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Abstract - To test hypothesised mechanisms behind driver response to down-scaled motion cues in simulators, a
driver steering model was developed, by extending an existing modelling framework with models of multisensory
integration and behavioural adaptation. In a slalom task, the model robustly reproduced several empirical findings :
Removing motion cues initially resulted in decreased task performance and increased steering effort, but after
behavioural adaptations, performance improved and steering effort went down. Unexpectedly, the model also re-
produced another empirical finding : Optimal path-tracking for an intermediate motion scaling, smaller than unity.
Overall, together with the existing empirical findings, the simulation results suggest that : (1) Drivers make direct
use of vestibular inputs as part of determining appropriate steering input, and (2) motion down-scaling causes
drivers to behave as if they are underestimating the vehicle’s rate of rotation. However, (3) in the slalom task, a
certain degree of such underestimation brings a path-tracking performance benefit. Furthermore, (4) behavioural
adaptation, as empirically observed, may occur in the form of (a) down-weighting of vestibular cues, and/or (b)
increased sensitivity to control errors, in determining when to adjust steering and by how much, but (c) seemingly
not in the form of a full compensatory reinterpretation of the down-scaled vestibular input.

Keywords: multisensory integration, motion scaling, driver model, steering, slalom

Introduction
Driving simulators can be valuable tools for research
on driver behaviour, industrial prototyping of vehicles,
and training of drivers [Fis11], but only as long as the
realism of the simulated driving is satisfactory for the
application at hand. For this reason, research into dri-
ving simulator realism and validity is an active field of
work, not least when it comes to the motion cueing in
motion-based simulators ; i.e., how to best control the
motion base within its limited motion envelope to ne-
vertheless create a subjectively realistic experience
of vehicle movement for the driver, and to elicit ob-
jective driver behaviour that is successful, and ideally
similar to that in a real vehicle [Sie01, Fis16, Sal17].

Typical motion cueing algorithms attempt to leverage
the properties and limitations of the vestibular (mo-
tion) sensory organs in the inner ear, the otoliths and
semicircular canals, and these systems are relati-
vely well understood and modelled [Nas16]. Howe-
ver, much less is known about how drivers then inte-
grate this vestibular information with information from
other sensory modalities (e.g., vision) to support ve-
hicle control, how these processes are affected by
the specific nature of the non-perfect motion cues
being provided, and how drivers adapt over time to
such imperfections. As a consequence, it is currently
not known how to optimise motion cueing algorithms
to yield low-effort, high-performance driver behaviour
in the simulator, and/or behaviour that is similar to
that in a real vehicle.

Below, the aims and structure of this paper will be
described, after first providing brief overviews of (i)

existing empirical knowledge about drivers’ response
to down-scaled of motion cues, a special case of mo-
tion cueing, and (ii) existing models of multisensory
integration.

Studies on simulator motion scaling

Most motion cueing algorithms will include some ele-
ment of linear down-scaling of the actual motion of
the vehicle, to stay within the motion envelope of the
simulator, all the way down to zero motion scaling in
fixed base simulators. One often observed effect of
motion scaling is that drivers adapt speed inversely
to the provided motion, seemingly to keep percei-
ved acceleration within acceptable limits, resulting in
more aggressive driving when motion is scaled-down
or absent altogether [Sie01, Jam10, CG11, Ber13].

Some tasks, which stay within a constrained late-
ral area, can be carried out with linear motion sca-
ling as the only motion cueing manipulation in the
lateral direction. Slalom tasks have been studied in
this way by several authors, providing converging
evidence for some behavioural phenomena : Stee-
ring effort, for example measured as steering re-
versal rates or high frequency steering content, ge-
nerally increases when motion cues are removed
[Fee10, CG11, Sav14], and task performance, ob-
jectively measured or subjectively assessed, gene-
rally deteriorates [CG11, Ber13], although not always
[Sav14]. After repeated exposure to the slalom task,
control efforts decrease [Fee10] and task perfor-
mance improves [CG11]. There are also consistent
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reports from several studies of a local optimum
at sub-unity motion scaling, in the 0.4-0.8 range,
of task performance and subjective preferences
[Ber13, Sav14], and in one case also of steering ef-
fort [Sav14].

