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Even-odd effect in higher-order holographic production of electron vortex

beams with nontrivial radial structures

G. Thirunavukkarasu, M. Mousley, M. Babiker, and J. Yuan

Department of Physics, University of York, Heslington, York, YO10 5DD, United Kingdom

(Received 3 August 2018; published 11 January 2019)

Structured electron beams carrying orbital angular momentum are currently of considerable interest, both

from a fundamental point of view and for application in electron microscopy and spectroscopy. Until recently,

most studies have focused on the azimuthal structure of electron vortex beams with well-defined orbital angular

momentum. To unambiguously define real electron-beam states and realize them in the laboratory, the radial

structure must also be specified. Here we use a specific set of orthonormal modes of electron (vortex) beams to

describe both the radial and azimuthal structures of arbitrary electron wavefronts. The specific beam states are

based on truncated Bessel beams localized within the lens aperture plane of an electron microscope. We show

that their Fourier transform set of beams can be realized at the focal planes of the probe-forming lens using a

binary computer-generated electron hologram. Using astigmatic transformation optics, we demonstrate that the

azimuthal indices of the diffracted beams scale with the order of the diffraction through phase amplification.

However, their radial indices remain the same as those of the encoding beams for all the odd diffraction orders

or are reduced to the zeroth order for the even-order diffracted beams. This simple even-odd rule can also be

explained in terms of the phase amplification of the radial profiles. We envisage that the orthonormal cylindrical

basis set of states could lead to new possibilities in phase contrast electron microscopy and spectroscopy using

structured electron beams.

DOI: 10.1103/PhysRevA.99.013608

I. INTRODUCTION

In essence, electron microscopy can be considered as a

process in which information is transferred from the sample

plane to the image plane. As the information carriers in

electron microscopy are electrons, the information is encoded

in the changes introduced by the sample to the amplitude

and phase of the electron quantum waves. The standard ap-

proach to the quantum theory of electron microscopy is to

express the mono-energetic electron wave function in terms

of an orthonormal basis set of states, with the information

encoded in their amplitude and phase. The most commonly

used quantum basis set is that of plane waves, �(kx, ky ),

characterized by the transverse wave vectors kx and ky . We

have k2
x + k2

y + k2
z = k2

0 , with kz the longitudinal, or axial,

wave vector and k0 = 2π/λ [1]. It also happens to be a

convenient basis set as the back focal plane of the objec-

tive lens of the electron microscope then contains a map of

the amplitude and phase of the plane-wave decomposition

of the electron waves exiting the sample surface (plus the

inevitable transfer modulation function representing the im-

perfection of the objective lens, a complication that needs

to be considered in real applications). However, the actual

microscope in reality follows an axis-centric cylindrical de-

sign principle [2] and the transverse extent of the electron

waves is limited by the wall of the circular electron-beam

flight tube, the spatial coherence of the electron beams, or the

typical round apertures used to limit the electron waves to the

most spatially coherent part of the electron beam. Thus, for

the analysis of structured electron beams, an alternative

quantum-mechanical description of electron optics is needed

which must incorporate the transversely truncated electron

beam and which uses a quantum basis set involving cylindri-

cally symmetric wave functions.

We have recently proposed the set of truncated Bessel

functions [truncated Bessel beams (TBBs)] as such a quantum

basis set to describe the transverse variations of the structured

electron wave function in the apertured regions of the beam

[3,4], such as those existing in the lens plane. Consistent with

the need to describe the transverse variations of the beam wave

function in terms of two independent degrees of freedom,

the beam modes whose transverse structure is represented

by truncated Bessel beams are also characterized by two

quantum numbers, namely, the index l = 0,±1,±2, . . . as the

azimuthal quantum number and the index p � 0 as the radial

quantum number. For an nonzero l, these are electron vortex

beams with a topological charge l, carrying orbital angular

momentum lh̄ [3].

In this paper we focus on the experimental work leading

to the realization of the set of Fourier transforms (FTs)

of TBBs due to higher-order diffraction from a computer-

generated electron hologram (CGEH). We begin with a

brief summary of the essential formalism of the TBB quan-

tum basis set of functions and their more useful corre-

sponding set of Fourier transforms (the FT-TBB set). Fur-

ther details of the TBB and FT-TBB basis sets can be

found in our recent article [4]. We regard this work as

laying the foundation for further developments in electron

microscopy involving a cylindrically symmetric quantum

basis sets.

