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 Numerical solution of fuzzy equations with Z-numbers using neural 
networks 

In this paper, the uncertainty property is represented by the Z-number as the 

coefficients of the fuzzy equation. This modification for the fuzzy equation is 

suitable for nonlinear system modeling with uncertain parameters. We also 

extend the fuzzy equation into dual type, which is natural for linear-in-parameter 

nonlinear systems. The solutions of these fuzzy equations are the controllers 

when the desired references are regarded as the outputs. The existence conditions 

of the solutions (controllability) are proposed. Two types of neural networks are 

implemented to approximate solutions of the fuzzy equations with Z-number 

coefficients. Type or paste your abstract here. 

Keywords: fuzzy equation; Z-number; fuzzy control  

Introduction  

Uncertainties are inevitable in real systems. Control of uncertain system is classified in 

two methodologies: direct and indirect techniques (Feng, 2006). The methodology 

involves the direct control incorporates uncertain system as a controlling mechanism, 

whereas the indirect uncertain model is used to approximate the nonlinear system as a 

first step, then proceeds controller design based on uncertain model. The indirect fuzzy 

controller works on the principle of generalized topological structure as well as 

universal approximation capacity associated to fuzzy model. It has been utilized 

primarily, considering the case of uncertain nonlinear system control. This paper utilizes 

the indirect control method. 

Since the uncertainty in parameters can be transformed into fuzzy set theory (Zadeh, 

2005), fuzzy set and fuzzy system theory are good tools to deal with uncertain systems. 

Fuzzy models are applied for a large class of uncertain nonlinear systems. Fuzzy 

method is a highly favorable tool for uncertain nonlinear system modeling. The fuzzy 

models approximate uncertain nonlinear systems with several linear piecewise systems 



(Takagi-Sugeno method) (Takagi & Sugeno, 1985). Mamdani models use fuzzy rules to 

achieve a good level of approximation of uncertainties (Mamdani, 1976). In recent days, 

many methods involving uncertainties have used fuzzy numbers (Buckley & Qu, 1990) 

(Jafari & Yu, 2015) (Jafarian & Jafari, 2012) (Jafarian, Jafari, Mohamed Al Qurashi, & 

Baleanu, 2016), where the uncertainties of the system are represented by fuzzy 

coefficients. 

The application of the fuzzy equations is in direct connection with the nonlinear control. 

Given a fuzzy equation, the control incorporated in the equation is in fact a solution of 

the equation. There are number of techniques to study the solutions of fuzzy equations. 

(Friedman, Ming, & Kandel, 1998) used the fuzzy number on parametric shapes and 

replaced the original fuzzy equations with crisp linear systems. A survey on the 

extension principle is proposed by (Buckley & Qu, 1990) and it suggests that the 

coefficients can be either real or complex fuzzy numbers. Nevertheless, there will be no 

guarantee that the solution exists. (Abbasbandy, 2006) proposed the homeotypic 

analysis technique. (Abbasbandy & Ezzati, 2006) used the Newton methodology. In 

(Allahviranloo, Otadi, & Mosleh, 2007) the solution associated to the fuzzy equations is 

studied by the fixed point technique. One of the most popular methods is the   -level 

(Goetschel & Voxman, 1986). By applying the technique of overlay of sets, fuzzy 

numbers can be resolved (Mazandarani & Kamyad, 2013). The fuzzy fractional 

differential and integral equations have been investigated extensively in (Agarwal, 

Lakshmikantham, & Nieto, 2010) (Arshad & Lupulescu, 2011) (Salahshour, 

Allahviranloo, & Abbasbandy, 2012) (Wang & Liu, 2011). In (Khastan, Nieto, & 

Rodriguez-lopez, 2013), the first-order fuzzy differential equation with periodic 

boundary conditions is analyzed. Then, higher order linear fuzzy differential equations 

is studied. In (Allahviranloo, Kiani, & Barkhordari, 2009), the analytical solutions of 



the second-order fuzzy differential equation is obtained. The analytical solutions of 

third-order linear fuzzy differential equations are found in (Hawrra & Amal, 2013), 

while (Buckley & Feuring, 2001) proposed analytical approach to resolve nth-order 

linear fuzzy differential equations. Nevertheless, the analytical solutions of fuzzy 

equations are difficult to obtain and the aforementioned techniques involve greater 

complexity. 

