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Abstract—Mobile edge caching (MEC) and device to device
(D2D) communications are two potential technologies to resolve
traffic overload problems in internet of things (IoT). Previous
works usually investigate them separately with MEC for traffic
offloading and D2D for information transmission. In this paper, a
joint framework consisting of MEC and cache-enabled D2D com-
munications is proposed to minimize the energy cost of systematic
traffic transmission, where file popularity and user preference
are the critical criteria for small base stations (SBSs) and user
devices, respectively. Under this framework, we propose a novel
caching strategy where Markov decision process (MDP) is applied
to model the requesting behaviours. A novel scheme based on
reinforcement learning (RL) is proposed to reveal the popularity
of files as well as users’ preference. In particular, Q-learning (QL)
algorithm and deep Q-network (DQN) algorithm are respectively
applied to user devices and SBS due to different complexities of
status. To save the energy cost of systematic traffic transmission,
users acquire partial traffic through D2D communications based
on the cached contents and user distribution. Taking the memory
limits, D2D available files and status changing into consideration,
the proposed RL algorithm enables user devices and SBS to
prefetch the optimal files while learning, which can reduce
the energy cost significantly. Simulation results demonstrate the
superior energy saving performance of the proposed RL-based
algorithm over other existing methods under various conditions.

Index Terms—Content caching, D2D communications, internet
of things (IoT), Q-learning (QL), deep Q-network (DQN).

I. INTRODUCTION

With the advent of the fifth generation (5G) communication

era, dramatic increasing in the number of data devices such as
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smart-phones, internet of things (IoT) devices have emerged

and led to an exponential growth in data services. To support

those devices and the high volume of the data traffic, 5G

will require a paradigm shift that includes very high carrier

frequencies with massive bandwidths, extreme base station

and device densities and unprecedented numbers of antennas.

However, the traditional communication networks is far from

sufficient to undertake the traffic demands. This motivates the

need to develop new technologies such as millimetre wave,

massive multiple-input multiple-output (MIMO), machine-to-

machine communications, and they will lead to fundamental

changes in 5G and beyond wireless networks [1].

To cater the massive traffic demands and universal high

data rate, the idea that offloading the popular traffic to the

communication network edges was proposed and has attracted

a significant attention recently in both academia and industry

[2], [3]. This caching scheme, i.e., mobile edge caching

(MEC), proactively fetches the content and caches them at

the edge nodes, e.g., small base stations (SBS) and user

devices. Since the edge nodes served users directly, MEC

resolves the backhaul constraints efficiently, and hence, the

transmission latency reduces significantly. In most research

work, MEC consists of two core stages, one is the content

delivery stage, in which the users’ requests will be satisfied.

The other is content placement stage, in which the selected

content will be placed in the edge nodes [2]. The content

placement stage mainly relies on the caching policy, where the

storage limits, user preference, caching locations etc. are taken

into consideration. To address the policy selection problem,

caching strategies with different optimization objectives have

been investigated, e.g., the coded caching scheme [3] and the

learning based centralized caching scheme [4]. Furthermore,

many other caching assisted applications are studied as well,

e.g., recommendation policy based on caching content [5],

small population content caching policy [6], caching enabled

energy efficiency optimization [7].

In addition to the caching scheme, device-to-device (D2D)

communication is another key technology to improve system

capacity and resolve backhaul congestion. D2D scheme allows

the devices to establish direct communication link between

devices through bypassing the base station [8]. As a result,

both the system capacity and transmission energy saving can

be improved significantly. It can be observed that D2D has

been recognized as a key technology for 5G and beyond



wireless networks and investigated widely in various scenarios,

for example, the mode selection problem of D2D was solved

in [8]. In [9], authors propose multiantenna transceiver design

and multihop D2D communication to guarantee the reliable

transmission and extend the UAV coverage for IoT in disasters,

and the results confirm the performance improvement in the

throughput and outage probability by the proposed approaches.

In [10], the optimal routing was proposed for multi-hop D2D

communications. In [11], a D2D-assisted caching strategy

is investigate, and a non-parametric estimator is proposed

to estimate a optimal 〈user file〉 pairs for efficient caching.

Moreover, In [12], Wang et al . study the computation and

traffic offloading in cache-aided device-to-device multicast

networks for the content delivery and delay sensitive task

offloading services. In [13], a D2D-assisted machine type

communication model was explored.

With the great progress of machine learning (ML) re-

cent years, increasing research have adopted ML to solve

complicated communication problems, for example, a new

deep learning based Non-Orthogonal Multiple Access scheme

which can detect the channel characteristics automatically

[14], IoT feature extraction and reuse [15], caching file

selections [16]. Especially the branch of deep learning is

suitable to deal with some non-convex optimization problems.

Although there exists a complete set of convex optimization

theories, the communication environment nowadays gets more

and more complex, it is almost impossible to formulate a

pure convex problem in many scenarios. Therefore, more

and more communication scientists focus on developing the

potential of ML for some tricky communication problems.