2469-9926/2019/99(1)/013608(9) 013608-1 ©2019 American Physical Society
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II. CYLINDRICALLY SYMMETRIC QUANTUM BASIS

It is well known that the wave function of an electron

beam inside a typical electron microscope can be described

adequately by Schrödinger’s equation (see, for example, [1])

H|�〉 = E|�〉, (1)

where the nonrelativistic Hamiltonian for an electron in free

space is simply

H = −
h̄2

2m
▽

2. (2)

We note that this linear Schrödinger equation is appropriate

for the current generation of electron microscopies where

the beam density is sufficiently small so that only a single

electron needs be taken into account at any one time [5].

In the case of physical scenarios where the current density

becomes sufficiently large, the nonlinear Schrödinger equa-

tion is required to properly describe the behavior of the

system. The electron vortex beams we focus on here extend

the study of matter vortices to the realm of practical electron

microscopy in which it is now clear that such electron vortex

beams bear much resemblance to optical vortices primarily as

regards the singularity in phase leading to a zero amplitude

on the beam axis, but differ from optical vortices in that,

unlike photons, electrons bear mass and charge and have half-

integer spin. Recent studies have identified vortex profiles

with an amplitude singularity, rather than zero amplitude in

a two-dimensional nonlinear model, where the interplay of

the repulsive nonlinearity (typical for atomic Bose-Einstein

condensates) and a pull to the center by an external potential

gives rise to vortices with an integrable singularity at the

center (i.e., vortices with a finite total norm) [6]. In what

follows we do not consider such vortex effects any further and

concentrate on electron vortex beams which are governed by

the linear Schrödinger equation.

The Hamiltonian of physical systems possessing cylindri-

cal symmetry can be expressed in terms of cylindrical polar

coordinates by writing, for the Laplace operator,

▽
2 =

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂φ2
+

∂2

∂z2
, (3)

where the transverse radial variable ρ and the azimuthal

variable φ are related to the x and y components of the

position vector in Cartesian coordinates by ρ =
√

x2 + y2

and φ = arctan(x/y), respectively. An arbitrary electron wave

passing through a region defined by a circular aperture of

radius ρmax has a wave function that can be written as a

superposition of the orthonormal set of eigenfunctions

�l (ρ, φ, z) = NlJl (k⊥ρ)eilφeikzz for ρ � ρmax, (4)

where eikzz is the kinetic phase factor with kz the longitudinal

(axial) wave vector, which is related to the electron wave

vector k0 by the relation k2
0 = k2

z + k2
⊥. The electron wave

vector k0 is related to the energy of the beam by E = h̄2k2
0

2m

and k⊥ =
√

k2
x + k2

y is the magnitude of the transverse (in-

plane) wave vector which takes discrete (quantized) values

k
pl

⊥ (where p is the corresponding radial quantum index),

depending on the boundary conditions to be detailed below.

The transverse variations of the beam at the aperture plane

are described by the azimuthal phase factor eilφ and the radial

function Jl (k
pl

⊥ ρ). By virtue of the cylindrical symmetry, the

wave function can only be a single-value function if l is

quantized so that it only takes integer values. This is the origin

of the azimuthal index l. To determine the origin of the radial

index p, we substitute the function given in Eq. (4) back into

the Schrödinger equation expressed in cylindrical coordinates

[Eqs. (1)–(3)] to obtain

d2Jl (k⊥ρ)

dρ2
+

1

ρ

dJl (k⊥ρ)

dρ
−

l2

ρ2
Jl (k⊥ρ)+

(

k2
0 − k2

z

)

Jl (k⊥ρ)

= 0. (5)

The expression on the left-hand side can be written into a more

familiar form on writing ξ = k⊥ρ and expressing k2
0 − k2

z as

k2
⊥. We then have, after dividing the equation by k2

⊥,

d2Jl (ξ )

dξ 2
+

1

ξ

dJl (ξ )

dξ
+

(

1 −
l2

ξ 2

)

Jl (ξ ) = 0. (6)

This is the well-known Bessel differential equation whose

solutions are Bessel functions of order l, either of the first kind

or of the second kind [7]. The Bessel functions of the second

kind go to infinity at the origin, hence Bessel functions of the

second kind cannot represent the physical wave function of an

electron beam, so for our purpose the relevant solutions are the

Bessel functions of the first kind which are finite everywhere.

If ρmax can be considered to be sufficiently large, the solutions

are Bessel beams [8,9] characterized by the scaling parameter

k⊥ which can take any real value.

