
This is a repository copy of Counterexample-guided synthesis of observation predicates.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/156476/

Version: Accepted Version

Proceedings Paper:
Dimitrova, R. and Finkbeiner, B. (2012) Counterexample-guided synthesis of observation
predicates. In: Jurdziński, M. and Ničković, D., (eds.) Formal Modeling and Analysis of
Timed Systems. Formal Modeling and Analysis of Timed Systems - 10th International
Conference, FORMATS 2012, 18-20 Sep 2012, London, UK. Lecture Notes in Computer
Science (7595). Springer , pp. 107-122. ISBN 9783642333644

https://doi.org/10.1007/978-3-642-33365-1_9

This is a post-peer-review, pre-copyedit version of a conference paper published in
FORMATS 2012. The final authenticated version is available online at:
http://dx.doi.org/10.1007/978-3-642-33365-1_9

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Counterexample-guided Synthesis of Observation

Predicates

Rayna Dimitrova and Bernd Finkbeiner

Saarland University, Germany

Abstract. We present a novel approach to the safety controller synthesis prob-

lem with partial observability for real-time systems. This in general undecidable

problem can be reduced to a decidable one by fixing the granularity of the con-

troller: finite sets of clocks and constants in the guards. Current state-of-the-art

methods are limited to brute-force enumeration of possible granularities or man-

ual choice of a finite set of observations that a controller can track. We address

this limitation by proposing a counterexample-guided method to successively re-

fine a set of observations until a sufficiently precise abstraction is obtained. The

size of the abstract games and strategies generated by our approach depends on

the number of observation predicates and not on the size of the constants in the

plant. Our experiments demonstrate that this results in better performance than

the approach based on fixed granularity when fine granularity is necessary.

1 Introduction

Controller synthesis, both in the discrete and in the timed setting, has been an active field

of research in the last decades. The timed controller synthesis problem asks to automat-

ically find a controller for an open plant such that the controlled closed loop system sat-

isfies a given property. It naturally reduces to the problem of finding a winning strategy

for the controller player in a two-player timed game between a controller and its envi-

ronment (the plant). This problem is well-understood for the case that the controller can

fully observe the state and evolution of the plant. In reality, however, this assumption is

usually violated due to limited sensors or the inability to observe the internal behavior

of the plant. The controller must therefore win the game under partial observability.

The timed controller synthesis problem is undecidable under partial observabil-

ity [2]. All known synthesis algorithms therefore rely on some a-priori restriction of

the problem, such as fixing the granularity [2] of the controller by restricting the con-

stants to which clocks may be compared to in the controller to integral multiples of
1
m

, where m is a predefined constant, or fixing a template for the controller [9]. Alter-

natively, one can predefine the observations of the controller [4, 3], which amounts to

providing a finite set of predicates over the locations and clocks on which the strategy

of the controller may be based. How to efficiently find these observation predicates is

an important research question, the only known approach being the brute-force enumer-

ation of all possible granularities (1, 12 ,
1
4 , . . .) until a sufficiently precise one is found.

In this paper, we present the first systematic method for the automatic synthesis of

observation predicates. Before we describe the approach in more detail, let us clarify

On

x ≤ 0

Produce1

x ≤ 6

Sensed1

x ≤ 10

Piston1

Produce2

x ≤ 8

Sensed2

x ≤ 10

Piston2

Off

End
x := 0

x := 0

x ≥ 4 x ≥ 9

kick1?
x ≥ 11

x ≥ 7 x ≥ 9

kick2?
x ≥ 11

Fig. 1. Example of a partially observable plant for a production system. For readability we have

omitted the kick1? and kick2? transitions from all other locations leading to location End.

the role of the observation predicates. Figure 1 shows, as a toy example, the model of

a production system. The goal is to kick a box from a conveyor belt using a piston,

before the box reaches the end of the belt. The locations On, Producing1, Producing2,

Sensed1, Sensed2, Piston1, Piston2, End and Off of the plant indicate the position of

the box on the belt. The plant produces two types of boxes, where producing a box of

type 1 takes between 4 and 6 seconds and producing a box of type 2 takes between 7

and 8 seconds. However, regardless of its type, the box arrives at the respective location

Piston1 or Piston2 between 9 and 10 seconds after the start. The goal of the controller

is to avoid location End. For that, it has to execute the correct kick1! or kick2! action at

the right time, namely when the box is in the respective location Piston1 or Piston2.

The challenge is that locations On, Produce1 and Produce2 are indistinguishable

by the controller, and so are locations Sensed1, Sensed2, Piston1 and Piston2. The

controller can only detect the presence of a box via a sensor (i.e, it observes the box

entering locations Sensed1 and Sensed2) and use timing information to determine the

time-frame in which the box is in location Piston1 (or Piston2). It cannot observe the

clock x of the plant, but has its own clock y that it can test and reset. A solution to

the synthesis problem is to use a clock y in the controller and activate the piston when

y = 21/2, thus ensuring that the End is never reached as the box is guaranteed to reach

location Piston1 or Piston2 in 9 to 10 seconds after it is sensed and remains there at least

until y = 11. Additionally, in order to activate the correct piston, the controller needs

to distinguish the type of the box. This can be done, again using timing information, by

checking whether or not the box has been sensed by time y = 7. In order to find a correct

controller, we thus need two observation predicates: y = 21/2 and y >= 7. Clearly,

both predicates are necessary: if the controller only observes one of them or only some

other predicate, say, only y = 30, then it is impossible to enforce the specification. Note

also that two predicates play different roles in the control strategy. Predicate y = 21/2
identifies a particular point in time (out of the infinitely many) in which the controller

may choose to take an action, predicate y >= 7 identifies an observation that is needed

in order to be able to decide on the right action. In the following, we distinguish these

two types of observation predicates as action points and decision predicates.

Our method works by successively refining a finite set of observation predicates

based on the analysis of spurious counterexamples. The key is to use timed games with

fixed observations as sound abstractions of the original timed game under incomplete

2

incomplete information

perfect information

infinite state space finite state space

infinite-choice

await-time

game I

finite-choice

await-time

game F

Ga(F ,AP)κ(I) κ(F)

fix ξ

κ κ

abstract

w.r.t. AP

Fig. 2. Overview of the abstraction process. An await-time game I, representing the controller

synthesis problem under partial observability, is first abstracted into a finite-choice await-time

game F , and then into a finite-state game Ga(F ,AP). Games I and F have a possibly infinite

state space and are played under incomplete information, game Ga(F ,AP) is finite-state and is

played under perfect information.

information. Our method builds on the classic CEGAR loop, where one successively

refines the abstraction until either no more abstract counterexamples exist or a concrete

counterexample is found. As usual in CEGAR approaches for games [10, 8], a spuri-

ous counterexample is a strategy tree for the environment player that is winning in the

abstract game but not in the concrete game. For timed games, the main difficulty in

the characterization of spurious counterexamples is caused by the fact that the number

of moves available to the controller is infinite, corresponding to the infinite number of

points in time when an action can be taken. As a result, the logical characterization

of spurious counterexamples is a quantified formula in the theory of linear arithmetic.

