rate of prior work [18].

more efective in standardizing the font style. We also note that unlike prior attacks which require
manually designing and tuning an individual method to process each security feature, our approach
automatically learns how to process all features at one go. Therefore, our approach requires less
efort for implementing a holistic preprocessing model.

Standardizing character gaps. Prior work has reported that the robustness of a text captcha
scheme largely dependents on the diiculty of character segmentation rather than character
recognition [12]. ℧any modern text captchas are designed to make it harder for a computer
program to segment the characters. The examples given in Figure 13 show that our preprocessing
model is efectively in standardizing the gap between characters. To evaluate the efectiveness of
our preprocessing model for character segmentation, we use the same network structure to train a
model solely for character segmentation. We then use the preprocessing model to replace the native
character segmentation model used in [18], but keep the remaining parts unchanged. Figure 14
shows that our preprocess along can help to greatly improve the success rate of a previous solver.

6.5 Synthesizer Training Termination Criteria

Our captcha synthesizer is trained under the GAN framework, and training terminates when the
discriminator fails to classify a certain ratio of synthetic captchas (Section 4.2). Figure 15 reports how
the termination criterion afects the quality of the synthetic captchas. The x-axis shows the ratio
(from 0.8 to 0.97) of synthetic captchas that are misclassiied as a real captcha by the discriminator
when training terminates. The y-axis shows the success rate achieved by the ine-tuned solver for
ive current captcha schemes, where the base solver is trained on the resulting synthetic captchas
using diferent termination criteria but the ine-tuned solver is trained on the same set of real
captchas.

1:20 Ye, G. et al

0.80 0.85 0.90 0.95 0.97
0%

20%

40%

60%

80%

100%
Fi

ne
-t

un
ed

so
lv

er
su

cc
es

s
ra

te

Ratio of mis-classified synthetic captchas

 Microsoft Wikipedia eBay Baidu JD

Fig. 15. How the synthesizer training termination criterion afects the solver performance. Training terminates

when the discriminator fails to classify a certain ratio of synthetic captchas.

In general, the more synthetic captchas that the discriminator fails on, the higher the quality
the generated synthetic captchas will be, which in turns leads to a more efective captcha solver.
However, the increase in the success rate reaches a plateau at 0.95. Further increasing the similarity
of the synthetic captchas to real ones does not improve the success rate due to overitting. Based
on this observation, we choose to terminate synthesizer training when the GAN discriminator can
successfully distinguish less than 5% (i.e., fail on 95% or more) of the synthetic captchas. We found
that this threshold works well for all captcha schemes tested in this work.

6.6 Transfer Learning

Recall that we only use 500 real captchas to reine the base solver by employing transfer learning
(Section 4.3). Our strategy for transfer learning is to only retrain some of the latter neural network
layers of the base solver (see Figure 7). In this experiment, we investigate how the choice of transfer
learning layers afects the performance of the ine-tuned solver. To that end, we apply transfer
learning to diferent levels of the base solver, by changing the starting point of transfer learning
from the 2nd convolutional layer (CL) all the way down to the irst fully-connected layer (FC).

6.6.1 Identify the best beginning layers. We apply transfer learning to diferent levels of the base
solver. This is achieved by changing the starting point of transfer learning from the 2nd convo-
lutional layer (CL) all the way down to the irst fully-connected layer (FC). To determine the best
starting layer for transfer learning, we apply cross-validation to the real captcha training dataset.
Specially, we divide the 500 real captchas into two parts, the irst part of 450 captchas is used to
reine the base solver, and the rest 50 captchas are used to validate the reined solver. We vary the
beginning layer for transfer learning and then test the reined base solver on the validation set to
ind out which beginning layer leads to the best performance. Figure 16 reports performance of
the resulting ine-tuned solvers trained under diferent transfer learning conigurations for the 11
current captcha schemes given in Table 1. Overall, applying transfer learning to the second or third
CL onward leads to the best performance. Furthermore, this reining process only takes several
minutes as it uses just 500 captchas.

6.6.2 Finding suitable training data size. In this experiment, we evaluate how the number of real
captchas used in transfer learning afects the success rate of the ine-tuned solver. Figure 17 shows
the success rates of the fine-tuned solver when using different numbers of real captchas in transfer

Using Generative Adversarial Networks to Break and Protect Text Captchas 1:21

2nd CL 3rd CL 4th CL 5th CL 1st FC

0%

20%

40%

60%

80%

100%

Fi
ne

-t
un

ed
so

lv
er

su
cc

es
s

ra
te

Beginning layer for transfer learning

Google Wikipedia eBay Microsoft Baidu
 Alipay JD Sina Sohu Weibo Qihu360

Fig. 16. How the beginning layer for transfer learning afects the resulting performance of the fine-tuned

solver.