When ρmax is finite due to the presence of an aperture

the solutions are TBBs, as explained earlier, with their trans-

verse variations confined within the apertured region about

the optical axis, a situation that is very common in electron

microscopy because of the finite coherence of the electron

sources employed, compared to the near-perfect coherence of

the light sources such as that of a laser. In that case, the scaling

parameter k⊥ takes discrete values since the Bessel functions

have to conform with the boundary condition

Jl (k⊥ρmax) = 0, (7)

which is satisfied when

k
pl

⊥ ρmax = ξpl, (8)

with ξpl the (p + 1)th zero of Jl (ξ ), the Bessel functions of

order l. As the Bessel functions of the first kind are oscillatory

functions of their argument, very much like the sinusoidal

functions, although with a gradually diminishing amplitude

as ξ increases, there are many such zeros for each Bessel

function Jl (ξ ). This leads to a set of functions describing the

transverse variations of the beams which we call the truncated

Bessel beams as described in Eq. (4). They are characterized

by the azimuthal index l and the radial index p. The radial

variations of lowest-order TBBs, namely, �
TBB
01 (blue), �

TBB
11

(red), and �
TBB
21 (yellow), are shown in Fig. 1.

Physically, it is well known that each of the cylindrical

wave functions of the form given in Eq. (4) has a vortex at

the optical axis (ρ = 0) if l is nonzero, because of the phase

indeterminacy [3]. The functions are also eigenfunctions of

013608-2
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FIG. 1. Examples of the radial profiles of the truncated Bessel

beams (blue for �
TBB
01 , red for �

TBB
11 , and yellow for �

TBB
21 ). Here

Jl (k
pl

⊥ ρ ) is the pth truncated Bessel function of order l, ρ is the radial

variable in the aperture plane with ρmax the radius of the circular

aperture.

the operator Lz = −ih̄ ∂
∂φ

such that

Lz|�l〉 = lh̄|�l〉. (9)

Therefore, it is clear that each member of the truncated Bessel

beam set possesses a quantized orbital angular momentum.

As Lz commutes with the Hamiltonian H, the orbital

angular momentum is conserved about the beam axis, with

its value proportional to azimuthal index l [10]. Consistent

with this, we have shown for TBBs defined in the structured

aperture plane of an electron lens that the corresponding wave

functions observable at the focal plane of the electron lens are

the Fourier transform of TBBs, which can be written as [4]

�
FT-TBB
pl (k⊥, ϕ, kz) = i lξplJ

′
l (ξpl )

Jl (k⊥ρmax)
(

k
pl

⊥
)2 − k2

⊥

eilϕ (10)

and are also eigenfunctions of orbital angular momentum with

eigenvalue lh̄.
The radial index p has been called the missing and ig-

nored quantum number [11–13], as it has received very little
attention compared with that of the azimuthal index l, which
current studies of electron vortex beams have largely focused
on [3]. However, both the radial and azimuthal variations
are required to fully represent any given two-dimensional
transverse structure of an electron beam, particularly in a
cylindrically symmetric optical systems as in the case of
electron microscopy.

The study of the truncated Bessel beams using a binary
computer generated hologram was discussed for the p = 0
mode by Clark et al. [14] in the context of the production
of a focused vortex beam using a lens with an aperture.
Thirunavukkarasu et al. [4] presented a detailed study of
the electron vortex beam generation in a similar setting, but
now involving nontrivial higher-p-index modes. Due to space
limitations, the focus of that paper was on the first-order
diffraction using a CGEH method with the results obtained
equivalent to a Fourier transform of the TBB mode.

In this paper we focus on electron vortex beams generated
by high-order diffraction from the same CGEH. The effect
of phase amplification present in higher-order diffraction of a
computer-generated hologram [15] is examined in detail for a
CGEH, as it is known that it can be used to generate vortex

FIG. 2. Phase plots of the transverse structure of the truncated

Bessel beams (a) �
TBB
01 , (b) �

TBB
11 , and (c) �

TBB
21 . (d)–(f) Corre-

sponding binary transmission functions. (g)–(i) Secondary electron

microscopy images of the related amplitude masks. The intensities

plotted have been rescaled to be comparable to each other.

beams with high azimuthal indices [16]. The interesting ques-
tion is what would their effect be on the radial indices of the
vortex beams generated.

III. EXPERIMENT

The CGEH pattern is generated numerically using the stan-

dard approach [3,17] to calculate the transmission function,

defined as the amplitude function of the superposition of

the beams with the desired truncated Bessel function as its

transverse structure at the aperture plane �
TBB
pl (ρ, φ) and that

of a reference wave �ref:

T (ρ, φ) =
∣

∣�
TBB
pl (ρ, φ) + �ref

∣

∣

2
. (11)

In our case, we choose eikx0x , a tilted plane wave, as the

reference wave to produce a forked version of the CGEH

T (ρ, φ) =
∣

∣NplJl

(

k
pl

⊥ ρ
)

eilφ + eikx0x
∣

∣

2
. (12)

The transverse phase structure of the truncated Bessel beam

is shown in Figs. 2(a)–2(c) for �
TBB
01 , �

TBB
11 , and �

TBB
21 ,

respectively. Note that the phase structure of the higher-order

radial modes are divided into p + 1 annular zones, with the

azimuthal phase structure of the pth zone shifted from the

central zone by pπ . This, as we will see below, is the key

feature to understand vortex beam generation using high-order

diffraction from the CGEH.

