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ABSTRACT

Dynamic optimization problems (DOPs) are problems that change

over time. However, most investigations in this domain are focused

on tracking moving optima (TMO) without considering the cost

of switching from one solution to another when the environment

changes. Robust optimization over time (ROOT) tries to address

this shortcoming by inding solutions which remain acceptable for

several environments. However, ROOT methods change solutions

only when they become unacceptable. Indeed, TMO and ROOT are

two extreme cases in the sense that in the former, the switching

cost is considered zero and in the latter, it is considered very large.

In this paper, we propose a new semi ROOT algorithm based on a

new approach to switching cost. This algorithm changes solutions

when: 1) the current solution is not acceptable and 2) the current

solution is still acceptable but algorithm has found a better solution

and switching is preferable despite the cost. The main objective of

the proposed algorithm is to maximize the performance based on

the itness of solutions and their switching cost. The experiments

are done on modiied moving peaks benchmark (mMPB) and the

performance of the proposed algorithm alongside state-of-the-art

ROOT and TMO methods is investigated.
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1 INTRODUCTION

Many real-world problems are dynamic and changing over time.

Most previous research on dynamic optimization problems (DOP)

focuses on tracking moving optima (TMO) [17]. In TMO, the algo-

rithm assumes that the solution can be changed for each environ-

ment without considering any switching cost and⁄or any resource

limitation for changing solutions. In fact, changing solutions in

real-world problems is costly. Furthermore, larger changes have

more cost and need more resources such as time, human resources

and energy. Thus, lack of switching cost consideration in TMO algo-

rithms makes them unsuitable for many of real-world problems. For

addressing this issue, another approach called robust optimization

over time (ROOT) [30] was proposed in which algorithms search

for solutions that are not necessary the best but they are acceptable

and can remain acceptable after environmental changes. Therefore,

in ROOT, algorithms try to ind solutions which are robust to envi-

ronmental changes and the main objective is maximizing survival

time of robust solutions over time [8].

In fact, TMO and ROOT address two extreme cases. TMO is

suitable for circumstances in which there is no switching cost or it

is very low. On the other hand, ROOT is suitable for situations in

which the switching cost is very high so the algorithm tries to keep

each solution as long as it remains acceptable after environmental

changes.

In this paper, a new adaptive solution chooser (ASC) algorithm

is proposed which acts similar to TMO algorithms where switch-

ing cost is low and acts as ROOT algorithms when the switching

cost is high. However, the main contribution of ASC is where the

algorithm can decide about changing or keeping solutions based

on their current itness values, the itness of other found solutions

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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with better quality and their switching cost from the current solu-

tion. Indeed, although changing solutions in real-world problems

is costly, there are situations in which the algorithm has found

a solution whose quality is so high that the beneit of switching

largely outweighs the cost.

The remainder of this paper is structured as follows: in the Sec-

tion 2, problem deinitions are presented. A brief literature review

is provided in Section 3. The proposed algorithm is introduced in

Section 4. The experimental settings, results and analysis are shown

in the Section 5. Finally, this paper is concluded with a summary.

2 DEFINITIONS

DOPs are usually represented as follows:

F (x⃗ ) = f (x⃗ ,θ (t ) ), (1)

where f is the objective function, x⃗ is a design vector, θ (t ) is en-

vironmental parameters which change over time and t is the time

index with t ∈ [0,T ] where T is the problem life cycle or number

of environments. In this paper, like most previous studies in the

DOP domain, we investigate DOPs with θ (t ) that changes discretely.

In this type of DOP, the environmental parameters change over

time with stationary periods between changes. As a result, for a

DOP withT environmental changes, we have a sequence ofT static

environments that can be described as (2):

F (x⃗ ) =
[
f (x⃗ ,θ (1) ), f (x⃗ ,θ (2) ), . . . , f (x⃗ ,θ (T ) )

]
, (2)

where θ (i ) is the environmental parameters in the ith environment.

TMO is the most popular methodology in the domain of DOPs [17].

However, in TMO, the optimizer changes the solution after each

environmental change which is not applicable in many of real-

world problems due to the expenses and limitations involved with

changing solutions [28]. In fact, TMOs are more suitable for prob-

lems in which the switching cost is zero or the system can tolerate

frequent changes in solution. In TMO, the best case is happening

when the best solution according to the itness value is found for

each environment.