The numerical solution associated to the fuzzy equation and the fuzzy differential 

equations (Lupulescu, 2009)] can be extracted by iterative technique (Kajani, Asady, & 

Vencheh, 2005), interpolation technique (Waziri & Majid, 2012) and the Runge-Kutta 

technique (Pederson & Sambandham, 2008). However, the implementation of these 

techniques are difficult. Both neural networks as well as fuzzy logic are considered to 

be the universal estimators which can estimate any nonlinear function to any notified 

precision (Cybenko, 1989). Recent results show that the fusion of the neural networks 

and the fuzzy logic gives remarkable success in nonlinear system modeling (Yu & Li, 

2004). The neural networks may also be used to solve fuzzy equations. (Buckley & 

Eslami, 1997) used a neural network with three neurons to estimate the second degree 

fuzzy equation. (Jafarian, Jafari, Khalili, & Baleanu, 2015) and (Jafarian & 

Measoomynia, 2011) extended the result of (Buckley & Eslami, 1997) to fuzzy 

polynomial equations. In (Jafarian & Jafari, 2012), the solution of dual fuzzy equation is 

obtained by neural networks. (Mosleh, 2013) gave a matrix form of the neuronal 

learning. By extending classical fuzzy set theory, (Hullermeier, 1997) obtained a 

numerical solution for an fuzzy differential equation. The predictor-corrector approach 

is applied in (Allahviranloo, Ahmadi, & Ahmadi, 2007). The Euler numerical technique 

is used in (Tapaswini & Chakraverty, 2014) to solve fuzzy differential equations. 

Whatsoever, these techniques are not general, they cannot give the fuzzy coefficients 



directly with neural networks (Tahavvor & Yaghoubi, 2012). 

The decisions are carried out based on knowledge. In order to make the decision 

fruitful, the knowledge acquired must be credible. Z-numbers connect to the reliability 

of knowledge (Zadeh, 2006). Many fields related to the analysis of the decisions use the 

ideas of Z-numbers. Z-numbers are much less complex to calculate when compared to 

nonlinear system modeling methods. The Z-number is abundantly adequate number 

than the fuzzy number. Although Z-numbers are implemented in many literatures, from 

theoretical point of view this approach is not certified completely. There are few 

structure based on the theoretical concept of Z-numbers (Gardashova, 2014). (Aliev, 

Alizadeh, & Huseynov, 2015) gave an inception which results in the extension of the Z-

numbers. (Kang, Wei, Li, & Deng, 2012) proposed a theorem to transfer the Z-numbers 

to the usual fuzzy sets. In (Zadeh, 2006) a novel approach was followed for the 

conversion of Z-number into age old fuzzy number. 

Normal fuzzy equations contain fuzzy numbers just on one side of the equation. 

Nevertheless, dual fuzzy equations contain fuzzy numbers on both sides of the equation. 

Whereas the fuzzy numbers are not able to move between the sides of the equation 

(Kajani, Asady, & Venchech, 2005), dual fuzzy equations can be considered to be more 

general and complicated. 

In this paper, we use dual fuzzy equations (Waziri & Majid, 2012) to model the 

uncertain nonlinear systems, where the coefficients are Z-numbers and the Z-numbers 

are on both sides of the equation. The Z-number is a novel idea that is subjected to a 

higher potential in order to illustrate the information of the human being as well as to 

use in information processing (Zadeh, 2006). Z-numbers can be regarded as to answer 

questions and carry out the decisions (Kang, Wei, Li, & Deng, 2012). 



This paper is one of the first attempts in finding the solution of dual fuzzy equations 

based on Z-numbers. We first discuss the existence of the solutions of the dual fuzzy 

equations. It corresponds to controllability problem of the fuzzy control (Chen, 1994). 

After that, we use two types of neural networks, feed-forward and feedback networks, 

to approximate the solutions (control actions) of the dual fuzzy equation. At the end 

several examples are utilized in order to demonstrate the affectivity of our fuzzy control 

design methods. 

Nonlinear system modeling with dual fuzzy equations and Z-numbers 

In order to utilize dual fuzzy equations and Z-numbers, we first introduce some 

concepts of discrete-time nonlinear system and Z-numbers. 