On expanding the square in Eq. (12), the transmission

function becomes

T (ρ, φ)=N2
plJ

2
l

(

k
pl

⊥ ρ
)

+ 1+2NplJl

(

k
pl

⊥ ρ
)

cos(lφ+kx0x),

(13)
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which consists of three terms. The first two terms represent

the zeroth-order diffraction beam. The last term, in contrast,

can be written as the sum of two parts. One is proportional

to ei(lφ+kx0x) and the other to e−i(lφ+kx0x). These correspond to

the first-order diffraction beam and its complex conjugate. To

generate these two diffracted beams experimentally, one needs

a grayscale CGEH that can modulate the intensities of the

incident plane wave according to T (ρ, φ), which is techno-

logically challenging. For ease of practical reproduction, the

transmission function is further binarized as

Tb(ρ, φ) =
{

1 for T � αTmax

0 otherwise,
(14)

where Tb(ρ, φ) stands for binarized transmission function,

Tmax is the maximum value of the transmission function given

in Eq. (13), and α is a parameter controlling the threshold

value used to binarize the gray level representation of the

original transmission function and here it is initially set at

0.5. Figures 2(d)–2(f) show, by way of example, the bina-

rized transmission functions for a CGEH constructed from

�
TBB
01 , �

TBB
11 , and �

TBB
21 , respectively. The binarized transmis-

sion functions are transferred onto gold-plated silicon nitride

membranes using focused ion-beam lithography as shown in

Figs. 2(g)–2(i) for a CGEH constructed from �
TBB
01 , �TBB

11 , and

�
TBB
21 , respectively.

To demonstrate that the binarization process as defined

by Eq. (14) does not lead to significant modifications of the

FT-TBB beams described by the transmission function as

given by Eq. (13), we present a comparison of the results of

the simulation of the first-order diffraction pattern with the

intensity of the exact wave functions of the FT-TBB beams

in Fig. 3. The comparison is shown for three typical vortex

modes with different p indices, namely, �FT-TBB
01 , �FT-TBB

11 , and

�
FT-TBB
21 . The data are presented in the diffraction angle space

(θ, ϕ), where θ is defined as arctan(k⊥/k0). The simulation

is done for 200-keV electrons and for ρmax = 2 µm. The two

results do indeed show that the difference is essentially neg-

ligible. This is consistent with our earlier findings involving

the binary masks of vortex beams with different amplitude

functions [14] ascertaining that in each case the final beam

profile is not much changed. As the main purpose of this

paper is about the higher-order diffraction which only exists

if a binary transmission function is used, we consider it

sufficiently instructive to compare the experimental results

with the results of the simulation using the binary transmission

function. For brevity, we will henceforth drop the superscript

FT-TBB when discussing the beams observed at the focal

plane of the apertured electron lens.

IV. RESULTS

Figure 4 shows the electron diffraction patterns recorded

at the back focal plane of the binary CGEH generated using

the transmission function given in Eq. (14). The experiment

is conducted inside a field-emission transmission electron mi-

croscope (JEOL 2200FS). The grating structures are inserted

at the specimen plane and the diffraction patterns are observed

at a low-magnification mode to resolve the micron radian

diffraction features, with the electron microscope operating at

200 kV in a free lens control mode. The experimental results

FIG. 3. Shown on the left are the simulated intensity profiles of

the FT-TBB evaluated using the exact transmission function as given

in Eq. (13). Shown on the right are the simulated intensity plots of

the approximate FT-TBB generated by the binarized version of the

transmission function defined by Eq. (14). The comparison in the top,

middle, and bottom rows are for the (p, l) eigenmodes (01), (11), and

(21), respectively.

are also presented in terms of the diffraction angle whose

values are calibrated using the diffraction grating formula

θh ∼ hλ
d

, where h is the order of diffracting beams, λ the

electron wavelength, and d the average slit separation. The

details of the first-order diffraction patterns have been briefly

discussed earlier [4] and the main results are summarized

here, as shown in the top two images on the left side of

Figs. 5–7. The top images of the second columns in Figs. 5–7

show the respective experimental first-order diffraction

parttens (marked by the label h = 1 and expt). These compare

very well with the corresponding amplitude plots of the

Fourier transforms of the binary transmission functions

shown in the top images of the first columns in Figs. 5–7

FIG. 4. Experimental diffraction patterns collected at the back

focal plane of the electron microscope for a CGEH constructed from

(a) �
TBB
01 , (b) �

TBB
11 , and (c) �

TBB
21 .
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FIG. 5. Shown on top are the detailed structures of the diffracted

beams and on the bottom their astigmatic transforms for the mask

encoding �
TBB
01 . Here h is the order of diffraction, expt refers to data

measured experimentally, and simul refers to theoretical simulation.