200 400 500 800 1000

0%

20%

40%

60%

80%

100%

Fi
ne

-t
un

ed
so

lv
er

su
cc

es
s

ra
te

Number of real captchas

Google Wikipedia eBay Microsoft Baidu
Alipay JD Sina Sohu Weibo Qihu360

Fig. 17. The achieved success rates when the fine-tuned solver is trained using diferent number of real

captchas.

learning. When the number of training examples is 500, our approach reaches a high success
rate. For most captcha schemes, the success rate drops signiicantly when the number of training
examples less than 400. Nevertheless, our approach can achieve a high success rate when the
number of training examples is 500. Such a number allows an attacker to collect from the target
website easily.

6.7 Captcha Usability Study

Our evaluation also includes a user study to quantify the impact of security features on user
experience (i.e., captcha usability) and the success rate of our solver. Speciically, we have conducted
an online survey by recruiting 20 participants to ill in an anonymous questionnaire. Our participants
are at the age group of under 30s and are familiar with text captchas. In the questionnaire, we present
100 synthetic captchas with diferent security strength. We divide the synthetic captchas into six
categories based on the number of characters and the security parameters used for generating
the captcha. In the survey, we give each participant one minute to label a captcha and ask each
participant to rate the usability of ive captchas from each category on a 5-point Likert-scale, where
1 = very poor and 5 = excellent usability.

1:22 Ye, G. et al

Table 6. Example captchas used in our user study, the success rates of humans and our approach, and the

usability rating.

Security Features Success Rate
No. Example

Anti-segmentation Anti-recognition Humans Ours
Usability

1
English letters,
arabic numerals

Rotation,
varied font sizes

95.25% 100% 4

2 English letters
Rotation,
varied font sizes

90.25% 88% 2.75

3
English letters,
complex background

Rotation, distortion 91% 96% 2.8

4
English letters,
overlapping characters,
complex background

Varied font sizes,
rotation, distortion

89.25% 86% 2.7

5 English letters
Varied font sizes,
ratation, distortion

79.75% 77% 2.8

6
English letters,
overlapping characters

Varied font sizes,
rotation, distortion,
waving

68.75% 40% 2.1

Table 6 gives the criteria used to determine the captcha diiculties and an example captcha
for each category. For each category, we also give the averaged success rates achieved by our
participants and our solver, as well as the averaged rating given by the participants.

We see that using more security features increases the diiculty for a computer program to solve
a captcha challenge, but it also decreases user experience. This can be illustrated that the averaged
human success rate for the captchas in category 6 of Table 6 is below 70%, meaning that nearly
one-third of the time a user will enter a wrong answer for captchas in this category. Therefore,
captchas in this category were given the lowest usability score of 2.1 is not surprising. We also
observe that various security features have a diferent impact on the efectiveness of our captcha
solver. For example, our solver can better handle captchas with noisy backgrounds in categories
3 and 4 than that with distorted characters in categories 5 and 6. As a result, although a captcha
image with a noisy background may have equally poor usability as another one with distorted or
overlapping characters, the two captcha images could have diferent degrees of robustness under
our attack. ℧oreover, as we expect, the success rate of a computer solver drops as the diiculty of
the captcha increases.

We also ind that noisy backgrounds have a negative impact on the user experience because our
participants gave an averaged usability score of less than 3 for captchas in categories 3 and 4 of
Table 6. On the other hand, background confusion has little contribution to the security strength
of captchas under our attack. This can be conirmed f rom the s imilar, or even better-solving
performance given by our solver when compared to human participants for captchas in the two
categories. This inding suggests that complex background confusion perhaps should be abandoned
in future text captcha schemes. Overall, this user study shows that a GAN-based captcha solver
can achieve comparable performance for solving text captchas when compared to humans, but
balancing the security and usability of a text captcha scheme is not trivial.

Using Generative Adversarial Networks to Break and Protect Text Captchas 1:23

Table 7. Success rate of comparing to RCN [20] for classifying the MNIST dataset.

of per digit 20 40 60 80 100

RCN 96.5% 97.3% 97.6% 97.8% 98%
Our ine-tuned solver 96.2% 98.3% 98.9% 99.2% 99.8%

6.8 Generalization Ability

Given the scope of this work, we cannot test our approach on all current captcha schemes. To
evaluate our approach's generalization ability for character recognition, we apply it to the MNIST
dataset. This dataset contains a large number of handwritten digits of diferent forms.
We follow the same methodology as we have used throughout the evaluation to build a MNIST

solver, i.e., by irst building a synthesizer, then a base solver and a ine-tuned solver. We train the
synthesizer using up to 500 real MNIST images. Next, we build the base solve using 100,000 synthetic
images before ine-tuning the base solver using the same set of real MNIST images. We compare
our solver with the recently proposed RCN [20], which was shown to be efective by using a small
number of training samples. We test both approaches on images that are not seen in the training
phase.

As can be seen from Table 7, our approach gives a marginally lower accuracy when using 20 real
MNIST images per digit, but it outperforms the RCN when using 40 or more real images per digit. In
other words, our approach is efective on another image classiication dataset, indicating that our
approach has a good generalization ability.