Models of multisensory integration
Multisensory integration has been studied for a long
time, especially in simplified perception and sensori-
motor tasks in the laboratory ; see for example the
reviews in [Fet13] and [Nas16], from neurobiologi-
cal and vehicle control perspectives, respectively. It is
well established that humans often behave as near-
ideal Bayesian observers, combining cues from dif-
ferent modalities as weighted sums, with weights
computed from the reliability (inverse variance) of the
respective sensory cues. [Nas18] has proposed a dri-
ver steering model incorporating this concept into a
Kalman filter step of an optimal control theoretic mo-
del. This framework seems promising, but validation
against driving data has not yet been published, and
the framework also does not include any account of
mechanisms for behavioural adaptation, nor is there
any account of how the driver’s brain identifies the
reliabilities of the respective sensory signals.

Another type of framework, which seems to provide
a plausible handle on such reliability estimation, em-
phasises predictive processing, the idea that a fun-
damental function of the brain is to predict its own
sensory inputs [Fri10]. In our reading of this theory, if
one has a predictive (generative model) of one’s own
sensory input that is relatively stable, reliabilities can
be estimated from the deviations between received
and predicted sensory data.

Aims of this paper
Here, a slightly less complex base steering model
than [Nas18] will be proposed, and then complemen-
ted with some hypothesised mechanisms for cue re-
liability estimation and behavioural adaptation, with
the aim being to investigate whether this model is
enough to account for the aforementioned findings
on (i) how humans first react to down-scaled motion
cues, and (ii) how this behaviour changes with repea-
ted task exposure. It was not an original aim of this
work to study the phenomenon of a sub-unity local
optimum in motion scaling, but as will become clear
below, the model turns out to be applicable also to
this phenomenon.

Below, the steering model is first introduced. Then,
results from model simulations are presented, before
a discussion and conclusions are provided.

Driver steering model
Fig. 1 provides a schematic overview of the model
being tested here, further described in the sections
below.

Slalom desired path
The model adopts the commonly used concept pf a
desired path [Plo07] to define the sinusoidal slalom
task, which was here based on [Fee10], with 62.5 m
spacing between cones, and a 3 m lateral amplitude,
carried out at 70 km/h constant longitudinal speed.

Intermittent control framework
The model includes a framework for intermittent
sensorimotor control, defined in detail in [Mar18a]
(orange dashed box in Fig. 1). In brief, this framework
assumes that a continuously calculated estimate of
currently needed control adjustment ∆δ is compared
to a prediction of the same, to yield a prediction error.
This prediction error is then fed, with a gain k, into an
evidence accumulation, or drift diffusion, step where
it is integrated over time to a threshold of ±1, mimi-
cking neurobiological decision-making mechanisms
[Gol07], to decide on when a control adjustment is
needed. When a decision threshold is reached, the
evidence accumulation integrator is reset to zero, a
steering adjustment is initiated, and a prediction is
made of how ∆δ will be affected. The steering adjust-
ment is applied in the form of a kinematic motor pri-
mitive [Gis15], a fixed-duration (∆T = 0.4 s) stepwise
movement with a bell-shaped rate profile, and total
amplitude from the current ∆δ prediction error, with
signal-dependent motor noise [Fra11]. The predic-
tion is also applied in the form of a primitive, stereo-
typed response, mimicking neurobiological corollary
discharge [Cra08, Req14] (an alternative to formula-
tions based on efference copy, avoiding the need for
an explicit forward model [Pic14]).

Needed steering adjustment

In the engineering literature, there are several driver
steering models [Gor06, Tan12, Mar14] on the gene-
ral form :

∆δ = −Kω̂err = −K(ω̂ − ω̂∗), (1)

where ω̂∗ and ω̂ are desired and actual vehicle yaw
rate, as perceived by the driver, and K is a response
gain. Interestingly, models in the psychological litera-
ture, emphasising more plausible visual inputs such
as sight point rotations, can be shown to be equiva-
lent to Eq. (1) [Mar13].