As an important branch, deep reinforcement learning (RL)

has attracted great attention recently [17]–[22]. The authors

in [17] investigate the computation offloading problem in

blockchain empowered mobile edge computing system, where

the deep RL algorithm is applied to the computing offloading

decision-making process. Moreover, deep RL is also applied

in unmanned aerial vehicle autonomous target searching in

a complex disaster scene [18], where the superior ability on

dynamic programming of deep RL can be observed. In addi-

tion, some well-known deep RL algorithms such as SARSA

[19], DQN [20]–[22] are investigated and exploited in practical

communication systems. In particular, the DQN algorithm is

used for resource allocation in edge computing networks [20],

dynamic multichannel access problem in wireless networks

[21] and mobile robots path planning problems [22].

A. Prior work

Exposing the popularity of requested files is the primary

goal of existing works, where most of the works take the

content popularity as the main criteria to decide which files

should be cached [23]–[25]. Specifically, an online Pop-

Caching scheme has been used to learn the popularity of

files to determine which content it should store and which

it should evict from the cache in [23]. In [24], the caching

and scheduling policies were jointly optimized to maximize

successful offloading probability, D2D and caching are adopt-

ed simultaneously and the offloading gain are remarkably

improved. In [25], the problem of video file caching based on

wireless D2D was investigated, in which mobile users were

designated as helpers store popular video files and serve other

requesting users via D2D localized transmissions. In [26],

the authors investigate the outage probability and symbol-

error rate for both full duple and full-duplex transmission

schemes in multihop networks subject to interference from

randomly distributed third-party devices. Differ from [26], in

this paper we focus on the minimization of energy cost, where

file popularity and user preference are the critical criteria for

SBSs and user devices, respectively.

Additionally, an architecture based on distributed caching

content in femto-base stations with helper nodes was proposed

in [27], in which D2D was applied to distribute the video.

Furthermore, in some recent research, ML based scheme is

adopted in wireless communications. In [28], a deep rein-

forcement learning (RL) method for resource sharing and

caching problem has been investigated. The deep RL approach

was applied to automatically make decision for optimally

allocating the resource, and the simulations prove the superior

performance of deep RL. However, the learning based caching

policies in D2D-assisted IoT remain to be explored and it is

worth studying on the joint caching technique based on D2D

and ML. Specially, a DQN algorithm is applied on mobile

robots path planning [20], where the DQN algorithm trained

an action value function for action estimation. In addition,

a dynamic multichannel access problem is investigated with

DQN in [22], where the problem is modelled as a Markov

decision process (MDP) with unknown system dynamics.

Particularly, the DQN algorithm can achieve near-optimal

performance, and it works better than other algorithms in a

more complex situation. In other words, the channel selection

decision can be efficiently solved with the help of DQN.

In [29], the total system power consumption minimization

problem in a cache-enabled mobile network is considered,

the authors decouple the optimization task into several sub-

problems and solve them with the idea of associating the users

with the SBS. In our work, we use a deep RL algorithm to

solve the file selection problem, and the optimal caching files

can be predicted directly.

B. Contributions

A systematic traffic transmission energy cost minimization

problem is investigated in this paper. Due to the complexity

and randomness of user requests, the energy minimization

problem turns out to be non-deterministic polynomial (NP)

hard. Hence the corresponding optimal solution are of great

computational complexity with conventional approaches. In

this case, a joint online scheme based on RL is proposed in

this paper. We model the user preference with Zipf distribution

rigorously to assist the RL algorithms. The RL algorithms, that

extract the underlying file popularities, are taken to predict the

next-slot optimal caching files. The algorithms approach the

optimal solution gradually with the user requesting. The main

contributions of this work are summarized as follows:

• We practically model user preference and the change

of user status with Zipf distribution and Markov chain



respectively. Furthermore, the system is modelled as a

Markov decision process (MDP), and the optimization

objective, i.e., the content transmission energy consump-

tion, is regarded as a criteria to supervise the learning

process. The users change their status obeying the under-

lying probability rigorously and every status corresponds

to a specific Zipf distribution instance.

• A RL method is introduced to determine the optimal

caching policy on both user devices and SBS. Specifi-

cally, QL is applied on user device and DQN is applied

on SBSs. A feedback mechanism based on the MDP is

designed in this paper which generates training samples

constantly. The RL algorithm is capable of adjusting the

caching policy to address the optimal caching content.

The preference of users will be predicted by the proposed

RL algorithm after its convergence.

• The proposed scheme is extended to enable D2D commu-

nication between user devices. Once the D2D connection

builds up, the cached popular content can be transmitted

mutually between the users with lower energy consump-

tion link. As a result, the systematic energy consumption

can be further reduced. On the other hand, the D2D

connection is constrained by the user location and the

caching content.

• Numerical results validates the effectiveness of the pro-

posed RL-based algorithm. More importantly, our find-

ings have demonstrated that a significant energy saving

can be achieved by our proposed RL-based algorithms,

and this has confirmed the advantages of integrating D2D

into cache-enabled IoT.

II. PRELIMINARIES

In this section, the system model of D2D-assisted cache-

enabled IoT is introduced first. Then, the energy cost formu-

lations for different situations are provided. Finally, the math-

ematical formulation of the optimization problem is presented.

A. System Model

Consider multiple SBSs within the coverage of a macro

base station (MBS), there exists a large number of users and

devices in this area. Each user can cache M files and SBS

can cache L files. There are F files in the core network. Due

to the storage constraint of users and SBSs, M ≪ L ≪ F .