Extend to other captcha schemes. We believe our approach is generally applicable and can be
naturally extended for video and image captchas by adapting the network architecture to recognize
objects from the inputs; and favorably, the process of synthetic data generation, model training
and tuning still is unchanged. This lexibility allows one to attack various types of captchas, not
just text-based ones. For example, to target NuCAPTCHA [56], a motion-based captcha scheme,
we need to replace our CNN solver with a model similar to the ℧ask R-CNN [29]. The idea is to
irst segment the video frames into images and then recognize characters from individual images.
After replacing the solver structure, we also need to extend our GAN-based captcha synthesizer
to generate a sequence of synthetic images (as recognition is performed at the image level). For
motion-based captchas, the key is to maintain the temporal relationships among images, for which
a temporal CNN can be useful [40].

7 POTENTIAL COUNTERMEASURES

7.1 Security Enhance through Adversarial Example Generation

Recent works have shown that adversarial examples generated by inserting some perturbations
onto a target image can confuse a machine-learned image classiier [65]. Recent work has exploited
this observation to improve the security of captcha images [51, 58]. However, the perturbations
or noise generated by prior methods [51, 58] are often noticeable by a human eye and as a result,
our preprocessing model is efective in removing these perturbations. Hence, a better approach is
to make the perturbations imperceptible, so that it has less impact on the user experience while
increases the diiculty for training a successful preprocessing model.

However, one of the challenges for generating imperceptible perturbations is that the generation
scheme is tightly coupled to both the captcha image and the captcha solver. This raises a practical
issue because the captcha designer often does not have a copy of the solver implementation. To
demonstrate this point, we use synthetic Baidu captchas to train ive captcha solvers (in addition

1:24 Ye, G. et al

Table 8. Examples of original captcha (No. 1) and the corresponding adversarial captchas with diferent

perturbations (No. 2 - 6) .

No. Captcha Ours MaxoutNet NetInNet GoogleNet VGG ResNet18

1 L℧GW(
√
) L℧GW(

√
) L℧GW(

√
) L℧GW(

√
) L℧GW(

√
) L℧GW(

√
)

2 N℧GW(×) V℧GW(×) I℧GW(×) I℧GW(×) L℧GW(
√
) N℧GW(×)

3 LWWW(×) L℧℧W(×) LWNW(×) LWWN(×) VWNW(×) L℧GW(
√
)

4 L℧GW(
√
) L℧SW(×) LWSW(×) LWSW(×) L℧GW(

√
) LWGW(×)

5 L℧GW(
√
) LNGW(×) VWGW(×) LNNW(×) LWWW(×) LWGW(×)

6 LW℧W(×) LWGW(×) LWWW(×) LWGW(×) LWWW(×) LW℧W(×)

to our LeNet-5-based model), based on ive established CNN models: ℧axoutNet [26], NetInNet [44],
GoogleNet [63], VGG [60], ResNet18 [30]. We then apply each trained solver to a captcha image with
diferent imperceptible perturbations. Table 8 shows the original captcha image and its adversarial
versions, and the prediction given by diferent solvers. To aid readability, we mark the perturbations,
which are imperceptible to the participants in our user study, using a black box. As can be seen
from the table, a perturbation scheme tuned for a particular network cannot invalid others.

One approach for improving the generalization ability of the perturbation scheme is to ind ways
to generate perturbations that can invalidate the commonly used image classiication models. To
this end, we implement a prototyping adversarial generator to target the CNN-based models listed
in Table 8.

7.1.1 Countermeasure prototype. Our prototype has three components: a feature location module,
a perturbation generation model and an adversarial solver, described as follows.
The feature location module inds which areas of the captcha image are most important for

successful recognition of a given captcha image across network architectures. To do so, we irst
apply sliding windows to divide a captcha image into a number of areas from the direction of top to
bottom, left to right. We then add random noise into each area to observe whether the CNN model
can misclassify the captcha image and the areas that can confuse the CNN model will be selected
as the critical locations. Once these critical areas are located, the perturbation generation module
(built upon [43]) will generate the adversarial captcha image by inserting the perturbations into
each of these areas. Note that the perturbation generator may produce diferent perturbations for
diferent areas. We run the perturbed images through a set of pre-trained captcha solvers (built
upon diferent network architectures) to check if the perturbed images can confuse all the solvers.
If not, we ask the perturbation generator to create a new set of perturbations until this success
criterion is met or the generation time has exceeded a threshold (set to three seconds in our case).
To enhance the transferability of the synthetic adversarial captchas, we are inspired by Xie et
al. [69] and apply random multiscale transformations to each critical areas at each iteration. In the
latter case, we choose the image that can confuse the largest number of targeting solvers.

7.1.2 Evaluation of countermeasure. We evaluate our captcha generator using the 1, 000 real Sohu
captchas that were used in the evaluation reported in Section 6. We choose this scheme because
our solver is highly effective in solving it by giving the highest success rate. The results for using

Using Generative Adversarial Networks to Break and Protect Text Captchas 1:25

Our solver MaxoutNet NetInNet GoogleNet VGG ResNet18
0%

20%

40%

60%

80%

100%

T
he

su
cc

es
s

ra
te

Different captcha solvers

 original adversarial

Fig. 18. The success rates when targeting the original Sohu captchas and the adversarial versions generated

by our scheme.

and without using our perturbation scheme are shown in Figure 18. Our perturbation scheme
signiicantly reduces the success rate for solving the Sohu scheme when using a CNN-based solver.