In ROOT, the main goal is to minimize the number of times

when the chosen solution has to be changed because its perfor-

mance drops below an acceptable level, or to maximize the average

number of environments that a robust solution remains acceptable.

Therefore, ROOT algorithms try to keep solutions unchanged as

much as they can which means they try to minimize switching cost

but without considering any relation between switching cost and

itness values. Thus, in ROOT, the best case is that the irst robust

solution remains acceptable for all of the N environments and the

worst case is that the number of robust solutions is equal to the

number of environments.

3 RELATED WORK

Related work to the proposed algorithms can be classiied into three

groups namely multi-swarm methods for TMO, ROOT methods

and methods considering switching cost.

3.1 Multi-swarm methods

Multi-swarm methods are one of the most famous algorithms to

tackle DOPs [15, 17]. They consist of at least two sub-swarms han-

dling diferent tasks or separate regions in the problem space.

In [6], Self Organizing Scouts (SOS) was proposed which utilized

a big sub-population for global search and a number of small sub-

populations for tracking changes of identiied peaks. This strategy

has also been proposed with other meta-heuristics such as PSO [13,

21, 24] and artiicial ish swarm optimization [23, 26, 29].

In [19], a speciation method was used to split the population

into sub-populations. In [2], a regression-based approach (RSPSO)

was presented to enhance the convergence rate using speciation-

based methods. Every subpopulation was conined to a hypersphere

around the best solution.

In [14], a method based on clustering was proposed for develop-

ing sub-populations, which was simpliied and further improved

in [22]. In [7], a method called SPSO was proposed in which every

cluster was divided into two. The irst cluster was responsible for

exploitation and the second one for exploration. Gaussian local

search and diferential mutation were used to improve diversity in

the environment.

In [3], two multi-population methods, called MQSO and MCPSO,

were proposed. In MQSO, quantum particles appear at random po-

sitions, uniformly distributed around the swarm’s global best. In

MCPSO, some or all of the particles in each swarm have a ’charge’,

and charged particles repel each other, leading to larger diversity.

The population size is equal for every sub-swarm, and the number

of sub-swarms is ixed and pre-determined. An anti-convergence

method ensures continued search for possible better peaks. In addi-

tion, a mechanism called exclusion is used to avoid several swarms

converging to the same peak. A version of MQSO with an adaptive

number of sub-populations, called AMQSO, was proposed in [4].

AMQSO starts with one sub-population and a new sub-population

is created if all previous sub-populations have converged. This

method has signiicantly improved the performance.

Li et al [12] proposed a method to adapt the number of popu-

lations based on statistical data on how many populations have

found new peaks. If this number is large, more populations will be

introduced and vice versa. Additionally, a new heuristic clustering,

a population hibernation scheme, a population exclusion scheme, a

peak hiding method and two movement methods (to track peaks

and avoid stagnant) were proposed.

A PSO with two types of sub-swarms called inder-tracker multi-

swarm PSO was proposed in [25]. The inder swarm inds new un-

covered peaks. When it converges to a peak, it creates a new tracker

swarm to track the peak. An exclusion mechanism re-initializes the

inder swarm if it converges to a peak that already has a tracker

swarm on it. In addition, a mechanism to schedule tracker swarms

called sleeping-awakening was proposed. It allocates more com-

putational power to more promising swarms. Furthermore, a new

method for re-diversiication of tracker swarms (after a change) was

proposed. The method re-initializes all particles randomly around

Gbest [11] and their velocity vector is randomly set based on the

peak’s shift severity.
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3.2 Robust Optimization Over Time

In [30], ROOT was proposed as a new perspective on DOPs. A

new framework for ROOT was proposed in [10] with the algorithm

searching for robust solutions by means of local itness approxima-

tion and prediction. This method consists of a population-based

optimization algorithm, a itness approximator (to estimate itness

at any point in the search space), a itness predictor (to predict

future itness values) and a database. In [10], an adapted radial-

basis-function network (RBFN) is the local approximator and an

autoregressive (AR) model is the predictor. A database was used for

storing, in each iteration, all of the individuals’ positions alongside

their itness values and the associated time of storage. This data-

base was then used for approximating itness values of solutions

in previous environments which in turn was used for training the

predictor.