(h = 1 and simul). The diffraction pattern of the mask

encoding the vortex beam wave function �
TBB
01 has a familiar

bright doughnut shape (Fig. 5). The corresponding diffraction

pattern for the mask, encoding the vortex beam wave

function �
TBB
11 , consists of two prominent rings (Fig. 6). The

diffraction pattern of the mask encoding the vortex beam wave

function �
TBB
21 shows mainly three dominant concentric rings

(Fig. 7), with the outer rings being the brightest. In this way,

FT-TBB beams, like TBB beams, are Laguerre-Gaussian-like

(LG-like) in the sense that there are always p dominant

concentric rings for modes with radial quantum index p.

There are additional weak subsidiary ring structures in all

FT-TBB cases. The results can be understood in terms of

the doughnut ring structure multiplied by an Airy-pattern-like

point spread function, with the weak subsidiary ring structures

corresponding to the sideband structure of the Airy-pattern

function. This is because the truncated Bessel beam encoded

by the transmission function Tb at the apertured plane can be

considered as a product of a proper Bessel beam with its many

rings, multiplied by a top-hat function. The wave at the focal

point of the lens is the Fourier transform of the wave at the

lens aperture plane. By the convolution theorem, the Fourier

transform of the truncated Bessel beam is the convolution

of Fourier transform of the untruncated Bessel beam and the

Fourier transform of the top-hat function (which is described

by an Airy-pattern function). One can thus understand the

observed (first-order) diffracted beam in terms of an intense

ring due to the Fourier transforms of Bessel beams and

many subsidiary ring structures due to the convolution of

the intense ring structure by the Airy-pattern functions, as

shown in Figs. 6 and 7. The inner subsidiary ring or rings

are brighter than the outer one due to concentration of power

FIG. 6. Shown on top are the detailed structures of the diffracted

beams and on the bottom their astigmatic transforms for a mask

encoding �
TBB
11 . Here h is the order of diffraction, expt refers to data

measured experimentally, and simul refers to theoretical simulation.

FIG. 7. Shown on top are the detailed structures of the diffracted

beams and on the bottom their astigmatic transforms for a mask

encoding �
TBB
21 . Here h is the order of diffraction, expt refers to data

measured experimentally, and simul refers to theoretical simulation.

into rings with their smaller radius. The existence of the weak

ring structures distinguishes our bandwidth-limited structured

beams from either the Fourier transform of the Bessel beams

or the Laguerre-Gaussian beams.

The vortex nature of the phase structure can be demon-

strated indirectly using an astigmatic transformation [18].

The astigmatic transformation is achieved inside the electron

microscope by introducing astigmatism via astigmatic control

[19,20]. The results of the astigmatic transformation are dis-

played in the bottom panels of Figs. 5–7.

The astigmatic probe in the first-order diffraction beam

from the mask encoding �
TBB
01 consists of two main dots

(Fig. 5). In the case of the higher-order diffraction peaks,

a row of increasing numbers of dots is observed and the

number of dots increases with the order of the diffracted

beam and is such that the number of dots is the number of

diffraction order plus one. Alternatively, the number of dark

lines separating the dots equals the number of the diffraction

order. A similar astigmatic transformation is well known in

optical vortex beams when LG beams are transformed into

Hermite-Gaussian (HG) beams under astigmatic transforma-

tion, with the number of dark lines of the Hermite-Gaussian-

like electron beam being related to the topological charge

of the Laguerre-Gaussian-like electron beam or its intrinsic

orbital angular momentum [18,21].

For the first-order diffracted beam from the mask encoding

�
TBB
11 (�TBB

21 ), the astigmatic probe consists of two (three)

rows of three (four) dots [Figs. 6 and 7]. This is comparable

to the optical equivalent of the astigmatic transformation of

Laguerre-Gaussian LGpl beams into Hermite-Gaussian HGnm

beams, where p = m and l = n − m for n � m. The num-

ber of dark lines separating the bright dots in the HG-like

beams can be used to identify the relevant n and m integers

characterizing the HGnm beam. Once identified, they can

be used to characterize the corresponding LGpl-like beams.