In the paper, we present a novel refinement technique for generating new observation

predicates based on quantifier witnesses that eliminate the given strategy.

Figure 2 gives an overview on the abstraction process. We start with a symbolic rep-

resentation of the timed safety controller synthesis problem with partial observability,

which we call await-time games. Await-time games allow us to represent the infinite

number of choices available to the controller using controllable variables. Correspond-

ing to the two types of observation predicates, action points and decision predicates,

we abstract the initial await-time game in two steps into a finite-state game with perfect

information. First, we use the action points to eliminate (abstract away) the controllable

variables that range over infinite domains. In the resulting finite-choice await-time game

F , the number of moves available to the controller is finite, but the number of states may

still be infinite. In the second step we abstract F w.r.t. a finite set of predicates AP to

obtain a finite-state perfect-information game Ga(F ,AP). This abstraction completely

fixes a finite set of observation predicates the controller can track. Since Ga(F ,AP) is

a finite game, we can apply standard algorithms to solve the game and find a winning

strategies for the winning player. For a winning strategy for the environment player, we

check if the strategy also wins in F and in I. Strategies that are spurious in F can be

eliminated with additional decision predicates, strategies that are concretizable in F but

spurious in I need additional action points. We refine both sets until we find either a

strategy for the controller in Ga(F ,AP) or a counterexample concretizable in I.

Related Work. The classic solution for finite-state discrete games under incomplete

information is due to Reif [11] and is based on a determinization-like translation to

perfect-information games with a knowledge-based subset construction.

3

Symbolic fixed-point algorithms based on antichains that avoid this determinization

procedure were proposed in [7, 5]. While these algorithms are applicable to infinite

game graphs with a given finite region algebra, they require an a priori fixed finite set

of observations that the controller is allowed to track.

Abstraction refinement methods were previously applied to games with perfect in-

formation [10, 6] and to safety games with incomplete information [8]. Games under

incomplete information are out of the scope of the first two works. The refinement pro-

cedure from [8] is based on the assumption that the controller can choose a move from

a finite set. Unless a finite set of observations is fixed, this is not the case in real-time

systems where the controller can let an arbitrary amount of time elapse.

To the best of our knowledge, prior to this work there was no approach to controller

synthesis that can handle partial observability for systems that allow for infinitely many

choices of the controller, without fixing a priori a finite set of available observations.

2 Timed Controller Synthesis with Partial Observability

Production system controllers are typically required to satisfy timing requirements for-

mulated as safety properties. In a realistic setting, the information that such controllers

have at their disposal is limited by their interface and sensor capabilities. Thus, all

decisions in the controller’s implementation are made based on (possibly) partial obser-

vations about the state and the evolution of the controller’s external environment.

In this section we recall standard notions and notation and give a definition of the

timed safety control problem with partial observability.

Timed automata and transition systems. Given a set X of real-valued variables,

G(X) is the set of constraints generated by: ϕ := x ∼ c | ¬ϕ | ϕ1∧ϕ2 | ϕ1∨ϕ2, where

x ∈ X , c ∈ Q and ∼∈ {<,≤, >,≥}. C(X) is the subset of G(X) that consists of true

and conjunctions of constraints of the form x ∼ c. We denote with R≥0 (R>0) the sets

of non-negative (positive) reals and with RX
≥0 the set of total functions from X to R≥0.

For v ∈ RX
≥0, Z ⊆ X and t ∈ R>0 we denote with v[0/Z] and with v+ t the valuations

obtained from v by setting the values of the variables in Z to 0 or adding t to every

value in v, respectively. For v ∈ RX
≥0 and g ∈ G(X) we write v |= g iff v satisfies g.

For a finite or infinite sequence π of elements of some set A we denote with |π|
its length, i.e., the number of elements of π and write |π| = ∞ when π is infinite. For

n ∈ N with n < |π|, we denote with π[n] and π[0, n] the n+ 1-th element of π and the

prefix of length n+ 1, respectively. For π ∈ A+, last(π) is the last element of π.

A timed automaton [1] is a tuple A = (Loc, X,Σ, Inv, R, l0), where Loc is a finite

set of locations, X is a finite set of real-valued clocks, Σ is a finite set of actions,

Inv : Loc → C(X) is a function mapping each location to an invariant and R ⊆
Loc×Σ × G(X)× 2X × Loc is a finite set of transitions.

The semantics of a timed automaton A is defined by a timed transition system T =
(S, s0, Σ,→), where S = {(l, v) ∈ Loc × RX

≥0 | v |= Inv(l)} is the set of states,

s0 = (l0, 0) is the initial state, and the transition relation →⊆ S × (Σ ∪ R>0) × S is

such that ((l, v), σ, (l′, v′)) ∈→ iff v |= Inv(l), v′ |= Inv(l′) and either σ ∈ Σ and there

exists (l, σ, g, Z, l′) ∈ R with v |= g and v′ = v[0/Z], or σ ∈ R>0, v′ = v + σ and

l′ = l. We write (l, v)
σ
→ (l′, v′) as a shortcut for ((l, v), σ, (l′, v′)) ∈→.

4

Timed safety control with partial observability. A partially observable plant is a

tuple P = (A, Σc, Σu,Xo,Xu,=
L
o), where A is a timed automaton,Σc andΣu partition

the set Σ of actions into a set Σc of controllable and a set Σu of uncontrollable actions,

Xo and Xu partition the set X of clocks into a set Xo of observable and a set Xu of

unobservable clocks, and =L
o is an observation equivalence relation on Loc. We require

that P is input-enabled: each σ ∈ Σc is enabled in every state s in the transition system.

We also assume that at every state a transition from Σu is enabled or time can elapse.

A controller for a partially observable plant operates under incomplete information

about the location the plant is in and about the values of the plant’s clocks. It knows

the equivalence class of Loc w.r.t. =L
o in which the plant currently is. The equivalence

class of a location l ∈ Loc is denoted [l]=L
o
. The controller observes the values of the

observable clocks Xo and doesn’t observe those of the clocks in Xu.

Let us consider a partially observable plant P = (A, Σc, Σu,Xo,Xu,=
L
o) with A =

(Loc, X,Σ, Inv, R, l0) and let Xc be a finite set of clocks with Xc ∩X = ∅.

We note with Xo+c = Xo∪̇Xc the union of the observable clocks of the plant and

the clocks Xc, which are the clocks that belong to the controller. Let Σr = {resetZ |
Z ∈ 2Xc \{∅}} be a set of actions disjoint from Σ used to model resets of clocks in Xc.

Let us define S̃ = S × R
Xc

≥0 and Σ̃ = Σ ∪ R>0 ∪Σr.