In [8], authors proposed two new robustness deinitions and

metrics, namely survival time and average itness. The survival

time is the maximum time interval starting from time t during

which the itness value of the robust solution remains acceptable,

S
(

x⃗ ,θ (t ) ,δ
)

=



0 if f (x⃗ ,θ (t ) ) < δ

1 +max{l | ∀i ∈ {t , . . . , t + l } : f
(

x⃗ ,θ (i )
)

≥ δ } otherwise

(3)

where δ is a user deined threshold. In Eq. (3), for each environ-

ment, S shows for how many environments the itness value of the

current robust solution has remained above δ .

In [16], a new two-layer multi-objective method was proposed

to ind robust solutions that can maximize both survival time and

average itness. In [9], another multi-objective method was pro-

posed to minimize switching cost and maximize survival time. A

PSO algorithm was used as the optimizer. Additionally, the algo-

rithm used the acceptance threshold for robust solutions similar

to [8]. Euclidean distance between two solutions was used as the

switching cost.

In [27], for the irst time, a new ROOT method was proposed

in which the algorithm did not use approximation and prediction

like previous ROOT methods. This algorithm tried to track peaks

and gather information about itness variance of peaks after envi-

ronmental changes. This algorithm choses the most reliable peak

based on the current itness of peaks and their itness variances as

the next solution.

3.3 Methods considering switching cost

There are only a few papers that consider switching cost. In [1, 9, 20,

28], switching cost was considered as an objective inmulti-objective

problems. However, all of these works considered the switching

cost as a separable and independent objective from the optimality

objective function and the connection between these two objectives

was not considered. In [20], switching cost was investigated as op-

timization of adaptation. A multi-objective problem was deined

which considered the cost of the adaptation and the optimality

while the adaptation takes place. In [1], the need for rapid, low-cost

changes in a design, in response to changes in performance re-

quirements, within multi-objective problems, was investigated. An

algorithm called ROOT⁄SC [9] was designed for ROOT. ROOT⁄SC

is a multi-objective algorithm in which the irst objective is survival

time metric [8] and the second one is switching cost. Yazdani et

al. [28] considered the time-linkage characteristic [18] of DOPs

with switching cost. This work investigated DOPs with previous-

solution restriction (PSDR) in which successive solutions should

not be much diferent. However, the proposed algorithm in this

paper choses a new solution for each environment even where the

switching cost is high. Additionally, this work did not consider

any connection and trade-of between the quality of solutions and

switching costs.

4 PROPOSED ALGORITHM

In this section a new algorithm named adaptive solution chooser

(ASC) is described. ASC tries to maintain a trade-of between TMO

and ROOT characteristics based on the switching cost and itness

values of the current solution and other peaks. In this paper, the

switching cost is deined based on the Euclidean distance as follows:

SC(x⃗ ) = w · ∥x⃗ − x⃗
∗∥

√
D
, (4)

where SC is switching cost, x⃗ is a design variable, x⃗∗ is the last

chosen solution by the algorithm, D is dimension and w ≥ 0 is a

weight which controls the ratio between switching cost and itness

value. Moreover, by setting diferent values forw , we can simulate

higher or lower switching costs. Note that increasing dimension

results in increasing Euclidean distance values which leads to in-

crease SC values. Therefore, the ratio between SC and itness value

changes in diferent dimensions that can be undesirable in experi-

ments. Consequently, this is the reason behind dividing by
√
D in

Eq. (4) which makes SC values independent form dimension of the

problem. On the other hand,w can be used for increasing SC values

in higher dimensions if it is needed.

In ASC, a multi-swarm optimizer is responsible to ind peaks,

track them after environmental changes and calculate their itness

variance. This multi-swarm algorithm needs to continuously try

to identify new peaks and tracks them after each environmental

change. Knowledge about the problem such as number of peaks and

their shift severities should not be necessary. Additionally, the algo-

rithm should be able to adapt the number of populations as needed.