In our experimental results (Figs. 6 and 7) we observed

the intensity patterns of HG21-like (HG31-like) beams after

astigmatic transformation, as there are 2 × 1 (3 × 2) dark

lines separating the bright dotlike intensity patterns. This is

consistent with the original LG11-like (LG21-like) beams we

started with. It is important to emphasize that the diffracted

beams we have observed are not exactly the same as LG

beams as the actual intensity patterns here have additional

weaker features that can be seen when the intensity of the

images is increased.
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Applying the analysis outlined above on the intensity pat-

terns of the astigmatically transformed high-order diffracted

beams shown in Fig. 5, we find that the emerging HG-like

beams have dark lines separating the single row of bright dots

in proportion to the order of the diffraction. This suggests

that the radial indices of the untransformed diffracted beams

remain as p = 0 while the angular index scales with the order

of the diffracted beam. In other words, the hth-order diffrac-

tion of the original mask encoding �
TBB
0l can be classified as

an LG0(hl)-like vortex beam. This effect has been exploited

to produce electron vortex beams with very high topological

charge [16].

Can we use the high-order diffraction from our CGEH

gratings to produce electron beams with higher radial indices

as well? Our results demonstrate that this is not possible.

In Fig. 6, the diffracted beams with h = 2, 4, and 6 can be

similarly identified by their astigmatically transformed beam

pattern as LG0h-like vortex beams. The diffracted beams with

h = 3, 5, and 7 can be roughly identified with LG1h-like

vortex beams. This suggests that the higher-order diffraction

still generates vortex beams with h times the topological

charge of the original beam encoded in the CGEH, however

the radial indices either stay the same (for odd h) or are

effectively reduced to p = 0 (for even h). A very similar

effect is observed in Fig. 7. For even h, the radial indices

of the corresponding beams are both zero, despite the fact

the radial index of the vortex beam encoding the CGEH is

2. The experimental result for h = 3 is not perfect, but it still

gives an indication that it is closer to that found in the first-

order diffracted beam. Together with other high-odd-order

diffracted beams, their radial indices are about the same as

the first-order diffracted beam.

V. DISCUSSION

A key observation is that the angular indices of the higher-

order diffracted beams scale with the diffraction order h but

the radial indices of the diffracted beams revert to zero for

even h and remain unchanged for odd h. This can also be

understood in terms of phase amplification seen in higher-

order diffraction. The phase amplification effect is a well-

known phenomenon in holography [22] and can be understood

from the basic principles of the diffraction hologram. In our

case, the phase amplification stems from the binarization of

the transmission function shown in Eq. (13). According to the

binarization rule given in Eq. (14), the binarized transmission

function consists of a rectangular grating structure as shown

in Figs. 2(d)–2(f). In analogy with the mathematics for the

regular rectangular holographic grating (see the Appendix),

the transmission function for a simple vortex beam of the form

eilφ can be written as

Tl = |e−ilφ + eikx0x |2 = 2[1 + cos(kx0x + lφ)] (15)

and the corresponding binary transmission function is a series

of slits with width d − a and repetition length d (which is

related to the wavelength of the reference wave),

Tlb =
a

d
+

∑

h=1,2,...

2

hπ
sin

(

hπa

d

)

cos(hkx0x + hlφ). (16)

The resulting diffraction pattern is given by

�(kx, ky ) = F (T ) =
a

d
δ(kx, ky ) +

∑

h=±1,±2,...

2

hπ
sin

(

hπa

d

)

× δ(kx − hkx0, ky ) ⊛ F (eihlφ ), (17)

where F is the Fourier operator and δ(kx, ky ) is shorthand

for δ(kx )δ(ky ). We have also used the convolution theorem

to write

F (eihkxox+ilφ ) ∝ δ(kx − hkx0, ky ) ⊛ F (eilφ ). (18)

It is known that, due to rotational invariance [23], the Fourier

transform of the vortex beam phase function is another beam

with a similar vortex phase function form [24]

F (eilφ ) ∝ eilϕ, (19)

where ϕ is the azimuthal variable in the cylindrical polar

coordinate description of the diffraction plane (k⊥, ϕ) or

alternatively (kx, ky ).

For a diffractive hologram encoded with a vortex beam

with an azimuthal phase ramp term eilφ , the same phase

structure is reproduced in the first-order diffraction as eilϕ ;

the phase amplification effect of the hth-order diffracted beam

will result in a vortex beam in the diffraction plane with an

azimuthal term eihlϕ . This is the mathematical basis for the

generation of electron vortex beams with large topological

charges using phase amplification associated with high-order

diffraction. The situation for the radial indices of the recon-

structed beam is rather different and can be understood by

an examination of the radial variation as shown in Fig. 1.