Fig. 1 depicts the IoT scenario, users distribute randomly and

they can take D2D to acquire files with relatively lower power,

they can also store some popular and reusable files to reduce

requests to the SBS and MBS. Similarly, users obtain files

from SBS consumes much less energy than from MBS.

The requesting and satisfying procedure will be completed

in one time slot t (t = t1, t2, ...), where each slot is composed

of three parts, i.e. content delivery, information exchange and

content placement. In the content delivery stage which occu-

pies most of the slots, users request files through D2D, SBS

and MBS in turn as their demands. Then, in the information

exchange stage, SBS collects all the requests submitted by

the users and decides which files (L) to be cached in SBS.

In the last stage, the selected files for the next slot will be

Fig. 1. A D2D-assisted cached-enabled IoT where nearer users employ D2D
communication scheme.

placed in the storage of SBS, while users will cache M files.

The last two stages will be carried out in off-peak time and

the length of a time slot may be different depending on the

network traffic situation.

While in the delivery stage of t, user ui request file fv ,

where ui ∈ U and fv ∈ F . Specifically, U := {u1, u2, ..., uk}
represents the total users in the SBS coverage and F :=
{f1, f2, ..., fF } denotes the total available files. Note a(i, t) ∈
A as the 1× F binary action vector where

a(i, t)[v] =

{

1, fv is cached by ui in slot t

0, otherwise
, (1)

and A :=
{

a|a ∈ {0, 1}
F
}

, therefore, a1 = M for users.

Similarly, aSBS(t) ∈ A represents the caching action of SBS

and a1 = L.

For user ui, its behaviour can be described by the 1 × F
popularity vector Pt,i, the element Pt,i[v] = Pt,i,v means

the probability of the file fv requested by ui which can be

observed at the end of content delivery stage as:

Pt,i,v :=
user u′

is requesting times for file fv in t

user u′
is total requesting times in t

(2)

Every user owns its unique popularity vector associated with

the user’s preference. Therefore, for user ui, its status can be

denoted as a 1× 2F -vector s(t) and s(t) := [Pt,i, ai,t], which

will be used for user device’s decision making. Furthermore,

S denotes the state set for users. It should be noted that

the action ai,t is carried out in slot t but it will influence

the energy cost in slot t + 1. In general, our goal is to

predict the optimal caching content for SBSs and user devices.

Offloading the most popular content will reduce the energy

consumption in next time slot, which will lead to a universal

energy minimization.

B. Energy Consumption for Traffic Transmission

Consider path loss and small-scale fading first, channel

gain h attenuates with distance d as de, where the path loss

exponent e is usually assumed to be between 2 and 7 [30].

Furthermore, by taking small scale fading into account, the



channel power gain h can be defined as h = θ0d
e|g|2,where

|g|2 is the small scale fading and g ∼ CN(0, 1) is an

independent and identically distributed circularly symmetric

complex Gaussian vector with zero mean and covariance 1

[31]. The received power pr can be written as pr = pth. For

user ui, the requested content traffic with F × Ri > 0 bits

indicate its total demand in t. Based on these assumption,

three available methods are listed as follows:
1) D2D Method: In the content delivery stage, users check

if they have cached the requested files first, they use cached

files of Ri,s bits directly without any energy cost. Otherwise,

they check if their available neighbours have cached the files, if

the files have been cached by the neighbours, they will obtain

the files by D2D communications. Due to the low transmit

power constraint, the condition is very harsh for D2D that

users have to be close enough, and hence we set the distance

threshold as dmax. If du−u ≤ dmax, the D2D link can be

built up between the two users [32], if du−u > dmax, the

D2D connection would not be built. According to Shannon’s

theory, the transmission data rate r of user ui is

r = Blog2(1 +
ph

σ2
), (3)

where B is the transmission bandwidth, and σ2 denotes

additive white Gaussian noise. The cost time can be derived

as the ratio of transmission traffic to transmission rate [33]:

ti,D =
Ri,D

ri,D
, (4)

where Ri,D bits denotes the traffic transmitted through D2D

and pD denotes the transmit power between D2D users.

Therefore, the energy cost can be formulated as the product

of cost time and transmit power [33], [34]:

Ei,D = ti,DpD =
pDRi,D

ri,D
. (5)

2) SBS Method: As same as D2D method, we can formu-

late data rate between user ui and SBS with different distance

dSBS−u and transmit power pSBS . Similarly, the energy cost

can be written as:

Ei,SBS =
pSBSRi,SBS

ri,SBS

, (6)

where Ri,SBS bits denotes the traffic that user ui can not get

from D2D but SBS.
3) MBS Method: For the case that the SBS cannot satisfy

user ui’s demand, the rest request will be taken by MBS, the

energy cost is

Ei,MBS =
pMBSRi,MBS

ri,MBS

, (7)

where pMBS is the transmit power of MBS, and Ri,MBS

denotes the rest requested traffic.
4) Circuit Energy Consumption: Although there are traffic

transmission in the information exchange stage and content

placement stage of slot t, the two stages are too short to

accumulate energy consumed. The content delivery stage may

maintain for hours account for the network situation, but the

last two stages just continue for seconds. Therefore, the energy

cost of the last two stages will be ignored for simplicity. On

the contrary, we cannot ignore the circuit energy consumption,

due to the long term work time of circuit. The circuit energy

cost can be written as [33], [34]:

Ei,cir = pcirT, (8)

where pcir is the small circuit power and T is the time slot

length in second.