7.1.3 Limitations of countermeasure. We acknowledge that our countermeasure does not eliminate
the vulnerability of text captchas under deep-learning-based attacks, as an attacker can still use
a network that is diferent from the ones targeting by our perturbation generator. However, we
ind that changing the number of layers or neurons, or the size of the convolutional layers of a
solver has little impact on our perturbation scheme. We also ind that using a deeper network
does not signiicantly improve the success rate for solving perturbed captcha images because most
of the captcha images are of small sizes and hence a deeper network does not ofer additional
beneits. Nonetheless, we want to stress that while our countermeasure can help to improve the
security strength of current text captcha schemes, they will become inevitably less secure when
more advanced deep neural network architectures are proposed. Therefore, the community should
revisit the use of text captchas.

7.2 Other Alternative Countermeasures

Some alternatives have been proposed to replace text captchas. These include video-based
captachas like NuCAPTCHA [56] and game-based CAPTCHAs [49]. The former was shown to be
vulnerable [7, 71]. The later seemly ofers some promises but the recently breakthrough of deep
reinforcement learning in game playing may pose a threat to such schemes [48]. To have a robust
countermeasure, one probably need to combine multiple mechanisms similar to the multi-factor
authentication protocol [37, 57]. Nonetheless, how to balance the security strength and usability of
a scheme is still an outstanding problem.

8 RELATEDWORK

The work presented by ℧ori et al. [28] was among the irst text captcha solvers. Their approach
employs a set of analytical models and heuristics to attack Gimpy and EZ-Gimpy, two early simple
text-based captcha schemes. Since then, a large body of work arose for exploring ways to improve
the security of text captchas, building upon attacks on existing captcha schemes. Due to these
successful attacks, text captchas are going through an iterative development process, which are
still preferred by many users, primarily for the familiarity and a sense of security and control [39].

Segmentation-based atacks. This type of attacks irst segments characters of a captcha image
and then identiies each segmented character using machine-learning algorithms. Yan et al. show

1:26 Ye, G. et al

a simple character segmentation method [72], which counts the number of pixels of individual
characters, can break most of the captchas from Captchaservices.org. Later, they show an
improved segmentation method can be used to attack the early captcha schemes used by Yahoo!,
Microsoft and Google [73]. Unlike our approach, all the aforementioned attacks are tightly coupled
to the captcha scheme and hard to generalize. This means to target a new scheme, they would
require human involvement to revise the existing heuristics and possibly to design new heuristics.
Deep-learning-based atacks. Decaptcha [8] employs machine-learning-based classiiers to de-
velop a generic attack for text-based captchas. It can break 13 captcha schemes but achieves zero
success on more diicult schemes including reCAPTCHA and Google scheme. By contrast, our ap-
proach not only gives a higher accuracy on the schemes where Decpatcha succeeds but also delivers
a success rate of 87.4% on reCAPTCHA for which Decaptcha has a success rate of zero (see Table 5).
Recently, George et al. presents Recursive Cortical Network (RCN) for image recognition [20]. The
RCN is efective in recognizing individual characters but are less efective for solving text-based
captchas when compared to our approach. In particular, on the PayPal dataset, our approach boosts
the success rate from 57.1% to 92.4%. Stark et al. [62] show that active learning can be used to
reduce the number of captchas required to learn a solver. However, this approach requires having
access to a captcha generator of the target scheme, which is often not available to the adversary.
On the other hand, active learning is complementary to our approach as it allows the learning
engine to use a fewer number of training samples to speed up the training process.
Other atacks. The work presented by Gao et al. targets captchas of hollow characters [16]. Their
approach irst ills the hollow character strokes, and then searches for the possible combinations
of adjacent character strokes to recognize individual characters. While are efective on hollow
characters, this approach is inefective on captcha images with overlapping and distorted characters.
Their more recent work [18] uses the Log-Gabor ilter to irst extract character components from
the captcha image; it then uses the k-Nearest Neighbor algorithm to recognize individual characters
using the extracted information. Due to the limitation of the Log-Gabor ilter, their method is
inefective for captcha images with noisy backgrounds, e.g. Baidu captcha shown in Figure 1b.
Alternative captcha schemes. It is worth mentioning that there are also other captcha schemes
built around images [3, 14, 27, 50, 54], audio data [6, 55] or recently adversarial captchas [58].
℧any of these were proposed to replace text captchas. However, these alternative schemes are less
popular than text captchas and were shown to be vulnerable too [9, 19, 46, 49, 61, 66]. In particular,
a signiicant weakness of an image-based scheme is that the number of images used by the scheme
is typically limited. As a result, an adversary may exploit side channels to obtain and label a large
portion of the images used by a scheme [32].
Adversarial machine learning. As a inal remark, we would like to point out that our work builds
upon the foundations of adversarial machine learning [24, 33]. This technique is shown to be useful
in constructing adversarial applications to bypass malware detection [53, 70], escape from spam
mail iltering [5], or confuse machine learning classiiers [25, 47]. However, no work to date has
employed the technique to construct a generic solver for text captchas, and our work is the irst to
do so.