The higher-order modes are different from the p = 0 mode

by the division of the apertured area into concentric zones;

each differs from its immediate neighbor by a negative sign.

Alternatively, this can be considered as a phase change of π .

This can be understood if we write the radial dependence of

the TBB as

Jl

(

k
pl

⊥ ρ
)

=
∣

∣Jl

(

k
pl

⊥ ρ
)
∣

∣eiRp (ρ). (20)

An example of the radial phase function Rp(ρ) for the mode

�21 is shown in Fig. 8. The effect of this phase change is also

evident in the amplitude mask function as the fringe patterns

in the neighboring zones are shifted to be complementary

to each other [see Figs. 2(d)–2(f)]. This means that the bi-

nary transmission function Tb(p, l) for the two-dimensional

orthonormal modes with nonzero radial indices can be written

as

Tb(p, l) =
a

d
+

∑

h=1

2

hπ
sin

(

hπa

d

)

cos[hkx0x + hlφ

+hRp(ρ)] (21)

such that

�pl (kx, ky ) = F (Tb(p, l)) =
a

d
δ(0, 0)

+
∑

h=±1,±2,...

2

hπ
sin

(

hπa

d

)

δ(kx − hkx0, ky )

⊛F (eihlφ ) ⊛ F (eihR(ρ)). (22)
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FIG. 8. Radial dependence of the wave function for the mode

expressed in terms of (a) the amplitude |J1( ξ21ρ

ρmax
)| and (b) the phase

Rp (ρ ) in the radial direction.

The even-odd effect seen clearly in the higher-order

diffracting beams, particularly in their astigmatic transformed

states, can now be explained in terms of the effect of

phase amplification on the last Fourier-transformed factor in

Eq. (22). In the case of the even (h = 2k) -order diffracted

beams, the discrete phase change of π between the neighbor-

ing annular zones in the grating mask will become a discrete

phase change of 2kπ , where k is a positive integer. This

effectively results in the elimination of the sign-alternating

binary phase zone structure, because ei2kR(ρ) = 1, and hence

this results in the observation of the beam mode with the

(p = 0)-like radial structure. In the case of the odd (h = 2k +
1) -order diffraction beams ei(2k+1)R(ρ) = eiR(ρ), the phase

amplification results in no change of the phase of the zone

structure, so the radial indices of the resulting higher-order

diffracted beam will be the same as that of the first-order one.

A closer examination of the fine structures of the higher-

order diffraction patterns suggests an occasional departure

from the simple even-odd rule. This can be partially under-

stood in terms of missing information in the phase amplifica-

tion process, as the zeros of the Bessel functions represent the

missing information at their radial positions in the diffraction

plane. This means that the phase amplification by an even

number of times cannot strictly transform the radial wave

function back to the zeroth-order wave function. Also, the

lens aberration, whose amplitude also scales with the radial

variable of the beam, will also modify the radial dependence

of the beam. In other words, a beam generated by an even-

order diffraction is no longer in a pure state, which may

explain the complex astigmatic pattern for h = 6, as seen in

Fig. 7. However, judging by the experimental astigmatically

transformed results, the departure from a pure state for the

cases we have examined in this paper is generally quite small.

In addition, the overall intensities of the diffracted beams

also depend on the details of the binarization, which have

not been explicitly mentioned in the above discussion of

the even-odd rule. We see that the intensity profile of the

third-order diffraction shown in Fig. 7 does not follow the

above simple even-odd rule. What we have not mentioned

explicitly so far is the envelope effect of the beam-blocking

bars in the binary CGEH, the width of which is defined by the

parameter α defined in the binarization rule given in Eq. (14).

The shape functions of these bars will produce their own

Fourier transforms which affect the intensities of the resulting

diffracted beams through its envelope function sin( hπa
d

). In

our case, a/d ∼ 0.4 as seen in Fig. 2, which suggests that the

envelope function reaches a minimum near h = 3. The overall

effect on the resulting envelope function can be clearly seen in

Fig. 4 as a general depression of the intensity of the third-order

diffracted beam. Due to the different phase shifts, the shape

function of the binary CGEH varies at different zones in

the mask, resulting in different effects on the intensities at

different radial parts of the diffracted beams.