A Xc-control strategy for the partially observable plant P is a total function f :
S̃ · (Σ̃ × S̃)∗ → (Σc ∪ (Σc ×Xo+c ×Q>0)∪ {⊥} ∪Σr), which maps finite execution

histories to decisions of the controller, which can either be to execute a controllable

action σ immediately (f(π) = σ) or when an observable clock x reaches the future

time c (f(π) = (σ, x, c)), to remain idle (f(π) = ⊥), or to immediately reset a set of

controllable clocks Z (f(π) = resetZ). We require the following:

– if the controller decides to execute σ ∈ Σc when x reaches c: f(π) = (σ, x, c), then

c is greater than the current value of x, i.e., c > v(x), where last(π) = (l, v, vc);
– if the controller decides to reset clocks Z ⊆ Xc: f(π) = resetZ , then these clocks

have positive values, i.e., vc(x) > 0 for every x ∈ Z, where last(π) = (l, v, vc);
– the value of f changes only when the observation changes or an action in Σc ∪Σr

is executed, i.e., f(π(l, v, vc)σ(l
′, v′, v′c)) = f(π(l, v, vc)) whenever σ ∈ R>0 or

σ ∈ Σu and l =L
o l

′ and for every x ∈ Xo, v′(x) = 0 only if v(x) = 0;

– f is consistent with the observations of the controller, that is f(π1) = f(π2) for

every π1 ≡ π2, where the equivalence relation ≡ is defined below.

We first define a function obs : S̃ ·(Σ̃ ·S̃)∗ → S̃ ·(S̃×S̃)∗ that maps a sequence π to

the sequence obs(π) that consists of exactly those transitions of π where a controllable

action is taken or a discrete change of the state-based observation occurs. If π = s̃,
then obs(π) = s̃. Otherwise let π = π′(l, v, vc)σ(l

′, v′, v′c). If either σ ∈ Σc ∪ Σr, or

σ ∈ Σu and l 6=L
o l

′ or for some x ∈ Xo, v(x) > 0 and v′(x) = 0, then obs(π) =
obs(π′(l, v, vc))((l, v, vc), (l

′, v′, v′c)). Otherwise, obs(π) = obs(π′(l, v, vc)).

For π1, π2 ∈ S̃ · (S̃ × S̃)∗ we define π1 ≡ π2 iff |obs(π1)| = |obs(π2)| and:

– if obs(π1)[0] = (l01, v
0
1 , vc

0
1) and obs(π2)[0] = (l02, v

0
2 , vc

0
2), then we have l01 =L

o l
0
2,

vc
0
1 = vc

0
1 and for every x ∈ Xo it holds that v01(x) = v02(x), and

– for every 0 < i < |obs(π1)| with obs(π1)[i] = ((l1, v1, vc1), (l
′
1, v

′
1, vc

′
1)) and

obs(π2)[i] = ((l2, v2, vc2), (l
′
2, v

′
2, vc

′
2)), we have l1 =L

o l2, l′1 =L
o l

′
2, vc1 = vc2,

vc
′
1 = vc

′
2, and for every x ∈ Xo, v1(x) = v2(x) and v′1(x) = v′2(x).

5

A control strategy f for the plant P defines a set of controlled paths CP(f,P) ⊆

S̃ · ((Σ̃ · S̃)∗ ∪ (Σ̃ · S̃)ω), where π ∈ CP(f,P) iff π[0] = (l0, 0, 0) and for every

0 < i < |π| − 1 with π[i− 1] = (l, v, vc), π[i] = σ and π[i+ 1] = (l′, v′, v′c) we have:

– if σ ∈ R>0, then (l, v)
σ
→ (l′, v′), v′c = vc + σ and either f(π[0, i − 1]) = ⊥ or

f(π[0, i− 1]) = (a, x, c) and v′(x) ≤ c (time can elapse only until x reaches c);

– if σ ∈ Σc, then (l, v)
σ
→ (l′, v′), v′c = vc and either f(π[0, i−1]) = σ or f(π[0, i−

1]) = (σ, x, c) and v(x) = c (σ is taken immediately or x has reached c);

– if σ ∈ Σu, then f(π[0, i− 1]) 6∈ Σr, (l, v)
σ
→ (l′, v′) and v′c = vc;

– if σ = resetZ , then f(π[0, i− 1]) = resetZ , v′c = vc[0/Z], v
′ = v, l′ = l.

A location l ∈ Loc is reachable in CP(f,P) iff there exists a finite path π ∈ CP(π)
such that last(π) = (l, v, vc) for some v ∈ RX

≥0 and vc ∈ R
Xc

≥0.

We can now state the timed safety control synthesis problem with partial observabil-

ity: Given a partially observable plant P = (A, Σc, Σu,Xo,Xu,=
L
o) with underlying

timed automaton A = (Loc, X,Σ, Inv, R, l0), an error location lbad ∈ Loc, for which

[lbad]=L
o
= {lbad}, and a finite set Xc of clocks with Xc ∩ X = ∅, find a finite-state

Xc-control strategy f for P such that lbad is not reachable in CP(f,P) or determine

that there does not exist a Xc-control strategy for P .

3 Await-Time Games

In this section we introduce await-time games and show that the timed safety controller

synthesis problem with partial observability reduces to the problem of finding a winning

strategy for the controller in an await-time game against its environment (the plant).

Let P = (A, Σc, Σu,Xo,Xu,=
L
o) where A = (Loc, X,Σ, Inv, R, l0) be a partially

observable plant fixed for the rest of the paper, together with an error location lbad ∈
Loc, for which [lbad]=L

o
= {lbad}. Let Xc be a fixed finite set of clocks with Xc∩X = ∅.

An await-time game models the interaction between a Xc-control strategy Playerc,

and the partially observable plant P , i.e, the controller’s environment Playere, in a turn-

based manner. Whenever it is his turn, Playerc has the possibility to propose what con-

trollable action should be executed and when. Then, Playere can do one or more transi-

tions executing the actual actions of the plant, i.e., updating the location and all clocks,

respecting the choice of Playerc. Since the controller and the plant synchronize when a

controllable action is executed or a discrete change in the state-based observation has

occurred, the turn is back to Playerc as soon as this happens. More precisely, Playerc
can choose (C1) an action σ ∈ Σc to be executed after a positive delay, or (C2) an

action σ ∈ Σc to be executed without delay, or (C3) to remain idle, or (C4) a set of

clocks from Xc to be reset immediately. Playere can do transitions that correspond to

(E1) the time-elapsing transitions in the plant, (E2) the discrete controllable and (E3)

uncontrollable transitions in the plant, as well as transitions that let Playere (E4) reset

the controllable clocks selected by Playerc, or (E5) give the turn to Playerc.

Formally, an await-time game I(P, lbad,Xc) = (Vc,Vo,Vu, ι, Tc, Te, ϕbad) is a

tuple consisting of pairwise disjoint sets Vc, Vo and Vu of controllable, observable and

unobservable variables respectively, and formulas ι, ϕbad, Tc and Te that denote the sets

of initial and error states and the transition relations for Playerc and Playere respectively.