For example, the proposed multi-swarm algorithms in [4, 26, 27]

have such characteristics. Each sub-swarm which is tracking a peak

needs to store the Euclidean distance between best found positions

(such as Gbest in PSO [11]) at the end of each successive pair of

environments. The average of these distances indicates the peak’s

Shift Severity. Moreover, the diferences between itness values of

its best found positions before and after each environmental change.

The average of these values indicates the variance of itness values

of the best found position after environmental changes which is

denoted itness variance.

We choose FTmPSO [25] as the multi-swarm method embedded

in ASC. The major reasons behind this choice are its simplicity, com-

petitiveness and compatibility with ASC. To make FTmPSO simpler,

we do not use the exploiter particle and awakening-sleeping mech-

anisms proposed in its original paper. Additionally, to make it more

realistic, we use the exclusion radius formula proposed in [4] for

it and we use learned shift severities instead of the true shift that

was used in the original paper.
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At each environment, ASC determines the reliable peaks. Reliable

peaks are peaks which are expected to remain acceptable after at

least one environmental change. For determining reliable peaks,

ASC uses the following formula:


if f (x⃗best,i ,θ

(t ) ) − γi ≥ δ reliable

else unreliable,
(5)

where x⃗best,i is the best position found by the ith sub-swarm and

γi is the itness variance of the peak which is covered by ith sub-

swarm.

For each environment, after a predeined computational bud-

get, ASC determines reliable peaks then there are three diferent

possibilities:

(1) If the last chosen solution is not acceptable in the current

environment t , i.e. f (x⃗∗,θ (t ) ) < δ then a new solution must

be chosen from the reliable peaks as follows:

j = argminiSC(x⃗best,i ), (6)

then

x⃗∗new = x⃗best, j , (7)

where i ∈ {ReliablePeaks} which are determined by Eq. (5).

If there is no reliable peak, ASC chooses the best found

solution.

(2) If the last chosen solution is still acceptable i.e. f (x⃗∗) ≥ δ

and if among peaks, there is at least one peak which has the

following condition:

f (x⃗∗,θ (t ) ) < ( f (x⃗best,i ,θ
(t ) ) − SC (x⃗best,i )) (8)

Then, the solution will be changed to x⃗best,i . If there are more

than one reliable peak that have the condition in Eq. (8), the

one with the lowest SC (x⃗best,i ) will be chosen.

(3) If f (x⃗∗,θ (t ) ) ≥ δ and there is no peak that has the condition

in Eq. (8), then the previous solution will be kept for at least

another environment.

5 EXPERIMENTS

5.1 Performance Indicator

For measuring performance, we propose

Performance =
1

T

T
∑

t=1

(Ft ), (9)

where

Ft =

f (x⃗∗,θ (t ) ) if previous solution is kept

f (x⃗∗new,θ
(t ) ) − SC (x⃗∗new) if a new solution is chosen,

(10)

where x⃗∗new is a new chosen solution and T is number of environ-

ments. Therefore, the value of SC is decreased from the itness value

where the solution is changed. From another point of view, its cost

is decreased from proit. Moreover, it can be seen as a penalty value.

Algorithm 1: ASC

1 Initialize multi-swarm method;

2 repeat

3 if an environmental change happens then

4 forall sub-swarms do

5 Update database;

6 Calculating shift severity and itness variance;

7 Introducing diversity;

8 Update memory;

9 if the computational budget has been used up then

10 Determine reliable peaks by Eq. (5);

11 if f (x⃗∗,θ (t ) ) < δ then

12 Choose the next solution by Eq. (7);

13 else

14 if there are peaks with condition of Eq. (8) then

15 Choose the one with minimum SC (x⃗best,i );

16 else

17 Keep the current solution;

18 Execute an iteration of the multi-swarm method;

19 until stopping criterion is met;