C. Power Minimization Formulation

Based on the knowledge above, the power minimization

problem of the D2D-assisted cache-enabled IoT can be math-

ematically formulated as:

min
ui∈U

K
∑

i=1

(Ei,D+Ei,SBS + Ei,MBS + Ei,cir) (9a)

s.t. Ri,s +Ri,D+Ri,SBS +Ri,MBS = FRi, ∀i ∈ K, (9b)

K
∑

i=1

(
Ri,D

ri,D
+
Ri,SBS

ri,SBS

+
Ri,MBS

ri,MBS

) ≤ T, (9c)

ri,D ≥ 0, ri,SBS ≥ 0, ri,MBS ≥ 0, (9d)

Ri,s ≥ 0, Ri,D ≥ 0, Ri,SBS ≥ 0, Ri,MBS ≥ 0. (9e)

Among them, (9a) defines the objective function of the

optimization problem; and (9b) is the total traffic amount

constraint of one user, where Ri,s, Ri,D, Ri,SBS and Ri,MBS

are bit-sized offloading amount of different edge nodes, and

they vary with users’ physical locations and caching selec-

tion strategies. Furthermore, the specific values of offloading

amount are set to be non-negative in (9e). Similarly, the

transmission rate is set to be non-negative in (9d). In (9c), the

time constraint of K users is formulated, the total requests of

users should be satisfied in every time slot.

We can observe that the objective function (9a) is rather

complicated, and the constraints defined in (9b) and (9c)

involve the caching policy and user locations, which are both

discrete non-convex constraints. Thus, the problem (9a) is a

non-convex optimization problem and difficult to obtain the

optimal solution directly. In the following sections, we will

develop RL-based schemes to jointly optimize caching policies

in order to minimize universal energy cost.

III. SELECTION DECISION AND REINFORCEMENT

LEARNING

In this section, file popularity distribution is introduced

first, and Markov chain that features user status follows. Then

the objective function is detailed. The optimal condition of

caching policy is drawn finally.

A. Zipf law distribution

We can make an reasonable assumption that the preference

of user obeys Zipf law distribution, which is known as a

famous model to measure the files popularity [35]. Further-

more, many realistic data set verifies the accuracy of Zipf law

distribution [32]. There is an essential parameter γ in Zipf law,

which differentiates the relative popularity of the files [35] as:

Pv =
1

vγ
∑F

l=1 1/l
γ
, (10)



Fig. 2. The Markov chain illustration for user, the status changes with
underlying probability.

which depicts the popularity of the v th most popular file.

We can use (10) to replace (2) to simulate all the preference

of files for users. Chen et al . had demonstrated that the best

fitted distribution of one specific user is a Zipf distribution

with parameter γ = 1.05 in [32], therefore, we assume that

γ ∼ N(1, 0.5) by default throughput this work.

B. Markov Chain

As shown in Fig. 2, user’s request behaviour is modelled

by Markov chains, where each user changes status with their

own probability. Each time slot, user occupied one status,

and for every status, user have different request behaviour.

In other words, users own different preference on files in

different status. It’s a practical assumption that user’s request

behaviour changes with relative long term but stay invariant in

short term. Therefore, we can take user’s preference invariant

during a time slot [32] [36]. In this paper, user devices and

SBS try different actions and learn the optimal policy from the

surroundings. The Markov chain will generates independent

sequential status constantly.

To characterize a Markov decision process, there are five

fundamental elements: status set S , action set A, transition

probability set P , reward set R and discount factor η, among

them, transmission probability P12 ∈ P denotes the condition-

al probability of state from S1 to S2, which is illustrated in Fig.

2. In addition, A denotes the caching action, P is unknown,

and η ∈ [0, 1] features the effect of historical data.

C. RL Formulation

For simplicity, we omit the lower corner t. In Fig. 2, assum-

ing there are |S| states for one user, and the whole states for

SBS can be written as a 1 × 2F binary vector set Q := {q|q =
[c1, c2, ..., cv, ..., cF , a

⊺], cv =
∑K

i=1 pi,v for v ∈ F , a ∈ A}.

We can figure out the total energy cost for SBS as:

Etotal(t, at−1) =

K
∑

i=1

(Ei,cir + Ei,D + Ei,SBS + Ei,MBS)

=

K
∑

i=1

{

pcirT + pt

(

Ri

F
∑

e=1

(1− ai(t−1))

I(

K
∑

n=1

an(t−1)[e] ≥ 1)I(di−n < dmax)
)

/

ri,D

+ pSBS

(

Ri

F
∑

e=1

(1− ai(t−1))I(

K
∑

n=1

an(t−1)[e] = 0,

di−n < dmax)I(aSBS [e] = 1)
)

/

ri,SBS

+ pMBS

(

Ri

F
∑

e=1

(1− ai(t−1))I(

K
∑

n=1

an(t−1)[e] = 0,

di−n < dmax)I(aSBS [e] = 0)
)

/

ri,MBS

}

. (11)

Next, we formulate the cost function for users. Given the

fact that the complexity of one user is relatively simple, we

put forward a new criteria to measure the cost of each user.