Here, ω̂∗ is defined as the yaw rate that would take
the vehicle back to the desired path in a preview time
TP. This formulation has been shown to successfully
replicate human slalom steering, with TP ∈ [1.4, 2.2]
s [Mar18b] ; here TP = 1.8 s was used.

Visual-vestibular integration

As indicated in Fig. 1, the dynamics of the sensory or-
gans are not explicitly modelled here. This is in part
to limit model complexity, but primarily because even
though detailed models exist of how for example ves-
tibular inputs get transformed into neural firing rates
in the inner ear, there is very limited knowledge of
what happens with this information in the rest of the
brain. Here, in line with much psychophysical work
[Fet13], the multisensory integration is modelled as
operating directly on estimates of the external stimu-
lus, in this case vehicle yaw rate, where otoliths and
semicircular canals are subsumed into a single esti-
mate of yaw rate (note that in a vehicle, lateral acce-
leration, as sensed by the otoliths, typically provides
good information on yaw rate also) :

ω̂ = Wvisω̂vis + Wvesω̂ves

= Wvis(ωvis + νvis) + Wves(ωves + νves), (2)
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Figure 1: Schematic illustration of the driver steering model tested in this paper.

where ωvis = ω and ωves = ωbody = αω, with ωbody

the actual rotation of the driver’s body, α the motion
scaling being applied, ω the yaw rate of the simulated
vehicle, and νvis and νves being Gaussian white noise
with standard deviations σvis and σves. The weights
are obtained in line with the aforementioned optimal
cue integration theory :

Wvis =
rvis

rvis + rves

, Wves =
rves

rvis + rves

, (3)

with rvis and rves being the respective sensory relia-
bilities.

Thus, overall, what is suggested here (in the blue da-
shed box in Fig. 1) is that drivers might behave as if
(i) they transformed the neural output from their sen-
sory organs into estimates of yaw rates, presumably
considering also predictions based on knowledge of
past steering input, allowing counteraction of sensory
delays which are therefore not modelled here, (ii) in-
tegrated these yaw rate estimates as per Eqs. (2) and
(3), and then (iii) compared the result to a visually
estimated desired yaw rate, to calculate the needed
steering adjustment as per Eq. (1). Note the, “as if”–
it is not assumed that drivers’ brains necessarily di-
rectly encode things like desired paths or yaw rates,
desired or actual, anywhere.

Here, σvis = 0.5 ◦/s was used, loosely based on
[Nes15], who found that humans could discriminate
between visual rotation stimuli of about 5 ◦/s, at which
yaw rates typically peak in the present slalom task,
if they were different by 1 ◦/s. The 0.5 ◦/s noise le-
vel gives 75 % correct direction classification, by a
drift diffusion model such as in the intermittent control
framework used here, of a 1 ◦/s stimuli if presen-
ted during 10 s, a similar duration of presentation as
in [Nes15]. The literature on how visual and vesti-
bular sensory systems compare in terms delays or
noise levels provide conflicting information for dif-
ferent types of experimental condition [Nas16], so for
simplicity we here set σves = σves, to begin with. Fur-

ther below we examine model sensitivity to noise le-
vels.

It is assumed that when entering the simulator, based
on prior driving experiences, reliabilities are preset
based on the sensory noise levels, r• = σ−2

•
, which

with σvis = σves gives Wvis = Wves = 0.5.

Behavioural adaptation

A number of mechanisms for behavioural adaptation
are assumed to be operating, alone or in combina-
tion :

(A) Adapting steering response K.

(B) Adapting effort by changing the gain k in the evi-
dence accumulation.

(C) Sensory cue reweighting, with reliabilites esti-
mated from deviations from expected yaw rate as
mentioned above. It is assumed here that the dri-
ver has learned a relatively accurate model of how
yaw rate will change with a given change of steering.
This means that the model can correctly estimate σvis

from deviations ω̂vis − ω, and also similarly estimate
σves as long as motion scaling is unity, α = 1. Howe-
ver, when α 6= 1, the estimation of σves will be affected
by the bias

ωbody − ω = −ω(1 − α). (4)

(D) Reinterpreting downscaled vestibular cues, by re-
learning the mapping from vestibular organ output to
ωves, i.e., ωves = ωbody/α, which at the same time also
scales up the vestibular noise by 1/α. Reweighting of
cues as in (C) was also included here.