6

The states of the game are described by the finite set V = Vc∪̇Vo∪̇Vu of variables.

We assume a designated boolean variable t ∈ Vc that determines which player choses

a successor (i.e, updates his variables) in a given state. The transition relations of the

players are given as formulas over V and the set V ′ of primed versions of the variables.

Playerc updates the variables in Vc, which model the decisions of the controller. A

variable act ∈ Vc with Dom(act) = Σc∪{⊥} indicates the selected controllable action

in cases (C1) and (C2) (and is ⊥ in cases (C3) and (C4)). In case (C1), Playerc also

proposes for at least one clock variable x ∈ Xo+c a positive constant, called await point,

indicating that he wants to execute the selected action as soon as x reaches this value,

which must be strictly greater than the current value of x. For this, Vc contains a subset

SC = {cx | x ∈ Xo+c} of variables, called symbolic constants, ranging over Q≥0. Vc

contains variables wait and reset with Dom(wait) = B and Dom(reset) = 2Xc .

Playere updates the variables in Vo∪̇Vu∪̇{t}. The set Vo contains the clocks in

Xo+c and a variable oloc for modeling the equivalence class of the current location

of the plant. The set Vu contains the clocks in Xu and a variable loc for modeling

the plant’s location. The auxiliary boolean variable er ∈ Vo indicates in which states

Playerc can choose to reset clocks in Xc and the auxiliary boolean variable et ∈ Vu is

false in states where Playere has disabled further time-elapse transitions.

Playerc has incomplete information about the state of the game, which includes the

state of the plant – location and clock valuations. He observes only the variables in

Vo+c = Vc∪̇Vo and is thus oblivious to the current location and valuation of Xu.

Since a controller for a partially observable plant does not observe the plant contin-

uously, but only at the points of synchronization, we need to ensure that Playerc cannot

win the game only by basing his strategic choices on the number of unobservable steps

in the play so far, i.e, that if he can win the game then he can do so with a stuttering in-

variant strategy [4]. To this end, we include in the game I a skip-transition for Playere,

which is enabled in each state that belongs to Playere and allows for making a transition

without changing the values of any variables. This transformation is sound for games

with safety winning conditions defined by a set of bad states. That way, we will ensure

that winning strategies for Playerc correspond to Xc-control strategies for P .

For the rest of the paper, we denote with I the await-time game I(P, lbad,Xc).
The formulas ι and ϕbad assert respectively that all variables are properly initialized

and that loc = lbad. The formulas Tc and Te assert that the players update their variables

according to the rules above. Instead of the respective formulas, we give the transition

relations of the corresponding explicit game G(I) = (Qc, Qe, q0,Tc,Te,=o, B).

(C1) q′(act) ∈ Σc, q
′(wait) = true, q′(reset) = ∅, and q′(cx) > 0 for some x ∈ Xo+c,

and for every x ∈ Xo+c with q′(cx) > 0 we have q′(cx) > q(x)

(C2) q′(act) ∈ Σc, q
′(wait) = false, q′(reset) = ∅ and q′(c) = 0 for all c ∈ SC

(C3) q′(act) = ⊥, q′(wait) = true, q′(reset) = ∅ and q′(c) = 0 for all c ∈ SC

(C4) q(er) = true (resetting controllable clocks is allowed only after a controllable action or

discrete change of the observation), q(x) > 0 for every x ∈ q′(reset), q′(act) = ⊥,

q′(wait) = false, q′(reset) ∈ 2Xc \ {∅} and q′(c) = 0 for all c ∈ SC

Fig. 3. Transition relation Tc of Playerc: for states q and q′, (q, q′) ∈ Tc iff q(t) = true, q′(t) =
false, q′|(Vo∪Vu) = q|(Vo∪Vu) and one of the conditions (C1), (C2), (C3), (C4) holds.

7

(E1) q(wait) = true, q(et) = true (time-elapse trans. enabled) and for some σ ∈ R>0:

– (q(loc), q|X)
σ
→ (q′(loc), q′|X), q′(oloc) = q(oloc), and q′|Xc = q|Xc + σ,

– if q(act) 6= ⊥, then for every x ∈ Xo+c with q(x) < q(cx), we have q′(x) ≤ q(cx)
(cannot let time pass beyond an await point if Playerc chose an action in Σc),

– if q(act) 6= ⊥, then q′(et) = false iff q′(x) ≥ q(cx) and q(x) < q(cx) for some

x ∈ Xo+c with q(cx) > 0 (disable time-elapse transitions upon reaching an await point),

– q′(t) = false, q′(er) = q(er)

(E2) q(wait) = false or q(et) = false (time-elapse trans. disabled), q(act) = σ ∈ Σc and:

– (q(loc), q|X)
σ
→ (q′(loc), q′|X), q′(oloc) = [q′(loc)]=L

o
, and q′|Xc = q′|Xc ,

– q′(t) = true (the turn is back to Playerc), q
′(er) = true, q′(et) = true

(E3) q(reset) = ∅ and for some σ ∈ Σu:

– (q(loc), q|X)
σ
→ (q′(loc), q′|X), q′(oloc) = [q′(loc)]=L

o
, and q′|Xc = q′|Xc ,

– q′(t) = true iff q′(oloc) 6= q(oloc) or q(x) > 0 and q′(x) = 0 for some x ∈ Xo

(the turn is back to Playerc iff the observation changed), and if q′(t) = true, then

q′(er) = true and q′(et) = true, otherwise q′(er) = q(er) and q′(et) = q(et)

(E4) q(reset) = Z 6= ∅ (Playerc chose to reset the clocks in Z) and:

– q′(x) = 0 for every x ∈ Z and q′(x) = q(x) for every x ∈ (X ∪ Xc) \ Z,

– q′(loc) = q(loc), q′(oloc) = q(oloc), q′(t) = true, q′(er) = false, q′(et) = true

(the turn is back to Playerc and resetting controllable clocks is disabled)

(E5) q(wait) = true, q(act) = ⊥, q(et) = false (Playerc chose to remain idle and Playere
has disabled further time-elapse transitions, after making at least one) and:

– q′(loc) = q(loc), q′(oloc) = q(oloc) and q′(x) = q(x) for every x ∈ X ∪Xc,

– q′(t) = true (give the turn back to Playerc), q
′(er) = false, q′(et) = true

Fig. 4. Transition relation Te of Playere: for states q and q′, (q, q′) ∈ Te iff q(t) = false,

q′|(Vc\{t}) = q|(Vc\{t}) and one of the conditions (E1), (E2), (E3), (E4), (E5) holds, or q′ = q.

The states ofG(I) are valuations of V , i.e., elements of the set Vals(V) that consists

of all total functions q : V →
⋃

x∈V Dom(x) such that q(x) ∈ Dom(x) for every

x ∈ V . For q ∈ Vals(V) and U ⊆ V , we denote q|U the projection of q onto U .