For the caching results, the more popular the cached file is,

the less energy the user consumes. In other words, the cost is

inversely proportional to the popularity of the cached file if the

caching storage is limited. Moreover, the sum of different files’

popularity is equal to 1, and hence we adopt the popularity to

model the cost of user i as

costi = 1−
∑

Pi

[

arg
index

ai,t−1[index] = 1
]

, (12)

which represents the general feature and clarify the cost of

different actions. Therefore, we take this criteria for users’

caching decision making.

Now, we can define our policy function π = S → A for

user and π = Q → A for SBS. Thus we define a caching

performance function named state-value function [35].

Vtotal,π(q(t)) := lim
T→∞

E

[ T
∑

τ=t

ητ−tEtotal(τ, π(q[τ ]))

]

, (13)

Vi,π(st) := lim
T→∞

E

[ T
∑

τ=t

ητ−tcosti(τ, s(τ))

]

, ∀i ∈ U . (14)

It is an expected average reward under policy π over

infinite time. According to (13), the value Vπ(s(t)) depicts the

influence of cost owing to current action and historical action.

On the other hand, it also represents the uncertainties and

imperfections. This discount factor avoids the large deviation

due to erroneous data. In general, our purpose is to find out the

optimal caching policy π∗
user for user and π∗

SBS for SBS. The

energy cost of each user is minimum with the optimal caching

policy on user devices and SBSs, therefore, the systematic

energy cost keeps minimum if the optimal caching policy are

taken. The optimal policies can be described as:

π∗
user = arg min

πuser∈Πuser

Vuser,π(s), ∀i ∈ U , ∀s ∈ S, (15)

π∗
SBS = arg min

πSBS∈ΠSBS

Vtotal,π(q), ∀q ∈ Q. (16)

Equation (15) and (16) are both sequential decision making

problems. We will present optimal solution in next section

and introduce a QL method for solving problem (15) and a

DQN method for problem (16).



IV. OPTIMAL SOLUTION AND RL METHODS

In this section, Bellman equations is first introduced, and

then policy formulas are transformed to iterative forms which

can be solved by RL, where the QL and DQN algorithms are

presented in detail.

A. Bellman Equation

As a classic paradigm, dynamic programming deals with

MDP well. Bellman equations formulate the main idea of

dynamic programming [37]. Therefore, the recursive form of

state-value function by using Bellman equation are:

V total,π(q) := Etotal(t, at−1)

+ η
∑

qt+1∈Q

Pπ(q)
q,qt+1

Vtotal,π(q(t+ 1)), ∀q, qt+1 ∈ Q, (17)

V i,π(s) := costi

+ η
∑

s∈S

Pπ(s)
s,st+1

Vi,π(s(t+ 1)), ∀s, st+1 ∈ S. (18)

The equation (17) consists of the observed cost Etotal(t −

1, at−1) and a discount of future state-value. P
π(s)
s,st+1

denotes

the transition probability unknown in reality, and π(s) is the

action generated under a specific policy. Based on (17) and

(18), the cost functions (11), (12) can be rewritten as:

Etotal(t, at−1) =
∑

qt+1∈Q

Pπ(q)
q,qt+1

Et+1,at
, (19)

costi =
∑

st+1∈S

Pπ(s)
s,st+1

costi,t+1. (20)

With the above equations, we can obtain Vtotal,π(q) and

Vi,π(s) with transition probability P a
state,next state, and obtain

the optimal policy π∗ using policy iteration algorithm [37].

Here, we define state-action value function based on the

underlying optimal policy, which is known as ”Q-function”:

Qπ(q, at) := Etotal(t, at−1) + η
∑

qt+1∈Q

Pπ(q)
q,qt+1

Vtotal,π(qt+1),

(21)

Qπ(s, at) := costi + η
∑

st+1∈S

Pπ(s)
s,st+1

Vi,π(st+1). (22)

In order to achieve the ability to learn automatically, we

design the updating steps as following [35]:

1) evaluating result: obtain Vi,π(s) and Vtotal,π(q) accord-

ing to (17) and (18) based on the policy π for all status.

2) update policy: renew the policy with equation

πt+1(state) := argmin
α

Qπt
(state, α). (23)

Bellman equations formulate the optimal conditions for our

problem but the transition probability is actually unknown in

practice. Therefore, we can’t compute (17) and (18) directly.

In order to obtain an acceptable result, RL algorithms are taken

into consideration. For user devices, since the amount of total

request is usually limited in reality, a basic QL scheme with

considerable low computation complexity and small model

volume is suitable. On the other hand, since the situation

is much complex for SBS, several deep RL algorithms are

considered. The asynchronous advantage actor-critic (A3C)

algorithm, which is proposed by Mnih et al . in [38], has better

convergence properties and is effective in high-dimensional

or continuous action spaces. However, the A3C algorithm

typically converges to a local optimum, which makes it

inefficient for evaluating a policy. Another classic deep RL

algorithm is proximal policy optimization (PPO) algorithm,

which is proposed by Schulman at al . in [39]. However,

due to the parameters are updated along the direction of the

policy gradient, there is also a limitation for PPO approach.

Specifically, the parameter itself has its own spatial structure,

and the direction of the strategy gradient does not take into

account the spatial structure of the parameter itself, thus the

update speed would be very slow. On the contrary, DQN is an

off-policy algorithm with a relatively simple structure. More

importantly, the application of experience reply accelerates

the training process of DQN, and hence the training sample

data can be utilized more efficiently. As a result, taking the

complexity of the algorithm as well as the convergence speed

into consideration, we employ DQN as our main algorithm to

solve the caching file selection problem.