5.2 Benchmark

The Moving Peaks Benchmark (MPB) [5] is the most popular bench-

mark in the DOP ield. In its standard form, all peaks are behaving

identical, so no solution is more robust than another and all peaks

have almost similar behavior. This is why in ROOT, researchers

used various modiied versions [8ś10, 27]. In this paper, we use the

standard baseline function of MPB as follows:

f (t ) (x⃗ ) = maxmi=1

{

h
(t )
i
−
(

w
(t )
i
·




x⃗ − c⃗

(t )
i






)}

, (11)

where m is the number of peaks, x⃗ is a solution in the problem

space, h
(t )
i

,w
(t )
i

and c⃗
(t )
i

are the height, width and center of the ith

peak in the t th environment, respectively. In the modiied version

of MPB (mMPB) used in this paper, each peak has its own height,

width and shift severities. The reason for having diferent height,

width and shift severities for each peak is to have diferent behavior

among them. The height, width and center of a peak change from

one environment to the next is computed as follows:

h
(t+1)
i

= h
(t )
i
+ αi · N (0, 1), (12)

w
(t+1)
i

= w
(t )
i
+ βi · N (0, 1), (13)

c⃗
(t+1)
i

= c⃗
(t )
i
+ v⃗

(t+1)
i
, (14)

where

v⃗
(t+1)
i

= si ·
(1 − λ) · R⃗ + λ · v⃗ (t )

i




(1 − λ) · R⃗ + λ · v⃗

(t )
i






, (15)

whereN (0, 1) represents a random number drawn from a Gaussian

distribution with mean 0 and variance 1, αi is the height severity,

βi is the width severity , si is the shift severity of the ith peak, R
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is a uniformly generated random vector ∈ [−0.5, 0.5] and λ is the

correlation coeicient.The parameter settings of the mMPBR are

shown in Table 1.

Table 1: Parameter settings of mMPBR

Parameter Value(s)

Number of peaks,m 5,20

Evaluations between changes, f 2500

Shift severity, s Randomized in [0.5,3]

Height severity, α Randomized in [1,15]

Width severity, β Randomized in [0.1,1.5]

Peaks shape Cone

Correlation coeicient, λ 0

Number of dimensions, D 2,5

Peaks location range, SR [-50,50]

Peak height, h [30,70]

Peak width,w [1,12]

Initial height value 50

Initial width value 6

Number of environments, T 100

5.3 Algorithms and parameter settings

For comparison, we choose FTmPSO as a TMO method (TFTmPSO)

which changes solutions to the best found position in each environ-

ments. Additionally, we use a ROOT version of FTmPSO (RFTmPSO)

proposed in [27] as a ROOT method. Since ASC, TFTmPSO and

RFTmPSO methods use the same multi-swarm method as core, the

conclusion about performance of their diferent decision making

procedure for choosing the next solution will not be afected by

diferences in the quality of inding and tracking peaks. Since in all

of these three methods, the main task of the FTmPSO is inding and

tracking peaks, it seemed appropriate to use the suggested param-

eter settings as in its original paper [25]. The parameter settings

of FTmPSO in all three methods are shown in Table 2. All three

algorithms choose solutions (if needed) at the end of each envi-

ronments meaning the computational budget is f -1. Moreover, we

assume that all algorithms will be informed about environmental

changes happening. Change detection is another issue that can be

dealt with separately, see e.g. [17].

5.4 Experimental results

All experimental results are obtained by performing 31 independent

runs and the best results based on Wilcoxon signed-rank test with

signiicance level of 0.05 are set in bold in each table. All exper-

iments are done for three diferent itness acceptance threshold

δ ∈ {40, 45, 50} and ive diferent values ofw ∈ {0.1, 0.5, 1, 2, 3} in
Eq. (4) to simulate the impact of diferent levels of switching cost on

the performance which is measured by Eq. (9). The median, mean

and standard error of results are reported in Tables 3 and 4.

Tables 3 and 4 show the obtained results by algorithms on mMPB

with 5 and 20 peaks. When w=0.1, the amount of switching cost

obtained by Eq.(4) is smaller. Therefore, the problem is more suit-

able to be solved by TFTmPSO rather than RFTmPSO. As a result,

Table 2: The parameter settings of FTmPSO inside the ASC,

TFTmPSO and RFTmPSO

Parameter Value

C1,C2 2.05

χ 0.729843788

Trackers ′ population size 5

Finder ′s population size 10

Exclusion f atcor 0.5

P 1

Q 1

Converдence limit 1

k 10

Stop criterion Max itness evaluation number

the eiciency of the TFTmPSO which chooses the best solution

for each environment is much better than of RFTmPSO. Addition-

ally, obtained results by TFTmPSO are independent of δ . Indeed,

RFTmPSO tries to keep solutions as long as they are larger than

δ which is not useful for problems with small switching costs. In

this situation, with growing δ value, the performance of RFTmPSO

improves due to more frequent solution changing to better ones. In

this situation ASC acts like a TFTmPSO because the possibility of

having solutions with condition in Eq. (8) is high. Therefore, ASC’s

results are almost the same when we have diferent δ values.