The states Q = Qc∪̇Qe = Vals(V) are partitioned into those Qc = {q ∈ Q |
q(t) = true} that belong to Playerc and those Qe = {q ∈ Q | q(t) = false} that belong

to Playere. The initial state q0 ∈ Qc is the unique state that satisfies ι and the set B of

error states consists of all states in Qe that satisfy ϕbad.

The observation equivalence =o on Q is defined by the partitioning of the variables

in V as follows: q1 =o q2 iff q1|Vo+c
= q2|Vo+c

.

The transition relation T = Tc∪̇Te is partitioned into the transition relations Tc for

Playerc and Te for Playere, which are defined in Fig. 3 and Fig. 4, respectively.

A path in I is a finite or infinite sequence π ∈ Q∗ ∪ Qω of states such that for all

1 ≤ n < |π|, we have (π[n − 1], π[n]) ∈ T . We call a path π maximal iff π is infinite

or last(π) ∈ B. A play (prefix) in I is a maximal path (finite path) π in I such that

π[0] = q0. The extension of =o to paths is straightforward. We denote with prefsc(I)
(prefse(I)) the set of prefixes π in I such that last(π) ∈ Qc (last(π) ∈ Qe).

A strategy for Playerc is a total function fc : prefsc(I) → Vals(Vc) mapping pre-

fixes to valuations of Vc such that for every π ∈ prefsc(I) there exists q ∈ Q with

(last(π), q) ∈ Tc such that fc(π) = q|Vc
, and which is consistent w.r.t. =o: for all

π1, π2 ∈ prefsc(I) with π1 =o π2 it holds that fc(π1) = fc(π2). A strategy for

8

Playere is a total function fe : prefse(I) → Vals(Vo ∪ Vu ∪ {t}) such that for ev-

ery π ∈ prefse(I) there is a q ∈ Q with (last(π), q) ∈ Te and fe(π) = q|(Vo∪Vu∪{t}).

The outcome of a strategy fc for Playerc is the set outcome(fc) of plays such that

π ∈ outcome(fc) iff for every 0 < n < |π| with π[n− 1] ∈ Qc it holds that π[n]|Vc
=

fc(π[0, n− 1]). A strategy fc for Playerc is winning if for every π ∈ outcome(fc) and

every n ≥ 0, π[n] 6∈ B. The outcome of a strategy fe for Playere is defined analogously

and fe is winning if for every π ∈ outcome(fe) there exists a n ≥ 0 such that π[n] ∈ B.

For a strategy f we denote with prefs(f) the set of all prefixes in outcome(f).
We can reduce the timed safety control synthesis problem with partial observability

to finding a finite-state winning strategy for Playerc in I.

Proposition 1. There exists a finite-state Xc-control strategy for the partially observ-

able plant P with error location lbad, such that lbad is not reachable in CP(f,P) iff

Playerc has a finite-state winning strategy in the await-time game I(P, lbad,Xc).

4 Abstracting Await-Time Games

In this section we describe an abstraction-based approach to solving await-time games.

A finite-state abstract game with perfect information is constructed in two steps. In the

first step we construct an await-time game with fixed action points F by abstracting

away the symbolic constants, and thus leaving Playerc with a finite state of possible

choices in each of its states, and letting Playere resolve the resulting nondeterminism.

In the second step we do predicate abstraction of F w.r.t. a finite set AP of predicates

and thus completely fix the set of (observation) predicates that the controller can track.

Step 1: Fixing the action points. A finite-choice await-time game F(I, ξ) for the game

I is defined by an action-point function ξ : Xo+c → 2Q>0 . For each clock x ∈ Xo+c,

the set ξ(x) ⊆ Q>0 is a finite set of positive rational constants called action points for

x. The action points for a clock x ∈ Xo+c are used to replace the symbolic constant cx
from I in F(I, ξ) as we describe below.

Formally, F(I, ξ) = (V f
c ,Vo,Vu, ι

f , T f
c , T

f
e , ϕbad) is a symbolic game that differs

from I in the set of controllable variables, the formulas for the transition relations and

the formula describing the initial state. We define V f
c = Vc \ SC . Thus, the formula ιf

and the transition formula Tc for Playerc do not contain assignments to SC .

The possible options for Playerc in F are the same as in I except for (C1), which is

replaced by (C1f) where Playerc selects an action σ ∈ Σc to be executed after a delay

determined by Playere. As now Playerc updates only the finite-range variables V f
c , from

each Playerc-state he can choose among finitely many possible successors.

The nondeterminism resulting from replacing (C1) by (C1f), i.e, regarding exactly

how much time should elapse before the selected controllable action σ is executed, is

resolved by Playere. The action σ can be fired at any time up to (and including) the first

action point reached after a positive amount of time has elapsed. This is achieved by

replacing (E1) by (E1f), where Playere can choose to disable further delay transitions

at any point. Furthermore, according to (E1f) the duration of the time-elapse transitions

is constrained by the action points, regardless of whether Playerc has chosen to execute

a controllable action after a delay or to remain idle. This allows Playerc to remain idle

until reaching an action point and then choose to execute a controllable action.

9

By the definition, in the game F(I, ξ) Playere is more powerful than in the game I,

while Playerc is weaker. Thus, F(I, ξ) soundly abstracts the await-time game I.

Proposition 2. For every action-point function ξ : Xo+c → 2Q>0 , if Playerc has a

(finite-state) winning strategy in the finite-choice await-time game F(I, ξ), then Playerc
has a (finite-state) winning strategy in the await-time game I.

Step 2: Predicate abstraction. We now consider a finite set AP of predicates that

contains at least the atomic formulas occurring in some of ιf and ϕbad. We further

require that AP is precise w.r.t. the (finitely many) choices of Playerc in the game F
and w.r.t. every finite-range v ∈ Vo. That is, AP contains all boolean variables from

Vo+c plus the predicate v = d for every finite-range v ∈ Vo+c and d ∈ Dom(v).
We ensure that AP is precise w.r.t. the action points in F by including the predi-

cates x ≤ c and x ≥ c for each x ∈ Xo+c and c ∈ ξ(x). Thus, the observable predicates

in AP (i.e., those referring only to variables in Vo+c) are exactly the observation pred-

icates the controller can track in the current abstraction.

We employ the abstraction procedure from [8] to construct a finite-state perfect-

information abstract game Ga(F ,AP) = (Qa
c , Q

a
e , q

a
0 ,T

a
c ,T

a
e , B

a), which is an ex-

plicit safety game. The set of abstract statesQa = Qa
c ∪̇Q

a
e is partitioned into the sets of

statesQa
c andQa

e that belong to Playerc and Playere respectively. The game has a unique

initial state qa0 , and set of error statesBa. The abstract transition relation T a = T a
c ∪̇T

a
e

is partitioned into T a
c and T a

e for the two players and is such that T a
c ⊆ Qa

c ×Qa
e and

T a
e ⊆ Qa

e ×Qa and each state in Qa has a successor.