9 CONCLUSION

This article has presented the irst GAN-based generic solver for text captcha. Our solver is built
by irst learning a captcha synthesizer to automatically generate synthetic training examples to
build a base solver, and then reining the base solver using transfer learning. This feature allows
our approach relies on fewer real captchas to construct the solver, and can target a wide range of
schemes. As a result, our approach needs less human involvement compared to prior methods.

Using Generative Adversarial Networks to Break and Protect Text Captchas 1:27

Our approach was evaluated on 33 text captcha schemes, including 11 schemes that were being
used by 32 of the top-50 popular websites at the time this study was conducted. Experimental
results show that our approach outperforms four start-of-the arts by successfully solving more
captchas. We show that our approach is robust and generally applicable, which can break many
advanced security features used by modern text captchas. Our results suggest that these advanced
features only make it diicult for a legitimate user but would fail to stop automated programs. As a
countermeasure, we show that by inserting some imperceptible perturbations on a captcha image,
one can enhance the security strength of text captchas under deep-learning-based attacks.

REFERENCES

[1] Abdalnaser Algwil, Dan C Ciresan, Beibei Liu, and Jef Yan. 2016. A security analysis of automated chinese turing
tests. (2016), 520ś532.

[2] ℧artin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein generative adversarial networks. In Interna-

tional conference on machine learning. 214ś223.
[3] Elias Athanasopoulos and Spiros Antonatos. 2006. Enhanced CAPTCHAs: using animation to tell humans and

computers apart. In IFIP International Conference on Communications and Multimedia Security. 97ś108.
[4] Charles Audet and J. E. Dennis Jr. 2006. ℧esh Adaptive Direct Search Algorithms for Constrained Optimization. Siam

Journal on Optimization 17, 1 (2006), 188ś217.
[5] ℧arco Barreno, Blaine Nelson, Russell Sears, Anthony D. Joseph, and J. D. Tygar. 2006. Can machine learning be

secure?. In ACM Symposium on Information, Computer and Communications Security. 16ś25.
[6] Jefrey P. Bigham and Anna C. Cavender. 2009. Evaluating existing audio CAPTCHAs and an interface optimized for

non-visual use. In Sigchi Conference on Human Factors in Computing Systems. 1829ś1838.
[7] Elie Bursztein. 2012. How we Broke the NuCaptcha Video Scheme and What we Proposed to Fix it. https:⁄⁄elie.net⁄

blog⁄security⁄how-we-broke-the-nucaptcha-video-scheme-and-what-we-propose-to-ix-it.
[8] Elie Bursztein, Jonathan Aigrain, Angelika ℧oscicki, and John C ℧itchell. 2014. The end is nigh: generic solving of

text-based CAPTCHAs. In USENIX WOOT.
[9] Elie Bursztein and Steven Bethard. 2009. Decaptcha: breaking 75% of eBay audio CAPTCHAs. In Usenix Conference on

Ofensive Technologies. 8ś8.
[10] Elie Bursztein, ℧atthieu ℧artin, and John ℧itchell. 2011. Text-based CAPTCHA strengths and weaknesses. In CCS.

125ś138.
[11] Elie Bursztein, Angelique ℧oscicki, Celine Fabry, Steven Bethard, John C. ℧itchell, and Jurafsky Dan. 2014. Easy does

it: more usable CAPTCHAs. In ACM Conference on Human Factors in Computing Systems. 2637ś2646.
[12] Kumar Chellapilla, Kevin Larson, Patrice Y. Simard, and ℧ary Czerwinski. 2005. Computers beat Humans at Single

Character Recognition in Reading based Human Interaction Proofs (HIPs). In Conference on Email & Anti-Spam.
[13] ℧onica Chew and J Doug Tygar. 2004. Image recognition captchas. In International Conference on Information Security.

Springer, 268ś279.
[14] Jeremy Elson, John R. Douceur, Jon Howell, and Jared Saul. 2007. Asirra:a CAPTCHA that exploits interest-aligned

manual image categorization. In ACM Conference on Computer and Communications Security, CCS 2007, Alexandria,

Virginia, Usa, October. 366ś374.
[15] Bent Fuglede and Flemming Topsoe. 2004. Jensen-Shannon divergence and Hilbert space embedding. In International

Symposium onInformation Theory, 2004. ISIT 2004. Proceedings. IEEE, 31.
[16] Haichang Gao, ℧engyun Tang, Yi Liu, Ping Zhang, and Xiyang Liu. 2017. Research on the Security of ℧icrosoftąŕs

Two-Layer Captcha. IEEE Transactions on Information Forensics & Security 12, 7 (2017), 1671ś1685.
[17] Haichang Gao, Wang Wei, Xuqin Wang, Xiyang Liu, and Jef Yan. 2013. The robustness of hollow CAPTCHAs. In ACM

Sigsac Conference on Computer & Communications Security. 1075ś1086.
[18] Haichang Gao, Jef Yan, Fang Cao, Zhengya Zhang, Lei Lei, ℧engyun Tang, Ping Zhang, Xin Zhou, Xuqin Wang, and

Jiawei Li. 2016. A Simple Generic Attack on Text Captchas. In NDSS.
[19] Song Gao. 2014. An evolutionary study of dynamic cognitive game CAPTCHAs: Automated attacks and defenses.