According to Tables 3 and 4, increasingw results in decreasing

the performance of algorithms because of higher values of switching

cost. However, TFTmPSO sufers more than the other two meth-

ods in this situation and its performance drops dramatically. The

reason is that TFTmPSO changes solution every environment and

this is detrimental if cost is large. In problems with higher switch-

ing cost, RFTmPSO outperforms TFTmPSO and the gap between

their performances become larger as w increases. In fact, in this

situation, the problem become more suitable to be solved by ROOT

based methods in which solutions are kept as much as they remain

acceptable.

ASC obtains the best results in comparison with RFTmPSO

and TFTmPSO when switching cost is higher. Indeed, ASC is an

adaptive algorithm which with growing switching cost tries to act

more similar to ROOT based methods and less to TMO based algo-

rithms. According to these tables, ASC outperforms TFTmPSO and

RFTmPSO whenw ≥ 0.5. Surprisingly, ASC keeps its superiority

over RFTmPSO even when w=3 in which ASC is expected to act

similar to RFTmPSO. The irst reason is that even with largew , it

is still possible to have solutions with condition in Eq. (8) which

can increase the performance of ASC. The second reason is their

diferent strategies for choosing a solution when the current one is

not acceptable anymore. Both RFTmPSO and ASC choose solutions

from reliable peaks. RFTmPSO chooses the best reliable peak in

terms of itness function. However, ASC chooses the one with low-

est switching cost which leads to improved performance of ASC

under circumstances with large switching cost.

Diferent values of δ afect the performance of ASC (except

wherew=0.1) and RFTmPSO . Whenw=0.1, ASC acts independent

from δ but RFTmPSO obtains better results when δ is higher. The
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Table 3: Obtained results by Eq.(9) by TFTmPSO, RFTmPSO and ASC on mMPB with 5 peaks.