B. QL and DQN for Caching

QL is a classic RL algorithm to gradually approach

the optimal selecting policy π∗, with evaluating the opti-

mal state-action value function Q∗(state, next action) :=
Qπ∗(state, next action), ∀state, next action. Similar to the

work in [35] and [37]. we can figure out that the optimal policy

π∗(s) satisfies

π∗(s) = argmin
α

Q∗(s, α), ∀s ∈ S. (24)

Considering (14), we can combine Q-function and state-value

function under π∗ as

V ∗(s) := Vπ∗(s) = min
α

Q∗(s, α). (25)

On the contrary, we can also get Q∗ as

Q∗(s, at) = costi + η
∑

st+1∈S

P a
s,st+1

min
α∈A

Q∗(st+1, α) (26)

The agent in QL algorithm updates the estimated Q value

as the real cost observed at the end of time slot. Given the

last-slot state s(t− 1), action a(t) and state s(t), the cost can

be described as costi. Meanwhile, the instantaneous error is

ǫ(s(t− 1), a(t))

:=
1

2

(

costi + ηmin
α

Q(s(t), α)−Q(s(t− 1), a(t))
)2

(27)

according to the gradient descent algorithm, we can get the

iteration equation as:

Q(s(t− 1), a(t)) = Q(s(t− 1), a(t)) (28)

− βt

∂

∂Q(s(t− 1), a(t))
ǫ(s(t− 1), a(t))

= Q(s(t− 1), a(t))

− βt

∂

(

1
2

(

costi + ηminα Q(s(t), α)−Q(s(t− 1), a(t))
)2
)

∂Q(s(t− 1), a(t))



Algorithm 1 User Caching via QL

1: Set s0 randomly and initialize a |S||A| × |A| table Q for

every user and Q0(s, a) = 0, ∀s, a
2: for t=1,2,. . . , do

3: for i ∈ U do

4: Choosing a(t, i) by ǫ-greedy algorithm

a(t, i) =

{

argmin
a

Qt−1(st−1, at−1) with ǫ

random a ∈ A with 1− ǫ
5: s is revealed at the end of slot as [Pt,i, at,i]
6: Evaluate the cost value: costi
7: Update Q value:

Qi,t(s(t− 1), a(t)) = (1− βt)Qt−1(s(t− 1), a(t))

+βt

[

costi + ηmin
α

Qt−1(s(t), α)
]

8: end for

9: end for

= Q(s(t− 1), a(t))

− βt

(

costi + ηmin
α

Q(s(t), α)−Q(s(t− 1), a(t))
)

(−1)

= (1− βt)Q(s(t− 1), a(t)) + βt

[

costi + ηmin
α

Q(s(t), α)
]

.

Based on the optimal conditions (24) – (28), the QL algorithm

can be presented in Algorithm 1.

The Q value is updated using stochastic gradient descent

algorithm [35], there are some necessary conditions to guaran-

tee the result of QL approaching the optimality. In this work,

we continuously renew the Q-table in order to satisfy these

necessary conditions.

Due to the update mechanism that renew one value of

the table each slot, the convergence speed is slow and the

algorithm may trapped with the dimension disaster. Therefore,

it is available only in simply scenario, and we use it on users

only. Compared with QL, the neural-networks-based DQN is a

better algorithm. The neural networks acts as the action-value

function, and estimates the Q value directly with experience.

The proposed DQN algorithm is presented in Algorithm 2.

The main idea of DQN is to build two neural networks

where one stays steady and the other keeps evolution. In

particular, the steady one update its parameter every C steps.

The major advantage of DQN is that there exists no Q-table

such that the performance of DQN is mainly rely on the

accuracy of Q-value estimating via neural networks.

V. SIMULATION RESULTS

The performance gain of the proposed RL-based join-

t scheme will be evaluated in this section. Three caching

schemes are used as benchmark for comparison in the same

simulation environment, which are listed in detail as follows:

• Proposed: The proposed joint scheme with QL on users

and DQN on SBS, and D2D is applied between users’

devices.

• Optimal: The popularities of all files is known a prior.

The SBS chooses the most popular files for the whole

coverage, and the user device chooses the most popular

files for users in every slot. It’s the theoretical optimal

Algorithm 2 SBS caching via DQN

1: Initialize reply memory D to capacity N
2: Initialize action-value function Q with random weights θ

and target action-value function Q̂ with random weights

θ− = θ
3: for episode = 1, 2, . . . , E do

4: Initialize sequence s1 and preprocessed sequence φ1 =
φ(s1)

5: for t=1,2,. . . , do

6: aSBS =

{

argmin
α

Q(φ(st), α; θ) with ǫ

random a ∈ A with 1− ǫ
7: Carry out aSBS in emulator and observe cost Etotal

8: Set st+1 = st, aSBS and preprocess φt+1 = φ(st+1)
9: Store transition (φt, aSBS , Etotal, φt+1) in D

10: Sample random minibatch of transitions

(φj , aSBS , Etotal, φj+1) from D

11: Set yj =

{

Etotal, episode end at step j + 1

Etotal + ηmin
α

Q̂(φj+1α; θ
−), otherwise

12: Perform a gradient decent step on

(yj − Q(φj , aSBS ; θ))
2 with respect to the network

parameter φ
13: Every C steps reset Q̂ = Q
14: end for

15: end for

solution as well as the base line situation which measures

the performance of other schemes.