The first two above require some form of target for the
formal optimisation, here in the form of a cost function
to be minimised, by means of exhaustive search over
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a grid of the optimised parameters :

Jtot = kpathJpath + ksteerJsteer

= kpath

1

N

N∑

k=1

(yk − y∗

k
)2 + ksteer

1

T

n∑

i=1

g2
i

(5)

for a simulation of duration T , with N discrete
samples, in which n discrete steering adjustments
with amplitudes gi are applied, and with lateral posi-
tions of vehicle and desired path yk and y∗

k
, respecti-

vely. The weighting parameters were set to kpath = 1
and ksteer = 10 to get similar magnitudes across both
terms in typical simulations with the model. Using this
cost function, also the following alternative adapta-
tion mechanism was tested :

(E) Adapting sensory weights not based on reliabili-
ties, but instead to minimise Jtot.

And finally :

(F) All adaptations (A)-(C) at the same time.

Simulations and results

Method
Simulations were run with a linear vehicle model, fit-
ted to multibody simulations of a Jaguar XF driving
slaloms, mostly in the linear tyre regime.

For the gains k and K to be adapted, initial values,
emulating already attained driving skill, were set by
minimising average Jtot across ten repetitions of the
slalom (since the driver model is stochastic) with full
motion (α = 1), searching an exhaustive grid of va-
lues for both gains. Optimal model performance was
obtained for k = 300 (arbitrary units) and K = 2.04
s. It may be noted that this latter figure is very close
to the theoretically optimal 1/0.510 s = 1.96 s, with
0.510 s−1 being the steady state yaw rate response
gain of the vehicle model.

For motion gains α ∈ {0, 0.2, ..., 1}, simulations were
then run both without any behavioural adaptations,
with each of the behavioural adaptations (A)-(F) des-
cribed above. Again, each condition was repeated
ten times. For all adaptations including reliability-
based cue reweighting (C, D, and F), this was achie-
ved by setting the reliabilities based on the sensory
deviations observed in the previous repetition of the
slalom. To allow this process to converge from the
initial, default sensory weights, two repetitions were
simulated before the ten to be analysed.

Impact of motion scaling and
behavioural adaptation mechanisms

Yaw rate estimation

Fig. 2 provides an illustration of the visual-vestibular
estimation of yaw rate, from simulations with the mo-
del under different conditions. The top panel shows a
simulation with full motion cues, the other three are
all simulations with downscaled motion cues (α =
0.4). Note that without any adaptation whatsoever
(second panel from top), the integrated estimate of
yaw rate becomes strongly biased towards zero, as
per Eq. (4). This bias all but disappears when re-
weighting the cues based on prediction-estimated re-
liabilities (third panel). If reinterpreting the vestibular

-5
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Time (s)

-5

0
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 = 0.4; reinterpreted and reweighted (Wvis = 0.853)

Figure 2: Yaw rate estimation by the driver model in four
different simulations.

cues (bottom panel), a completely non-biased es-
timate can again be obtained, making what would
seem like a theoretically optimal use of the vestibu-
lar cue, despite the noise also becoming inflated with
the reinterpretation.

Model time series behaviour

Fig. 3 shows example time series behaviour of the
model in the same four conditions as in Fig. 2. Wi-
thout any adaptation, the model’s steering becomes
unstable when motion is scaled down, resulting in in-
creasing path and steering costs. This instability is
counteracted when downweighting vestibular cues,
both with or without prior reinterpretation of the ves-
tibular input, but steering efforts still remain higher
than in the full motion case. Note, however, that the
lowest path cost is obtained for the simulation with
reweighted (but not reinterpreted) cues.

Task performance and steering effort

A more complete overview of path-tracking and stee-
ring costs, as a function of motion scaling and adap-
tation mechanisms, is provided in Fig. 4. It can be no-
ted that, in line with most empirical reports, steering
efforts increase with decreasing α. This is especially
true in the no-adaptation condition, but all of the be-
havioural adaptation mechanisms succeed at impro-
ving the situation, aligning with the empirical reports
of decreasing steering efforts after prolonged expo-
sure to the slalom task.