2 Dimensional 5 Dimensional

δ Alg. Stats. w=0.1 w=0.5 w=1 w=2 w=3 w=0.1 w=0.5 w=1 w=2 w=3

40

TFTmPSO

Median 61.32 53.97 46.57 31.11 14.89 61.30 54.58 45.67 29.83 14.12

Mean 61.04 54.28 45.83 28.93 12.03 61.00 54.41 46.18 29.71 13.25

StdErr 0.27 0.47 0.87 1.73 2.61 0.31 0.48 0.80 1.51 2.23

RFTmPSO

Median 52.45 49.93 47.09 41.40 35.92 51.92 48.77 45.87 38.09 31.05

Mean 52.63 49.99 46.69 40.09 33.49 52.07 49.09 45.37 37.92 30.47

StdErr 0.23 0.33 0.52 0.97 1.43 0.20 0.35 0.59 1.10 1.62

ASC

Median 61.29 57.38 54.31 48.79 45.05 60.38 56.79 54.71 50.52 45.83

Mean 60.68 57.02 54.24 49.04 44.00 60.43 56.61 54.17 49.30 44.08

StdErr 0.28 0.40 0.54 0.87 1.23 0.34 0.50 0.69 1.15 1.64

45

TFTmPSO

Median 61.32 53.97 46.57 31.11 14.89 61.30 54.58 45.67 29.83 14.12

Mean 61.04 54.28 45.83 28.93 12.03 61.00 54.41 46.18 29.71 13.25

StdErr 0.27 0.47 0.87 1.73 2.61 0.31 0.48 0.80 1.51 2.23

RFTmPSO

Median 54.92 51.51 47.40 38.95 30.30 54.44 50.76 46.76 38.87 30.10

Mean 54.89 51.49 47.24 38.74 30.24 54.47 50.73 46.05 36.70 27.35

StdErr 0.19 0.31 0.56 1.11 1.66 0.18 0.37 0.70 1.40 2.10

ASC

Median 60.69 57.28 54.32 47.77 41.33 60.43 56.55 52.85 46.22 39.42

Mean 60.58 56.95 53.36 46.34 39.26 60.47 56.50 52.69 45.12 37.38

StdErr 0.28 0.43 0.69 1.22 1.77 0.35 0.52 0.82 1.47 2.11

50

TFTmPSO

Median 61.32 53.97 46.57 31.11 14.89 61.30 54.58 45.67 29.83 14.12

Mean 61.04 54.28 45.83 28.93 12.03 61.00 54.41 46.18 29.71 13.25

StdErr 0.27 0.47 0.87 1.73 2.61 0.31 0.48 0.80 1.51 2.23

RFTmPSO

Median 57.52 52.99 46.98 35.65 24.32 57.11 52.23 46.66 35.73 25.33

Mean 57.25 52.90 47.46 36.59 25.72 57.00 52.39 46.62 35.08 23.54

StdErr 0.20 0.30 0.55 1.10 1.66 0.22 0.38 0.71 1.41 2.13

ASC

Median 61.01 56.52 52.78 42.97 33.09 60.68 56.33 51.07 40.24 29.62

Mean 60.73 56.54 51.68 41.95 32.25 60.63 56.31 51.22 40.82 30.25

StdErr 0.27 0.44 0.72 1.32 1.91 0.32 0.56 0.91 1.63 2.33

reason is that when δ is higher, solutions become unacceptable

more frequently and RFTmPSO needs to change solutions to better

ones and since switching cost is low, changing to better solutions

improves its performance. On the other hand, when w is larger,

by increasing δ the performance of ASC and RFTmPSO get worse

because they need to change solutions more frequently which leads

to sufer from more higher switching costs.

As can be seen in Tables 3 and 4, the results of all of the algo-

rithms are better in mMPB with 20 peaks in comparison with 5

peaks. When the number of peaks is higher in mMPB, the possi-

bility of having taller peaks is higher which leads to improve the

performance whenw is smaller, especially for ASC and TFTmPSO .

Moreover, whenw is higher, the performance of ASC and RFTmPSO

are more dependent on the robustness of solutions. Therefore, hav-

ing more peaks increases the possibility of having more reliable

peaks by Eq. (5). In addition, when the number of peaks is low,

there are large areas of low itness because there are few peaks

to cover these areas. As a result, the average solution quality is

lower, and robust solutions can lose their quality more quickly.

By increasing the number of peaks, the average survival time of

solutions increases because peaks are likely to overlap and support

robust solutions. For ASC, when the number of peaks is higher, the

number of reliable peaks is higher as well. Therefore, the density

of peaks in the landscape is higher, so the possibility of having

reliable peaks closer to the current solution is higher which leads to

decrease in switching cost when ASC chooses a solution by Eq. (7).

According to Tables 3 and 4, all of the algorithms obtain better

results in 2-dimensional problems than in 5-dimensional ones. In

fact, in higher dimensions, the problem becomes more challenging

for the optimizer, so the eiciency of inding and tracking peaks is

decreased which leads to have worse results.

6 CONCLUSION

Switching cost is an important aspect of dynamic optimization

problems (DOPs); however, there are few works considering the

switching cost into account during the optimization process. Most

of investigations in dynamic optimization literature have been fo-

cused on tracking moving optima (TMO), which often pursued

irrespective of the switching cost. Robust optimization over time

(ROOT) addresses this shortcoming by keeping solutions as long as

they remain acceptable. However, ROOT methods are not suitable

for problems with smaller switching cost.

In this paper, an adaptive solution chooser (ASC) algorithm for

dynamic optimization problems with switching costs was proposed.

ASC behaves similar to TMO based algorithms where the switch-

ing cost is low and similar to ROOT based algorithms when the
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Table 4: Obtained results by Eq.(9) by TFTmPSO , RFTmPSO and ASC on mMPB with 20 peaks.