One application of our two-dimensional cylindrical basis

set is in the efficient description of arbitrarily shaped electron

probes. This is, for example, necessary in electron ptychogra-

phy [25], scanning transmission electron microscopy [26], and

recently developed imaging scanning transmission electron

microscopy [27]. Our biorthogonal beam modes constitute

a special example of a set of structured beams showing

superoscillating electron wave functions with subdiffraction

features [28]. Such structured electron probes, particularly

those represented by the topologically nontrivial l �= 0 and

p �= 0 beams, have not been explored much in scanning

probe microscopy and spectroscopy, but may hold advantages

over their more familiar topologically trivial counterparts. For

example, their distributed beam intensities may minimize the

beam-induced atomic motion during single-atom imaging and

spectroscopy [29,30].

VI. CONCLUSION

In summary, we have presented the procedure and

results of an experimental study aimed at the production

of cylindrical orthonormal electron modes using binary

computer-generated holograms. In particular, we found that

higher-order diffraction beams can produce higher-order

azimuthal electron-beam modes from binary masks encoding

a lower-order azimuthal electron-beam mode through a phase

amplification effect. This useful property also applies to

the beams with high-order radial indices. The same phase

amplification effect however leads to a complex variation

in the higher-order radial modes of the electron beams. All

the even-order diffracted beams produce approximate beams

with the zeroth radial index, while the radial structure of the

original beam should be largely reproduced for the odd-order
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diffracted beams. Additional factors such as the binarization

threshold and the shape of the fringes also contribute to

the final observed structure. Furthermore, the overlap of

different diffracted beams for very large diffraction orders

is an additional factor to consider in the interpretation of

the experimental results. This suggests that the high-order

diffraction from the CGEH involving a π -step change in

the radial phase structure is not a viable way to generate

beams with higher-order radial structures, in contrast to

the azimuthal modes. It is important to point out that this

conclusion is quite general; for example, it should also apply

to the holographic reproduction of Laguerre-Gaussian modes

[21] often encountered in optical vortex beams. The same

nontrivial effect will lead to complex changes to the radial

structure of the beams arising from the superposition of the

orthonormal set of modes we have discussed here.
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APPENDIX

By a regular rectangular holographic grating we mean a

grating derived by the binarization of a transmission function

due to the interference of a plane wave (the encoding wave)

with a tilted plane wave (the reference wave). In analogy to

Eq. (12), the corresponding transmission function is given by

T = |1 + eikx0x |2 = 2[1 + cos(kx0x)], (A1)

where kx0 = 2π/d and d is the transverse wavelength of the

reference wave. Applying the rule of Eq. (14), the binarized

transmission function consists of regularly spaced rectangular

gaps of width a, at a repeat distance d apart. The width a is a

function of the parameter α defined in Eq. (14). At α = 0.5,

we have a = 0.5d and the grating structure has a square-wave

profile along the x direction. Otherwise, the amplitude mask

has a rectangular line profile along the x direction.

Expanding the periodic and rectangular wave in terms

of the cosine series, we have the binarized version of the

transmission function Tb, represented by

Tb =
a

d
+

∑

h=1

2

hπ
sin

(

hπa

d

)

cos(hkx0x). (A2)

The diffraction of the incident beam by the mask defined by a

transmission function T is the Fourier transform of T . It helps

to recall that

cos(kx0x) = 1
2
(eikx0x + e−ikx0x ) (A3)

and

F (e±ikx0x ) ∝ δ(kx ∓ kx0). (A4)

For the analogous transmission function defined in Eq. (A1),

the wave function at the diffraction plane is given by

�(kx, ky ) = F (T ) ∝ 4δ(kx )δ(ky ) + 2δ(kx − kx0)δ(ky )

+ 2δ(kx + kx0)δ(ky ). (A5)

The first term corresponds to the undiffracted beam, while the

last two terms consist of the diffracted beam and its complex

conjugate. For simplicity, we redefine δ(kx )δ(ky ) as δ(kx, ky ).

Similarly, we have δ(kx ± kx0)δ(ky ) as δ(kx ± kx0, ky ).

For the binarized transmission function defined in

Eq. (A2), the corresponding wave function in the diffraction

plane is given by

�(kx, ky ) = F (T ) ∝
a

d
δ(kx, ky ) +

∑

h=±1,±2,...

2

hπ
sin

(

hπa

d

)

× δ(kx − hkx0, ky ). (A6)

The binarization processes are responsible for the higher-

order diffracted beams at δ(kx − hkx0, ky ) for |h| > 1. For

the square-shaped regular diffraction pattern, a = 0.5d and

sin( hπa
d

) = 0 for even values of h, hence only terms with odd

values of h are involved. This means that the intensities of the

even-order diffraction beams are zero or very small.

In our nontrivial case, because the hologram consists of

interference patterns with locally variable bar widths, the

even-order beams are generally not completely eliminated but

are related to the even-odd effect we observe in the change to

the radial indices.
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