Here a strategy for Playerp, where p ∈ {c, e} is a total function fap : prefsp(G
a) →

Qa such that for every π ∈ prefsp(G
a), if fa(π) = q, then (last(π), q) ∈ T a

p .

The soundness of this abstraction guarantees that if Playerc has a winning strategy

fac in Ga(F ,AP), then there exists a finite-state concretization fc of fac which is a

winning strategy for Playerc in F (and hence Playerc has a winning strategy in I).

5 Counterexample-Guided Observation Refinement

We now present a procedure for automatically refining the observation predicates in

case of a spurious abstract counterexample. This procedure takes into account the two

steps of the abstraction phase. Since the predicate abstraction procedure is part of

the CEGAR-loop from [8], we refer the reader to the interpolation-based refinement

method described there to generate new predicates for AP in the case when the ab-

stract counterexample does not correspond to a counterexample in the game F . In the

following, we focus on the case when the predicate abstraction cannot be further refined

due to the fact that the abstract counterexample does correspond to a counterexample in

the game F . In this case, we check if it actually corresponds to a concrete counterexam-

ple in the game I. We now define a symbolic characterization of the counterexamples

that are concretizable in I, and develop a refinement procedure for F(I, ξ).
Let ξ : Xo+c → 2Q>0 be an action-point function, and let AP be a finite set of

predicates. Let F = F(I, ξ) be the corresponding finite-choice await-time game, and

let Ga(F ,AP) = (Qa
c , Q

a
e , q

a
0 ,T

a
c ,T

a
e ,=

a
o , B

a) be its abstraction w.r.t. AP . Suppose

that there exists a winning strategy fae for Playere in Ga(F ,AP).

10

Abstract counterexample strategies. A winning strategy fae for Playere in

Ga(F ,AP) is an abstract counterexample. For a sequence ρ ∈ (2Q)∗ ∪ (2Q)ω of sets

of states in a game, we define γ(ρ) as the set of paths π such that |π| = |ρ| and for every

0 ≤ i < |π| it holds that π[i] ∈ ρ[i]. For ρ1, ρ2 ∈ (2Q)∗ ∪ (2Q)ω we write ρ1 ⊆ ρ2 iff

|ρ1| = |ρ2| and γ(ρ1) ⊆ γ(ρ2). We denote with κ(I) and κ(F) the perfect-information

games for I and F defined by knowledge-based subset construction [11].

We say that the strategy fae is concretizable in F iff there exists a winning strategy

fκe for Playere in κ(F) such that for every πκ ∈ prefs(fκe) there exists a πa ∈ prefs(fae)
such that πκ ⊆ πa. Concretizability of fae in I is defined analogously.

Since Ga(F ,AP) is a finite-state safety game, the strategy fae can be represented

as a finite tree Tree(fae) called strategy tree for fae , which can be used for constructing

a logical formula characterizing the concretizability of fae .

Each node in Tree(fae) is identified by a unique n ∈ N and is labeled with a state in

Qa denoted state(n). For a node n, we denote with children(n) the set of all children of

n, with path(n) the sequence of nodes on the path from the root to n and with pref(n)
the prefix in Ga(F ,AP) formed by the sequence of states corresponding to path(n).

The tree contains a root node 0 labeled with the initial abstract state qa0 . For each

edge from n tom in Tree(fae) it holds that (state(n), state(m)) ∈ T a. If n ∈ Tree(fae),
state(n) 6∈ Ba and state(n) ∈ Qa

e , then there exists a single child m of n in Tree(fae)
and state(m) = fae (pref(n)). If n ∈ Tree(fae), state(n) 6∈ Ba and state(n) ∈ Qa

c ,

then for every s ∈ Qa with (state(n), s) ∈ T a
c there exists exactly one child m of n in

Tree(fae) and state(m) = s. If state(n) ∈ Ba then children(n) = ∅.

Counterexample strategies that are spurious in F . If the counterexample-analysis

from [8] reports that fae is not concretizable in F , we refine the set AP with the pred-

icates generated by the interpolation-based refinement procedure described there and

continue. Otherwise, Playere has a winning strategy in κ(F), which implies that Playerc
does not have a winning strategy in F . This fact does not imply that fae is concretizable

in I, as the action-point function ξ might just be too imprecise.

Counterexample strategies that are concretizable in I. We now provide a logical

characterization of winning strategies for Playere in Ga(F ,AP) that are concretizable

in I. The result is a linear arithmetic formula with alternating universal and existential

quantifiers corresponding to the alternating choices of the two players. The variables

updated by Playere are existentially quantified and the variables updated by Playerc,

including the symbolic constants, are universally quantified.

The label state(n) of each node n in Tree(fae) is a state in Ga(F ,AP) and is

thus a set of valuations of the abstraction predicates AP . We associate with state(n)
a boolean combination of elements of AP and thus a formula ψn

st[V
n] (V n consists

of indexed versions of the variables in V and Dom(xn) = Dom(x) for x ∈ V). The

formula ψn
st[V

n], which is the disjunction of all conjunctions representing the valuations

in state(n), characterizes the set of states in I that are in the concretization of state(n).
As the abstraction is precise w.r.t. the choices of Playerc in F , for each node n in

Tree(fae), state(n) defines a valuation contr(n) = state(n)|V f
c

of the variables in V f
c .

For two nodes n and m such that m ∈ children(n) and state(n) ∈ Qa
p, where

p ∈ {c, e}, we define the formula ψn,m
tr that denotes the transitions in I from states that

satisfy ψn
st: ψ

n,m
tr [V n, V m] ≡ ψn

st ∧ Tp[V
n/V, V m/V ′].

11

We now turn to the definition of the quantified strategy-tree formula

QTF(Tree(fae)) that characterizes the concretizability of fae in I. We annotate in

a bottom-up manner each node n ∈ Tree(fae) with a quantified linear arithmetic

formula ϕn and define QTF(Tree(fae)) = ϕn0 [0/SCn0] where n0 is the root of

Tree(fae). If path(n) = n0n1 . . . nr, the formula ϕn will have free variables in

SC
n ∪

⋃r−1
i=0 (V

ni

o+c ∪ SC
ni) and thus QTF(Tree(fae)) will be a closed formula.

The annotation formula ϕn for a node n describes the set of prefixes in κ(I) that

are subsumed by pref(n) and lead to a state from which Playere has a winning strategy

in κ(I) contained in the corresponding subtree of n. Thus, the formula QTF(Tree(fae))
is satisfiable iff Playere has a winning strategy in κ(I) subsumed by fae .

– For a leaf node n (with state(n) ∈ Ba) with path(n) = n0n1 . . . nr we define:

ϕn ≡ ∃V n
o ∃V n0

u . . . ∃V nr

u

((r−1∧

i=0

ψ
ni,ni+1

tr ∧ψnr

st ∧locnr = lbad
)
[contr(n)/V f

c

n
]
)
.