2 Dimensional 5 Dimensional

δ Alg. Stats. w=0.1 w=0.5 w=1 w=2 w=3 w=0.1 w=0.5 w=1 w=2 w=3

40

TFTmPSO

Median 64.91 54.03 40.40 13.23 -13.95 63.49 53.26 40.10 14.11 -11.85

Mean 64.96 53.94 40.17 12.63 -14.91 63.65 53.50 40.81 15.44 -9.94

StdErr 0.09 0.31 0.62 1.24 1.85 0.13 0.36 0.68 1.35 2.02

RFTmPSO

Median 54.36 52.49 50.33 46.01 41.39 53.86 51.75 49.04 43.70 38.53

Mean 54.63 52.78 50.46 45.83 41.21 53.76 51.59 48.88 43.46 38.05

StdErr 0.22 0.28 0.42 0.73 1.06 0.17 0.20 0.34 0.68 1.03

ASC

Median 64.72 60.69 58.25 54.92 52.18 62.66 56.86 55.27 53.40 49.45

Mean 64.73 60.86 58.05 54.83 52.17 62.94 57.09 55.44 52.54 49.16

StdErr 0.14 0.27 0.37 0.40 0.47 0.20 0.39 0.44 0.57 0.83

45

TFTmPSO

Median 64.91 54.03 40.40 13.23 -13.95 63.49 53.26 40.10 14.11 -11.85

Mean 64.96 53.94 40.17 12.63 -14.91 63.65 53.50 40.81 15.44 -9.94

StdErr 0.09 0.31 0.62 1.24 1.85 0.13 0.36 0.68 1.35 2.02

RFTmPSO

Median 56.91 54.19 51.42 45.05 38.44 56.23 52.92 49.29 41.55 33.97

Mean 56.82 54.26 51.06 44.65 38.25 56.13 53.19 49.51 42.15 34.80

StdErr 0.14 0.22 0.41 0.84 1.28 0.16 0.23 0.41 0.82 1.23

ASC

Median 64.68 61.15 58.79 55.86 52.01 62.71 58.69 56.39 52.15 48.46

Mean 64.63 61.03 58.83 55.20 51.67 63.00 58.34 56.30 52.14 47.58

StdErr 0.15 0.22 0.25 0.40 0.57 0.20 0.37 0.47 0.73 1.00

50

TFTmPSO

Median 64.91 54.03 40.40 13.23 -13.95 63.49 53.26 40.10 14.11 -11.85

Mean 64.96 53.94 40.17 12.63 -14.91 63.65 53.50 40.81 15.44 -9.94

StdErr 0.09 0.31 0.62 1.24 1.85 0.13 0.36 0.68 1.35 2.02

RFTmPSO

Median 59.40 55.70 51.34 42.70 33.60 58.24 54.44 50.02 41.15 31.94

Mean 59.23 55.51 50.85 41.54 32.23 58.23 54.33 49.46 39.71 29.96

StdErr 0.13 0.24 0.47 0.95 1.44 0.08 0.26 0.58 1.24 1.89

ASC

Median 64.76 60.85 58.42 52.47 47.88 62.97 59.29 56.16 50.44 43.56

Mean 64.69 61.00 58.19 52.76 47.26 63.08 59.27 56.10 49.53 42.60

StdErr 0.12 0.25 0.43 0.79 1.15 0.19 0.36 0.60 1.09 1.61

switching cost is high. ASC’s core is a multi-swarm method which

tracks peaks and calculates itness variance of peaks that is used for

determining reliable peaks in terms of robustness of solutions. ASC

decided if a new solution is to be chosen or the previous one can be

kept based on current solution’s itness values, the itness of other

found solutions with better quality and their switching cost from

the current solution. The experimental results by a proposed per-

formance indicator on modiied moving peaks benchmark showed

that ASC performed signiicantly better than two state-of-the-art

methods for TMO and ROOT in problems with diferent levels of

switching cost.

In fact, by proposing ASC, we try to bridge a gap between aca-

demic research and real-world problems in the ield of DOPS. In

contrary to TMO and ROOT which are addressing two extreme

cases i.e. when switching cost is very small or very large, ASC

makes decision about changing or keeping solutions according to

the switching cost at any range.
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