Dissertations & Theses - Gradworks (2014).
[20] Dileep George, Wolfgang Lehrach, Ken Kansky, ℧iguel Lázaro-Gredilla, Christopher Laan, Bhaskara ℧arthi, Xinghua

Lou, Zhaoshi ℧eng, Yi Liu, Huayan Wang, et al. 2017. A generative vision model that trains with high data eiciency
and breaks text-based CAPTCHAs. Science 358, 6368 (2017), eaag2612.

[21] C Gold, A Holub, and P Sollich. 2005. Bayesian approach to feature selection and parameter tuning for support vector
machine classiiers. Neural Networks 18, 5 (2005), 693ś701.

https://elie.net/blog/security/how-we-broke-the-nucaptcha-video-scheme-and-what-we-propose-to-fix-it
https://elie.net/blog/security/how-we-broke-the-nucaptcha-video-scheme-and-what-we-propose-to-fix-it

1:28 Ye, G. et al

[22] Philippe Golle. 2008. ℧achine learning attacks against the Asirra CAPTCHA. computer and communications security

2008 (2008), 535ś542.
[23] Ian J Goodfellow, Yaroslav Bulatov, Julian Ibarz, Sacha Arnoud, and Vinay Shet. 2014. ℧ulti-digit number recogni-

tion from street view imagery using deep convolutional neural networks. In International Conference on Learning

Representations (ICLR).
[24] Ian J. Goodfellow, Jean Pougetabadie, ℧ehdi ℧irza, Bing Xu, David Wardefarley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. 2014. Generative Adversarial Networks. Advances in Neural Information Processing Systems 3 (2014),
2672ś2680.

[25] Ian J Goodfellow, Jonathon Shlens, Christian Szegedy, Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015.
Explaining and harnessing adversarial examples. In ICML. 1ś10.

[26] Ian J Goodfellow, David Warde-Farley, ℧ehdi ℧irza, Aaron Courville, and Yoshua Bengio. 2013. ℧axout networks.
arXiv preprint arXiv:1302.4389 (2013).

[27] Rich Gossweiler, ℧aryam Kamvar, and Shumeet Baluja. 2009. What's up CAPTCHA?:a CAPTCHA based on image
orientation. In International Conference on World Wide Web, WWW 2009, Madrid, Spain, April. 841ś850.

[28] ℧ori Greg and Jitendra ℧alik. 2003. Recognizing objects in adversarial cultter: Breaking a visual CAPTCHA. In IEEE

Computer Society Conferene on Computer Vision and Pattern Recognition.
[29] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. 2017. ℧ask R-CNN. In IEEE International Conference on

Computer Vision (ICCV). 2980ś2988.
[30] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In

Proceedings of the IEEE conference on computer vision and pattern recognition. 770ś778.
[31] Robert Hecht-Nielsen. 1989. Theory of the backpropagation neural network. Harcourt Brace & Co. 593ś605 vol.1 pages.
[32] Carlos Javier Hernandezcastro, Arturo Ribagorda, and Yago Saez. 2009. Side-channel attack on labeling CAPTCHAs.

Computer Science (2009).
[33] Ling Huang, Anthony D Joseph, Blaine Nelson, Benjamin I. P Rubinstein, and J. D Tygar. 2011. Adversarial machine

learning. IEEE Internet Computing 15, 5 (2011), 4ś6.
[34] Phillip Isola. 2017. Pix2Pix: Image-to-Image Translation with COnditional Adversarial Networks. https:⁄⁄github.com⁄

phillipi⁄pix2pix.
[35] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. 2016. Image-to-Image Translation with Conditional

Adversarial Networks. arxiv (2016).
[36] Wilkins J. 2009. Strong captcha guidelines v1. 2. (2009).
[37] Zhiping Jiang, Jizhong Zhao, Xiang-Yang Li, Jinsong Han, and Wei Xi. 2013. Rejecting the attack: Source authentication

for wi-i management frames using csi information. In IEEE INFOCOM. 2544ś2552.
[38] Diederik P Kingma and Jimmy Ba. 2014. Adam: A ℧ethod for Stochastic Optimization. Computer Science (2014).
[39] Kat Krol, Simon Parkin, and ℧ Angela Sasse. 2016. Better the Devil You Know: A User Study of Two CAPTCHAs and

a Possible Replacement Technology. In NDSS Workshop on Usable Security.
[40] Colin Lea, Rene Vidal, Austin Reiter, and Gregory D Hager. 2016. Temporal convolutional networks: A uniied approach

to action segmentation. In European Conference on Computer Vision. 47ś54.
[41] Y. Lecun, L. Bottou, Y. Bengio, and P. Hafner. 1998. Gradient-based learning applied to document recognition. Proc.