– For a non-leaf node n with state(n) ∈ Qa
e and (single) child m, we define:

ϕn ≡ ∃V n
o

(
ϕm[SCn/SCm, contr(n)/V f

c

n
]
)
.

– For a non-leaf node n with state(n) ∈ Qa
c , we first define a formula ϕn,m for each

node m ∈ children(n). The definition of ϕn,m, i.e., the treatment of the symbolic

constants SCm in ϕm, depends on contr(m), i.e., on the choice made by Playerc in

the game F . For successorsmwhere Playerc chose to allow Playere to decide when

to execute the controllable action, we quantify universally over the variables in

SC
m, adding a condition which restricts their values to ones that are valid choices

of await points for Playerc in I. In order to ensure intermediate action points, we

further require that each cmx is smaller than the smallest action point in ξ(x) that

is larger than the current value of x. This gives a condition θm on the symbolic

constants SCm at node m and we define ϕn,m ≡ ∀SCm(θm → ϕm), where

θm ≡
(∨

x∈Xo+c

cmx >0
)
∧

∧

x∈Xo+c

(cmx >0 → cmx >x
n) ∧

∧

x∈Xo+c

c∈ξ(x)

(
xn<c→ cmx <c

)
.

For successorsmwhere Playerc chose to execute a controllable action immediately,

to reset some controllable clocks, or to remain idle, we substitute SC
m by 0, i.e.,

ϕn,m ≡ ϕm[0/SCm] (which agrees with the transition relation Tc in I). Finally:

ϕn ≡ ∃V n
o

(∧

m∈children(n)

ϕn,m[contr(n)/V f
c

n
]
)
.

The formula QTF(Tree(fae)) characterizes the concretizability of fae in I. Thus, if

QTF(Tree(fae)) is satisfiable, then Playerc has no finite-state winning strategy in I.

Proposition 3. For every winning strategy fae for Playere in Ga(F ,AP), the formula

QTF(Tree(fae)) is satisfiable iff the strategy fae is concretizable in I.

Extracting refinement action points from a model. We now consider the case when

the formula QTF(Tree(fae)) is unsatisfiable. Since QTF(Tree(fae)) is a closed formula,

its negation Φ = ¬QTF(Tree(fae)) is satisfiable. In Φ all symbolic constants (indexed

12

accordingly) are existentially quantified. Our goal is to compute witnesses for the sym-

bolic constants that can be used for refining the action-point function ξ to eliminate in

the resulting finite-choice game the winning strategies for Playere subsumed by fae .

Consider a block ∃SCn of existentially quantified symbolic constants in Φ. The

block ∃SCn is preceded by the blocks of universal quantifiers ∀V ni

o for i = 0, . . . , r,

where path(n) = n0n1 . . . nr. Thus, a witness w(c) for a symbolic constant c ∈ SC
n

for the satisfiability of Φ is a function w(c) : Vals(V n0
o)× . . .× Vals(V nr

o) → Q≥0.

Assume for now that we have a tuple of witness functions for the variables in SC
n

of the following form. For some k ∈ N>0, there are k positive rational constants

a1, . . . , ak and each ai is associated with some variable x ∈ Xo+c. The functions are

such that we have a case split with k cases according to the valuation v of the observable

variables along the prefix, such that in case i we have w(cx)(v) = ai, where x is the

variable associated with ai and w(cy)(v) = 0 for all other cy ∈ SC
n.

Let id : Xo+c → N ∩ [1, |Xo+c|] be an indexing function for the clock variables

Xo+c. Thus, each ai is associated with an index di ∈ [1, |Xo+c|] of a variable in Xo+c.

Example. Consider an example with Xo+c = {x1, x2}, where in the abstract state

state(nr) we know that the value of xnr

1 is in [0, 5] and the value of xnr

2 is 0, and the

”good” values for SCn are depicted as the gray sets on Fig. 5. The figure shows an

example where k = 3 and each ai is associated with the shown variable-index di. ⊓⊔

More formally, we assume the existence of a function b : Vals(V n0
o) × . . . ×

Vals(V nr

o) → N ∩ [1, k], such that for each cnx ∈ SC
n, the witness function w(cnx) is

such that for every valuation v ∈ Vals(V n0
o)× . . .×Vals(V nr

o) we have w(cnx)(v) = ai
for some i iff b(v) = i and di = id(x) and w(cnx)(v) = 0 otherwise.

We can then refine ξ as follows: For each x ∈ Xo+c we add to the set ξ(x) all

positive constants a such that w(cnx)(v) = a for some node n and valuation v. The form

of the function w(cnx) implies that the number of these constants is finite.

For a given k ∈ N>0, we restrict the possible witnesses for SCn to the above form

by strengthening the formula Φ. To this end, we replace the condition θn for SCn that

was used in the construction of Φ a stronger one, θn ∧ θnk where θnk is defined below.

The formula θnk refers to a fresh bounded integer variable bn with domain N∩ [1, k],
and the variables from a set An

k = {an1 , . . . , a
n
k} of k fresh rational variables and from

a set Dn
k = {dn1 , . . . , d

n
k} of k fresh bounded integer variables. The variable bn is

existentially quantified together with the symbolic constants in SC
n. The variables in

An
k and Dn

k are free in the resulting formula. We define the formula θnk as:

x2

x1
a1 a2

a3

a1 = 3, d1 = id(x1)

a2 = 6, d2 = id(x1)

a3 = 1, d3 = id(x2)

x
nr

1 ∈ [0, 2) 7→ cnx1
= 3, cnx2

= 0

x
nr

1 ∈ [2, 4) 7→ cnx1
= 0, cnx2

= 1

x
nr

1 ∈ [4, 5) 7→ cnx1
= 6, cnx2

= 0

Fig. 5. Example of witnesses for symbolic constants cnx1
and cnx2

.

13

θnk ≡ ∃bn
k∧

i=1

(
bn = i→

∧

x∈Xo+c

(
(id(x) = dni → cnx = ani)∧(id(x) 6= dni → cnx = 0)

))
.

The refinement procedure iterates over the values of k ≥ 1, at each step constructing

a formula Φk by replacing each constraint θn in Φ by θn ∧ θnk . For each k ≥ 1, Φk is

a strengthening of Φ and Φk+1 is weaker than Φk. The procedure terminates if a k for

which the formulaΦk is satisfiable is reached. In this case we use the values of the newly

introduced variables fromAn
k to refine the action-point function ξ. Thus, if it terminates,

Algorithm 1 returns a new action-point function ξ′ such that for every x ∈ Xo+c, we

have ξ′(x) ⊇ ξ(x). The new action points for x are extracted from a model for Φk as the

values of those variables ani for which dni is equal to id(x), and they suffice to eliminate

all strategies fκe winning for Playere in F that are in the concretization of fae .