Related patterns can be observed for the path tra-
cking costs, but with the important difference that
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Figure 3: Example time series behaviour of the model in three different simulations.

0 0.5 1
 (-)

10-2

10-1

100

J pa
th

0 0.5 1
 (-)

10-2

10-1

J st
ee

r

0 0.5 1
 (-)

10-1

100

J to
t

No adaptation
Just response gain change
Just accumulator gain change
Just cue reweighting
Reinterpretation + reweighting
All except reinterpretation

Figure 4: Costs as a function of motion scaling, for the various hypothesised adaptation mechanisms

for all simulations except the one with cue reinter-
pretation (adaptation D), there is a local minimum at
α ∈ [0.6, 0.8], i.e., the model reproduces also the sub-
unity local optimum for motion scaling that has been
reported in the empirical literature. After applying the
reinterpretation adaptation, there is virtually no effect
of motion scaling on the model’s task performance.

Analysing the values of adapted parameters provides
further insight into how the adaptation mechanisms
operate. Fig. 5 shows that the weight of the visual
cue obtained by measuring reliability as deviations
from expected sensory input, a type of reliability that
should be readily available to the brain, was relatively
close to the optimal visual weight obtained when for-
mally optimising for minimal cost Jtot. Fig. 6 shows
that the performance improvements from adapting
evidence accumulation and steering response gains
were both had by increasing these gains, resulting in
more frequent and/or higher-amplitude steering ad-
justments.

Impact of task and model variations
Slalom difficulty

Fig. 7 shows that the qualitative nature of the mo-
del is insensitive to the spacing of the cones in the
slalom task. In fact, the model can be seen to re-
produce another empirical observation [Sav14] ; the

0 0.2 0.4 0.6 0.8 1
 (-)

0.4

0.6

0.8

1

W
vi

s
 (

-)

Formally optimised
Reliability-based

Figure 5: Adapted visual cue weights as a function of
motion scaling, estimated from prediction-based sensory
reliabilities (shown as average and total spread across ten

task repetitions), and by means of formal optimisation.

motion scaling optimum occurs at lower α for more
difficult slaloms (shorter cone spacing, requiring hi-
gher lateral accelerations).

Sensory noise

As mentioned earlier, it is difficult to know what ma-
gnitudes to choose for the sensory noises. However,
as long as σvis = σves, changing these up or down
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Figure 7: Effect of slalom cone spacing on path and steering
costs as a function of motion scaling, without any
adaptations and with reliability-reweighted cues.

does not change the shape of the path-tracking and
steering cost curves ; these simply go up and down
with the noise levels.

However, it could be argued, based on perceptual
threshold experiments, that the Visual system is
more sensitive than the semicircular canals in discri-
mination of pure yaw motion [Rie81, Soy12]. There-
fore, as shown in Fig. 8, simulations were run where
the vestibular noise was increased, while maintaining
σvis = 0.5◦/s. The figure shows that doing so main-
tains the high-level qualitative effects of motion sca-
ling, but the impact of motion scaling is reduced. This
is in line with what one may have expected, since
with higher vestibular noise levels, Eq. (3) prescribes
lower vestibular sensory weights to begin with, so
one needs to reduce α more to see any effects. One
consequence of this phenomenon is that the local op-
timum for path-tracking cost shifts to lower α with in-
creased vestibular noise.

Discussion and conclusions

Sensory integration and adaptation

The model used here was relatively simple, espe-
cially at the level of multisensory integration. Never-
theless, the main targeted empirical phenomena, in
terms of task performance and steering efforts, were
all qualitatively captured by the model. Put in more
specific terms, low task performance and high stee-
ring efforts upon first exposure to downscaled motion
cues can be understood as drivers (behaving as if

0 0.5 1
 (-)

100

Jpath

0.5 °/s

1 °/s

1.5 °/s

0 0.5 1
 (-)

10-2

10-1
Jsteer
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Cue reweighting

Figure 8: Effect of variations in vestibular sensory noise
levels on path and steering costs as a function of motion

scaling, both without any adaptations and with
reliability-reweighted sensory cues.

they are) directly underestimating vehicle yaw rate,
because of the small-magnitude vestibular cues, and
then using this underestimation when shaping their
steering, which as a result becomes more effortful,
and in many cases also more unstable.