IEEE 86, 11 (1998), 2278ś2324.
[42] Jiwei Li, Will ℧onroe, Tianlin Shi, Sĺębastien Jean, Alan Ritter, and Dan Jurafsky. 2017. Adversarial Learning for

Neural Dialogue Generation. (2017).
[43] Bin Liang, Hongcheng Li, ℧iaoqiang Su, Xirong Li, Wenchang Shi, and XiaoFeng Wang. 2018. Detecting Adversarial

Image Examples in Deep Neural Networks with Adaptive Noise Reduction. IEEE Transactions on Dependable and Secure

Computing (2018).
[44] ℧in Lin, Qiang Chen, and Shuicheng Yan. 2013. Network in network. arXiv preprint arXiv:1312.4400 (2013).
[45] Elaine K. ℧cEwan. 2008. Root Words, Roots and Aixes. http:⁄⁄www.readingrockets.org⁄article⁄root-words-roots-

and-aixes.
[46] Hendrik ℧eutzner and Dorothea Kolossa. 2014. Reducing the Cost of Breaking Audio CAPTCHAs by Active and

Semi-supervised Learning. In International Conference on Machine Learning and Applications. 67ś73.
[47] Takeru ℧iyato, Shinichi ℧aeda, ℧asanori Koyama, Ken Nakae, and Shin Ishii. 2015. Distributional Smoothing by

Virtual Adversarial Examples. arXiv (2015).
[48] Volodymyr ℧nih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and ℧artin

Riedmiller. 2013. Playing atari with deep reinforcement learning. arXiv (2013).
[49] ℧anar℧ohamed, Niharika Sachdeva, ℧ichael Georgescu, Song Gao, Nitesh Saxena, Chengcui Zhang, PonnurangamKu-

maraguru, Paul C. Van Oorschot, andWei Bang Chen. 2014. A three-way investigation of a game-CAPTCHA:automated
attacks, relay attacks and usability. In ACM Symposium on Information, Computer and Communications Security. 195ś
206.

https://github.com/phillipi/pix2pix
https://github.com/phillipi/pix2pix
http://www.readingrockets.org/article/root-words-roots-and-affixes
http://www.readingrockets.org/article/root-words-roots-and-affixes

Using Generative Adversarial Networks to Break and Protect Text Captchas 1:29

[50] ℧anar ℧ohameda, Song Gaob, Niharika Sachdevac, Nitesh Saxena, Chengcui Zhangd, Ponnurangam Kumaraguruc,
and Paul C. Van Oorschote. 2017. On the security and usability of dynamic cognitive game CAPTCHAs. Journal of
Computer Security (2017), 1ś26.

[51] ℧argarita Osadchy, Julio Hernandez-Castro, Stuart Gibson, Orr Dunkelman, and Daniel Pĺęrez-Cabo. 2017. No
Bot Expects the DeepCAPTCHA! Introducing Immutable Adversarial Examples, with Applications to CAPTCHA
Generation. IEEE Transactions on Information Forensics & Security PP, 99 (2017), 1ś1.

[52] Sinno Jialin Pan and Qiang Yang. 2010. A Survey on Transfer Learning. IEEE Transactions on Knowledge & Data

Engineering 22, 10 (2010), 1345ś1359.
[53] Ishai Rosenberg, Asaf Shabtai, Lior Rokach, and Yuval Elovici. 2017. Generic Black-Box End-to-End Attack against

RNNs and Other API Calls Based ℧alware Classiiers. arXiv (2017).
[54] Neil J. Rubenking. 2013. Are You a Human. https:⁄⁄www.areyouahuman.com.
[55] Andy Schlaikjer. 2010. A Dual-Use Speech CAPTCHA: Aiding Visually Impaired Web Users while Providing Tran-

scriptions of Audio Streams. LTI (2010).
[56] NuData Security. 2010. NuCaptcha. www.nucaptcha.com.
[57] ℧uhammad Shahzad, Alex X Liu, and Arjmand Samuel. 2017. Behavior based human authentication on touch screen

devices using gestures and signatures. IEEE Transactions on Mobile Computing 16, 10 (2017), 2726ś2741.
[58] Chenghui Shi, Xiaogang Xu, Shouling Ji, Kai Bu, Jianhai Chen, Raheem A. Beyah, and Ting Wang. 2019. Adversarial

CAPTCHAs. CoRR abs⁄1901.01107 (2019). arXiv:1901.01107 http:⁄⁄arxiv.org⁄abs⁄1901.01107
[59] Ashish Shrivastava, Tomas Pister, Oncel Tuzel, Joshua Susskind, Wenda Wang, and Russell Webb. 2017. Learning

from Simulated and Unsupervised Images through Adversarial Training. In The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR).
[60] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition.