• Random Selection: Both user devices and SBSs select the

caching files randomly, and D2D communication works

between users’ devices. It takes all the caching action

and D2D method except the RL algorithms compared

with the proposed one. This control group can measure

the effectiveness of the learning RL algorithms.

• Without User Caching: There is only DQN running on

SBS, and there is no caching content on user devices.

Therefore there is no D2D between users. With this

control group, we can figure out the effectiveness of D2D

and user local caching. Moreover, the effectiveness of

DQN can be evaluated in a more standard environment

in which there is no effect of user caching decisions.

Now, a two status Markov chain is defined for simplicity,

i.e. every user change between two status independently with

transition probability

Ps,st+1
:=

[

P11 P12

P21 P22

]

=

[

0.8 0.2
0.4 0.6

]

.

Every user will change status according to the underlying

transmission matrix independently. Then, the default param-

eters used in simulation are listed in TABLE I. To implement

the algorithm, a well-known programming tool namely Tensor-

flow v1.11 is used on the Python 3.6.7 platform, nowadays,

many works are programmed with Python and TensorFlow

platform [40], [41]. The users are distributed in a square field

with a side length of 120 meters, the SBS is on one corner of

this square and the MBS is 100 meters far from the SBS. For

DQN, the network is a 3 layers full connected neural network



TABLE I
SIMULATION PARAMETERS

Name Value

Learning rate β (DQN) 0.0001

Learning rate β (QL) 0.25

Discount rate η (DQN) 0.35

Discount rate η (QL) 0.8

Noise power σ2 1e-9 W

Circuit power pcir 1e-4 W

Power of D2D transmit pt 0.05 W

Power of SBS transmit pSBS 0.1 W

Power of MBS transmit pMBS 40 W

D2D distance threshold dmax 30 m

Time slot length T 20 S

File size Ri 1e4 bit

Bandwidth B 2 MHz

Fig. 3. Energy cost illustration with training steps for different schemes.

with random initialled weights and bias. The node numbers are

50, 135, 10 by order. The activation function is “ReLu” and the

optimizer is “RMSPropOptimizer”. In order to train the DQN

and QL algorithms on line, we implement the simulations by

imitating the real environment. Particularly, the users request

files along with their preference, and the status change is along

with the transition probability matrices which is unknown for

user devices and SBS. At the end of each slot, the requests

of all users and the energy cost are exposed for SBS, and

the DQN will make a caching decision for next slot based on

the observed requests and energy cost. In order to create the

“experience”, the observed requests, the caching action and the

energy cost will be integrated as an experience sample to store

in the memory storage. With the training process going on, the

experience samples will be replaced by new samples gradually.

For every epoch, the DQN selects a quantitative samples for

training, and the energy cost corrects the Q value function

along with the training, thus the estimation of the caching

selection is getting more accurate. On the other hand, since the

Q table in QL algorithm is not large, only |S||A|× |A| values

to update, the situation is much simpler for QL. It should

be noted that these system parameters are merely chosen to

demonstrate the energy saving performance in an example and

can easily be modified to any other values depending on the

specific scenario under consideration.

Fig. 4. Energy cost illustration with caching file number on SBS.

In the first set of simulation, the convergence of the pro-

posed joint RL-based algorithms is studied over 30 realization-

s. The energy cost achieved by the proposed joint RL-based

scheme is compared with that of the other three methods. As

shown in Fig. 3, it can be observed that the energy cost of

proposed solution converges about 5000 times to a stable value

which is close to the value based on optimal solution. The

result verifies the theoretical analysis where the proposed RL-

based scheme is efficient compared with the optimal scheme

as well as the random selection scheme. The optimal scheme

chooses the most popular files every slot, and hence it reaches

the theoretical edge. As a result, the cost of the optimal

scheme remains the smallest throughout the simulation rounds.

Furthermore, the stability of the optimal scheme is better than

all the other schemes. Although there is no caching on users in

without user caching scheme, there exists a decrease of around

5000 times, the whole characteristic parameters for one user

are 200 (2×10×10), and hence the parameters have reached

2800 for the whole system. Therefore, the DQN network can

observe all the users’ feature after approximate 2800 times.

Before that, the DQN network can not update the parameters

effectively. In addition, due to the state transition behaviour

of users, it needs more rounds to expose all the features.

Therefore, a drop shows at around 5000 times in Fig. 3 for

without user caching scheme, where the DQN algorithm has

learnt the preference of total users in the region thoroughly

and the prediction of SBS is accurate. For random selection

scheme, the cost keeps relative stable statistically. However,

due to the file selection mechanism, the random fluctuation

can be visually observed in Fig. 3, which is larger than other

three schemes. From Fig. 3, we can observe the impact of

user’s local caching. Specifically, even the random selection

scheme has an obvious energy saving compared to the without

user caching scheme.