In this statement, the part about “using this unde-
restimation...” is interesting in its own right. Much
of the existing empirical literature on driving simula-
tor motion can be interpreted conservatively in this
sense, to say that motion cues mainly cause dri-
vers to change adopted speeds or trajectories at a
high level, to avoid experiencing large accelerations
[Sie01, Jam10, CG11, Ber13], or that motion cues
mainly support rejection of unexpected disturbances
like wind gusts [Rep82, Gre03]. The present model
and simulation analyses, together with the empiri-
cal findings from the slalom experiments, suggest a
stronger account than this, whereby drivers make di-
rect use of motion information as part of shaping their
steering to reach their intended targets, also in the
absence of any disturbances or high-level adapta-
tions of trajectory. It is clear that existing multisensory
driver models [Nas18] (as well as pilot models, e.g.,
[Mul13]) also suggest this deep form of involvement
of vestibular cues in control, but we are not aware of
any prior analysis of empirical data providing support
for it in driving.

With respect to the behavioural adaptation, the re-
sults presented here indicate that especially three
mechanisms, or several of them in combination, are
candidates for causing the empirically observed ef-
fects of repeated task exposure : increased gains
in evidence accumulation or in steering response,
or sensory cue reweighting based on reliabilities in-
ferred from deviations between received and expec-
ted sensory input. Especially this latter mechanism
seems readily implementable in neural systems, and
it also provided the most dramatic performance im-
provements. Interestingly, the cue weights obtained
in this way came close to the formally optimal values
(Fig. 5) ; that this would be the case beforehand was
not clear, since the formally optimal values depend
on the specific task and chosen cost function.

Also the increases in accumulator and steering gains
can actually be interpreted in neurobiological terms ;
increases in global cortical arousal by means of
broad diffusion of noradrenaline (also known as no-
repinephrine) has been found to have the specific ef-
fect of increasing gains in neuronal response to in-
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puts [AJ05]. Thus, the driver’s brain may respond to
unsatisfactory task performance with release of nora-
drenaline, increasing the evidence accumulation and
response gains.

The present analyses do not provide any conclu-
sive insight into which of the three adaptation me-
chanisms mentioned above may have been more im-
portant in the empirical studies. However, the results
can possibly be taken to suggest that complete rein-
terpretation of the vestibular input may not have oc-
curred in these studies, since if so there should not,
according to the model simulations, have remained
any local optimum in task performance for α < 1.
This leads on to the next section.

Sub-unity optimum in motion scaling

It was not expected beforehand that the model would
exhibit the local performance optimum for sub-unity
motion scaling. Previously, it has been proposed that
this phenomenon might be due to imperfections and
false cues in motion systems becoming more pro-
minent at higher α, or to motion downscaling being
needed to ensure coherence with underestimated vi-
sual speeds [Ber13], or to accurate steering control
becoming more difficult when the body is subjec-
ted to higher and more uncomfortable accelerations
[Sav14]. However, none of these mechanisms were
included in the model, yet it still reproduced the phe-
nomenon.

What seems to be happening instead is that the mo-
del gets a path-tracking benefit from slightly underes-
timating the yaw rate in this task. From Fig. 3 (third
panel from left) it can be seen that the reason for the
lower path costs is that motion downscaling, and the
consequent underestimation of the yaw rate, leads
to the phase of the vehicle’s trajectory being earlier,
aligning it better with the desired path. Indeed, this
exactly the same type of phenomenon that was be-
hind the path-tracking optimum in the empirical work
by Berthoz et al [Ber13]. (Savona et al [Sav14] did not
provide a a trajectory phase analysis of this nature.)

Overall, the fact that the model captures so many as-
pects of this phenomenon–not only the existence of
an optimum, but also its cause being trajectory pha-
sing, as well as the optimal motion scaling decrea-
sing for more difficult slaloms–seems to suggest that
underestimation of yaw rate (or, as said before, beha-
ving as if one underestimates yaw rate) may indeed
be the mechanism behind this phenomenon also in
humans. See also the analysis of steering angles
in [Fee10] ; the observed faster adjustment of stee-
ring just as passing the cone without motion is in-
deed what one would expect from a driver who thinks
s/he isn’t rotating quickly enough in preparation for
the next cone.