Computer Science (2014).
[61] Suphannee Sivakorn, Iasonas Polakis, and Angelos D. Keromytis. 2016. I am Robot: (Deep) Learning to Break Semantic

Image CAPTCHAs. In IEEE European Symposium on Security and Privacy. 388ś403.
[62] Fabian Stark, Caner Hazirbas, Rudoplh Triebel, and Daniel Cremers. 2015. CAPTCHA Recognition with Active Deep

Learning. In German Conference on Pattern Recognition Workshop.
[63] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. 2015. Going deeper with convolutions. In Proceedings of the IEEE conference on

computer vision and pattern recognition. 1ś9.
[64] Christian Szegedy, Vincent Vanhoucke, Sergey Iofe, Jonathon Shlens, and Zbigniew Wojna. 2015. Rethinking the

Inception Architecture for Computer Vision. Computer Science (2015), 2818ś2826.
[65] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus.

2013. Intriguing properties of neural networks. Computer Science (2013).
[66] Jennifer Tam, Jirĺł Simsa, Sean Hyde, and Luis Von Ahn. 2008. Breaking Audio CAPTCHAs. In Conference on Neural

Information Processing Systems, Vancouver, British Columbia, Canada, December. 1625ś1632.
[67] Luis Von Ahn, ℧anuel Blum, Nicholas J Hopper, and John Langford. 2003. CAPTCHA: Using Hard AI Problems for

Security. Springer Berlin Heidelberg. 294ś311 pages.
[68] Luis Von Ahn, ℧anuel Blum, and John Langford. 2004. Telling humans and computers apart automatically. Communi-

cations of the Acm 47, 2 (2004), 56ś60.
[69] Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jianyu Wang, Zhou Ren, and Alan L. Yuille. 2019. Improving

Transferability of Adversarial Examples With Input Diversity. In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR).
[70] Weilin Xu, Yanjun Qi, and David Evans. 2016. Automatically Evading Classiiers: A Case Study on PDF ℧alware

Classiiers. In Network and Distributed System Security Symposium.
[71] Yi Xu, Gerardo Reynaga, Sonia Chiasson, Jan-℧ichael Frahm, Fabian ℧onrose, and Paul C Van Oorschot. 2014. Security

analysis and related usability of motion-based captchas: Decoding codewords in motion. IEEE transactions on dependable
and secure computing 11, 5 (2014), 480ś493.

[72] Jef Yan and Ahmad Salah El Ahmad. 2007. Breaking Visual CAPTCHAs with Naive Pattern Recognition Algorithms.
In Computer Security Applications Conference, 2007. ACSAC 2007. Twenty-Third Annual. 279ś291.

[73] Jef Yan and Ahmad Salah El Ahmad. 2008. A low-cost attack on a ℧icrosoft captcha. In ACM Conference on Computer

and Communications Security, CCS 2008, Alexandria, Virginia, Usa, October. 543ś554.
[74] Guixin Ye, Zhanyong Tang, Dingyi Fang, Zhanxing Zhu, Yansong Feng, Pengfei Xu, Xiaojiang Chen, and Zheng Wang.

2018. Yet Another Text Captcha Solver: A Generative Adversarial Network Based Approach. In Proceedings of the 2018

ACM SIGSAC Conference on Computer and Communications Security. AC℧, 332ś348.
[75] Jason Yosinski, Jef Clune, Yoshua Bengio, and Hod Lipson. 2014. How transferable are features in deep neural

networks?. In Advances in neural information processing systems. 3320ś3328.

https://www.areyouahuman.com
www.nucaptcha.com
http://arxiv.org/abs/1901.01107
http://arxiv.org/abs/1901.01107

1:30 Ye, G. et al

[76] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. 2016. SeqGAN: Sequence Generative Adversarial Nets with Policy
Gradient. (2016).

[77] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. 2017. Unpaired Image-to-Image Translation using
Cycle-Consistent Adversarial Networks. arXiv preprint arXiv:1703.10593 (2017).

	Abstract
	1 Introduction
	2 Background
	2.1 Threat Model
	2.2 Security Features of Text Captchas
	2.3 Generative Adversarial Networks

	3 Overview of Our Approach
	4 Implementation Details
	4.1 Training Data Synthesis
	4.2 Captcha Preprocessing
	4.3 Build and Fine-tune the Solver

	5 Experimental Setup
	5.1 Captcha Schemes
	5.2 Collecting and Synthesizing Captchas
	5.3 Implementation and Hardware Platforms

	6 Experimental Results
	6.1 Evaluation on Current Captcha Schemes
	6.2 Comparison to Prior Attacks
	6.3 Targeting Schemes with A Variable Number of Characters
	6.4 Preprocessing Security Features
	6.5 Synthesizer Training Termination Criteria
	6.6 Transfer Learning
	6.7 Captcha Usability Study
	6.8 Generalization Ability

	7 Potential Countermeasures
	7.1 Security Enhance through Adversarial Example Generation
	7.2 Other Alternative Countermeasures

	8 Related Work
	9 Conclusion
	References