Algorithm 1: Computation of refinement action points

Input: satisfiable Φ with θni for SCni , for i = 1, . . . ,m; function ξ : Xo+c → 2Q>0

Output: function ξ′ : Xo+c → 2Q>0

ξ′(x) := ξ(x) for every x ∈ Xo+c; sat := false; k := 0;

while sat == false do { k++; construct Φk; sat := check(Φk); }
M = model(Φk);
foreach (n, i) ∈ ({n1...nm} × {1, ..k}) with M(an

i) > 0 do

forall x ∈ Xo+c with id(x) = M(dni) do ξ′(x) := ξ′(x) ∪ {M(an
i)};

return ξ′

Proposition 4. Let fae be a winning strategy for Playere in Ga(F ,AP). If Algorithm 1

terminates, it returns an action-point function ξ′ such that for the await-time game with

fixed action points F ′ = F(I, ξ′), Playere has no winning strategy fκe in κ(F ′) such

that for every πκ ∈ prefs(fκe) there exists a πa ∈ prefs(fae) with πκ ⊆ πa.

6 Results and Conclusions

We developed a prototype implementation of the presented extension of the CEGAR

procedure from [8] to the case of await-time games. We applied our prototype to the

safety controller synthesis problem for the Box Painting Production System and the

Timed Game For Sorting Bricks examples due to Cassez et al. [4]. We encoded the

synthesis problems as await-time games and, starting with empty sets of action points,

applied our method to compute observations for which the plants are controllable.

In Table 1 we report on the results from our experiments preformed on an Intel

Core 2 Duo CPU at 2.53 GHz with 3.4 GB RAM. We present the maximal number

of explored states in the intermediate abstractions, the size of the abstract strategy, the

number of action points in the final game, as well as the number of refinement itera-

tions for the await-time game with fixed action points and the number of refinement

iterations of the CEGAR loop. In order to demonstrate that our method performs well

in situations where fine granularity is needed to win the game, i.e., when the constraints

occurring in the plant involve large constants and the differences between certain guards

14

A. States A. Strategy Act. Points OBS Iter. CEGAR Iter. Time TIGA

Paint 626 55 2 2 8 73.50 0.08

Paint-100 573 49 2 2 5 29.65 3.57

Paint-1000 573 49 2 2 5 29.53 336.34

Paint-10000 560 76 2 2 7 54.85 > 1800

Paint-100000 614 55 2 2 7 52.88 > 1800

Bricks 1175 125 3 3 3 24.85 0.05

Bricks-100 1175 175 3 3 3 25.16 2.63

Bricks-1000 1175 176 3 3 3 25.29 302.08

Bricks-10000 1175 176 3 3 3 25.83 > 1800

Bricks-100000 1175 175 3 3 3 25.40 > 1800

Table 1. Results from experiments with our prototype on Box Painting Production System and

Timed Game For Sorting Bricks: number of states in largest intermediate abstraction, size of ab-

stract strategy for the controller, number of action points in final abstraction, number of iterations

of the respective refinement loops and running time (in seconds). Results from experiments with

UPPAAL-TIGA with fixed observations (controllable cases): running time (in seconds).

and invariants are small, we constructed multiple instances of each example. Instances

Bricks−N and Paint−N , where N ∈ {100, 1000, 10000, 100000} were obtained by

adding the constant N to all positive constants occurring in the plants.

The results show that the size of the abstract games and strategies generated by our

approach depend on the number of action points and predicates and not on the size of

the constants in the plant. This is in contrast with approaches based on fixed granularity,

where strategies involve counting modulo the given granularity.

Since the problem of synthesizing observation predicates for timed games under in-

complete information is out of the scope of existing synthesis tools, a relevant compar-

ison is not possible. However, we used the tool UPPAAL-TIGA, which supports timed

games with partial observability and fixed observations, on the problem instances con-

structed as explained above. For the Box Painting Production System we used observa-

tion y ∈ [0, 1) and for the Timed Game For Sorting Bricks we used observation [0, 0.5)
(given as y ∈ [0, 1) by scaling accordingly). One can see in Table 1 that, although on

the small instances the running times are better compared to our approach, on instances

where fine granularity is needed, our approach synthesizes good observations consider-

ably faster than it takes UPPAAL-TIGA to solve the game with given fixed granularity.

Conclusions. We presented a method to automatically compute observation predicates

for timed controllers with safety objectives for partially observable plants. Our approach

is based on the CEGAR-paradigm and can be naturally integrated into the CEGAR-loop

for games under incomplete information. The observation refinement procedure could

be beneficial to methods for solving timed games with fixed observations that are not

necessarily CEGAR-based. The bottleneck in such approaches is the enumeration of

granularities, which leads to a dramatic increase in the number of state-sets, that need to

be explored, and the size of the resulting strategies. As we demonstrated, in some cases,

when a reasonable number of action points suffices for controllability, our approach can

be extremely successful. This opens up a promising opportunity for synergies between

the CEGAR-paradigm and specialized techniques for timed systems.

Acknowledgement This work is partially supported by the German Research Foundation

(DFG) as part of SFB/TR 14 AVACS and by a Microsoft Research PhD Scholarship.

15

References

1. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,

126(2):183–235, Apr. 1994.

2. P. Bouyer, D. D’Souza, P. Madhusudan, and A. Petit. Timed control with partial observabil-

ity. In Proc. CAV’03, volume 2725 of LNCS. Springer, 2003.

3. F. Cassez. Efficient on-the-fly algorithms for partially observable timed games. In Proc.

FORMATS’07, volume 4763 of LNCS. Springer, 2007.

4. F. Cassez, A. David, K. G. Larsen, D. Lime, and J.-F. Raskin. Timed control with observation

based and stuttering invariant strategies. In Proc. ATVA’07, volume 4762 of LNCS, 2007.

5. K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Algorithms for omega-regular

games of incomplete information. In Proc. CSL’06, volume 4207 of LNCS. Springer, 2006.

6. L. de Alfaro and P. Roy. Solving games via three-valued abstraction refinement. In Proc.

CONCUR, volume 4703, pages 74–89. Springer-Verlag, 2007.

7. M. De Wulf, L. Doyen, and J.-F. Raskin. A lattice theory for solving games of imperfect

information. In Proc. HSCC’06, LNCS, pages 153–168. Springer, 2006.

8. R. Dimitrova and B. Finkbeiner. Abstraction refinement for games with incomplete infor-

mation. In Proc. FSTTCS’08, volume 08004 of Dagstuhl Seminar Proceedings, 2008.

9. B. Finkbeiner and H.-J. Peter. Template-based controller synthesis for timed systems. In

C. Flanagan and B. König, editors, TACAS, volume 7214 of Lecture Notes in Computer

Science, pages 392–406. Springer, 2012.

10. T. Henzinger, R. Jhala, and R. Majumdar. Counterexample-guided control. In Proc.

ICALP’03, volume 2719 of LNCS, pages 886–902. Springer, 2003.

11. J. H. Reif. The complexity of two-player games of incomplete information. J. Comput. Syst.

Sci., 29(2):274–301, 1984.

16