Since the model’s yaw rate underestimation as such
does not rely on control intermittency, we also tes-
ted a simpler, continuous version of the model, re-
placing the intermittent control (the orange dashed
box in Fig. 1) with just a delay and a gain 1/∆T (see
[Mar18a] for a motivation), and indeed we again ob-
tained the local motion optimum. In fact, much of
the results described in this paper for the intermit-
tent model were reproduced also by the continuous
model ; the main differences, quite expectedly, rela-
ting to steering effort : In addition to the lack of an

evidence accumulation gain adaptation, which can-
not be included in the continuous model, the effect of
motion scaling on steering effort disappeared with all
behavioural adaptations.

However, it should be noted that the local optimum
in motion scaling has been observed also in sub-
jective ratings of various types, and not necessarily
at the exact same α as the path-tracking optimum
[Ber13, Sav14]. While the present model simulations
can possibly help explain why there might be a local
optimum in subjective ratings of for example “ease
of completing the task” or similar, it seems less cer-
tain that the yaw rate underestimation mechanism
would contribute to improved subjective ratings of for
example realism. One possibility is of course that
there are several mechanisms are in play here ; the
yaw rate underestimation mechanisms might coexist
with any and all of the mechanisms reviewed above
in this section.

Driver steering modelling

The main alternative to the model tested here is the
one proposed by Nash and Cole [Nas18], which as-
sumes optimal control in a more complete sense,
with access to explicit internal models of the vehicle
as well as of the sensory and neuromuscular dy-
namics. On a cursory analysis, it seems likely that
also this model would exhibit lower performance and
higher steering effort when motion is scaled down
or turned off. Among the adaptation mechanisms
studied here, the combined reinterpretation and re-
weighting mechanism (D) would seem to fit espe-
cially well within the framework. Here, this mecha-
nism did not align well with the empirical data, but di-
rect testing in model simulation is needed to see whe-
ther it fares better in the [Nas18] framework. Also the
pure cue reweighting adaptation (C) could be used, if
the framework is extended with a similar prediction-
based estimation of reliabilities as proposed here.
However, the gain adaptations (A) and (B) do not
seem readily compatible with the [Nas18] model.

It would also be interesting to test whether the
[Nas18] model reproduces the sub-unity motion sca-
ling optimum phenomenon. At least in its non-
adapted form, it should also underestimate yaw rate,
but it might be that the very reason our model tracks
the desired path better when underestimating yaw
rate is because even with full motion cues its control
is to some degree inherently suboptimal, in contrast
with the [Nas18] model.

Future work
Besides some possible future research work that
have been hinted at above, one obvious direction
would be to address other tasks besides the slalom.
Ideally, one would first generate predictions for these
other tasks using the model, and see whether these
are borne out in testing with human drivers. In such
empirical work, one could also study the adaptation
process itself in more detail, for example to try to
distinguish better between the various hypothesised
mechanisms for adaptation.

The model proposed here could also be applied in
development and tuning of motion cueing algorithms,
in its present form especially for direct scaling cueing.
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For example, one can use the model to predict what
motion scaling might yield behaviour that is as similar
as possible to that in a real vehicle, or how large the
differences might be between behaviour before and
after adaptation to a certain motion scaling, to get an
idea of what motion cueing settings might take longer
time to get used to.

If the model is to be used with more complex, ar-
bitrary motion cueing algorithms, for example affec-
ting rotations and translations in different ways, the
current simplified approach of capturing all vestibular
sensing in just a yaw rate estimate will not be enough,
and it needs to be better considered how different
types of motion cues get used to determine needed
control. One possibility is the Nash and Cole [Nas18]
approach with sensory dynamics models and inverse
model state estimators. A possible complication here
is that empirical observations suggest that rotation
and translation cues may not be used by human dri-
vers in precisely the ways suggested by this type of
engineering analysis [Lak16].
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