Then we investigate the energy saving performance of

proposed scheme with different file number of caching file

on SBS. In this simulation, the parameters of constraints are

similar to the previous, and the caching file number M on user

device is fixed to 1 as default except the without user caching

scheme. The number of caching files on SBS varies from 0 to

4. From Fig. 4, it is obvious that energy cost monotonically



Fig. 5. Energy cost illustration with different user preference with γ.

decreases as caching file number increases. This is because the

increasing caching files on SBS directly decreases the total

requests to MBS, which leads to less energy consumption.

On the other hand, for a fixed caching number of file on

SBS, the optimal scheme keeps the best performance, and the

proposed scheme has a similar performance to the optimal

scheme. When there is no caching file on SBS, i.e. L = 0
, the corresponding result shows the effect of QL and cache-

enabled D2D. In particular, compare the proposed scheme with

the random selection scheme, the gap is mainly depending

on RL algorithms. The main difference between the proposed

scheme and the random selection scheme depends on the

caching files selection policies. For random selection scheme,

the caching files are selected randomly, therefore, there is

no prediction ability for both SBS and user devices. On the

contrary, the proposed scheme applied RL algorithms on SBS

and user devices, and hence they can learn the popularity

of files and improves the quality of caching files selection.

Besides, the prediction is getting accurate with additional

training. Therefore, the gap between the proposed scheme and

the random selection scheme is resulted by the RL algorithms.

In addition, due to the DQN algorithm is able to choose

popular files accurately, the without user caching scheme has

the largest decrease amplitude.

In the next simulation, the energy saving performance of the

proposed joint RL-based scheme under various user preference

is evaluated and presented in Fig. 5. According to Zipf law

distribution in (10), the skew parameter γ characterizes the

user’s preference uniquely. Specifically, it differentiates the

preference on files, the larger γ is, the more the user prefers

certain files. On the contrary, if γ = 0, the user have uniform

preference on every file. As it can be seen in Fig. 5, the random

selection scheme keeps nearly steady due to the randomness

of the caching policy. The other three schemes decrease mono-

tonically with the intensifying of user preference difference.

For without user caching scheme, the amplitude attenuation

is much smaller than the optimal and proposed schemes. This

is because the change of individual user preferences have no

obvious influence on the overall decision-making. Moreover,

the proposed scheme traces the optimal solution rigorously.

However, with the increase of γ, the cost of incorrect caching

Fig. 6. Content hit rate of SBS with steps

increases, the difference between expectation and every-slot

optimal scheme gets bigger, therefore, the observed gap is

more obvious. In addition, the gap between the proposed and

without user caching scheme illustrates the impact of cache-

enabled D2D. We can conclude that with the increase of

γ, the performance of device caching and D2D is getting

better. In addition, the increase of γ results in the excessive

preference for users. Specifically, for a small amount of users,

the request that SBS collected has no obvious emphasis on

some files, and hence the DQN on the SBS can not get a

significant energy saving. However, the increase of γ results in

the excessive preference difference for users, which is benefit

for QL algorithm to extract the vital preference. Therefore,

we can observe the performance gap between the proposed

scheme and the without user caching scheme.

Finally, we evaluate the percentage of requested frequency

on selected cached content to the requested frequency on

optimal cached content. The optimal scheme caches the most

popular content every slot, therefore it keeps the optimal

performance. It can be observed in Fig. 6 that the performance

of random caching scheme stays stable statistically around

64.5 %. For the proposed scheme, the content hit rate increases

more than other schemes, but it finally keeps stable around

85 %. Moreover, the performance of without user caching

scheme is outperformed the proposed solution, which is caused

by the disturbance of user devices caching content. Owing

to the cached content on user devices, the submitted request

to the SBS lacks of the cached part of user devices, and

thus, the received popular distribution of proposed scheme is

different from the one of without user caching scheme for SBS.

With popular file-distribution, the prediction accuracy raises

dramatically, which makes the content hitrate up to 90%.

VI. CONCLUSION

This paper has proposed a RL approach for D2D-assisted

cache-enabled IoT, where the aim is to minimize the energy

cost of systematic traffic transmission. To achieve this goal,

we employed MEC for small cells to offload traffic from

MBS. In addition, cache-enabled D2D communications has

been introduced to small-cell users in order to further reduce

the transmission energy cost. For the considered D2D-assisted



cache-enabled IoT, MDP and Zipf distribution are employed to

model the users requesting behaviors and the users’ preference

respectively. A novel RL-based algorithm has been proposed

to reveal the popularity of files as well as users’ preference,

which are the key criteria for caching strategy. Specifically, we

proposed to apply QL algorithm and DQN algorithm to users

and SBS respectively in order to obtain an efficient caching

policy. In addition, a feedback mechanism based on the MDP

is developed in this paper which generates the training samples

constantly. The proposed RL-based algorithm enables users’

devices and SBS to prefetch the optimal files while learning,

and hence reducing the energy cost significantly. Numerical

results verified the effectiveness of the proposed RL-based

algorithm. More importantly, our findings have demonstrated

that a significant energy saving can be achieved by our

proposed algorithm, and this has confirmed the advantages

of integrating D2D communication into cache-enabled IoT.

In addition, it has been shown in literature that the mobility

of users could be studied in order to consider a practical

scenario. Moreover, exploring the low complexity algorithm of

solving the caching selection decision problem is also worthy

of studying. Therefore, it will be a great value to investigate the

low complexity solution considering the user mobility issue in

the future.
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