A general discrete-time nonlinear system can be described as 

   kkkkk xgyuxfx  ,,1   (1) 

Here we consider u
ku   as the input vector, l

kx   is regarded as an internal state 

vector and m
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where    is an nonlinear difference equation exhibiting the plant dynamics, ku  and 

ky  are computable scalar input and output respectively, d  is noted to be time delay. 



The nonlinear system which is represented by (2) is implied as a NARMA model. The 

input of the system with incorporated nonlinearity is considered to be as  
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 Taking into consideration the nonlinear systems as mentioned in (2), it can be 

simplified as the following linear-in-parameter model  
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here ia  and ib  are considered to be the linear parameters,  ki xf  and )( ki xg  are 

nonlinear functions. The variables related to these functions are quantifying input and 

output. A popular example of this pattern of model is considered to be a robot 

manipulator (Spong & Vidyasagar, 1989) 

       pgpBpppCppM  ,        (5) 

(5) can be explained as  
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The modeling of uncertain nonlinear systems can be achieved by utilizing the 

linear-in-parameter models linked to fuzzy parameters. We assume the model of the 

nonlinear systems (3) and (4) have uncertainties in the parameters ia  and ib  . These 

uncertainties are in the sense of Z-numbers (Zadeh, 2011). 

Definition 1: A fuzzy number A  is a function ]1,0[: EA , in such a way, 1) A  

is normal, (there prevail 0x  in such a way 1)( 0 xA ; 2) A  is convex, 

 ))1(( yxA  min )}(),({ yAxA , ]1,0[,,  yx ; 3) A  is upper semi-



continuous on   , i.e.,  )()( 0xAxA , ),( 0xNx  ,0 x  ,0  )( 0xN  is a 

neighborhood; 4) The set }0)(,{  xAxA  is compact. 

 Definition 2: A Z-number has two components   pxAZ , . The primary component 

 xA  is termed as a restriction on a real-valued uncertain variable x . The secondary 

component p  is a measure of reliability of A . p  can be reliability, strength of belief, 

probability or possibility. When  xA  is a fuzzy number and p  is the probability 

distribution of x  , the Z-number is defined as Z -number. When both  xA  and p  are 

fuzzy numbers, the Z-number is defined as Z -number. 

The Z -number carries more information than the Z -number. In this paper, 

we use the definition of Z -number, i.e.,  ,, pAZ   A  is a fuzzy number, p  is a 

probability distribution. 

In order to demonstrate the fuzzy numbers, the membership functions are 

utilized. The most widely discussed membership functions are noted to be the triangular 

function 
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 as well as trapezoidal function  
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The probability measure is expressed as 

dxxpxP AR
)()(        (9) 

where p  is the probability density of x  and R  is the restriction on .p  For discrete Z-

numbers, we have  
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The space of discrete fuzzy sets is denoted by E
~

. ],[

~
baE  denotes the space of discrete 

fuzzy sets of Rba ],[  . Signifying Ẑ  the space of discrete Z-numbers as  
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Definition 3: The   -level associated to a fuzzy number A  is stated as  

})(:{][   xAxA        (12) 

also, 10  . Or  

  AAA ,][   

In order to operate the Z-number, we propose the following definition. 

Definition 4: The  -level of the Z-number ),( pAZ   is demonstrated as 

  ][,][][ pAZ         (13) 

where 10  . ][ p  is calculated by the Nguyen's theorem  

  PPAApApp ,]),([)]([][   

where   ][|)()]([ AxxpAp  . So ][Z  can be expressed as the form  -level of a 

fuzzy number  
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Similarly with the fuzzy numbers (Jafari & Yu, 2015), the Z-numbers are also 

incorporated with four primary operations: ْǡ ٓǡ ٖ ܽ݊݀ ٕ.  These operations are 

exhibited by: sum, subtract, multiply and division. The operations in this paper are 

different from that mentioned in (Zadeh, 2011). The  -level of Z-numbers is applied to 

simplify the operations. 



Let us consider ),( 111 pAZ   and ),( 222 pAZ   be two discrete Z-numbers 

illustrating the uncertain variables 1x  and ,2x  also 1)( 111   k
n
k xp  and 1)( 221   k

n
k xp  . 

The operations are defined as  

),( 21212112 ppAAZZZ   

where  אכ ሼْǡٓǡٖǡٕሽǤ 
The operations for the fuzzy numbers are defined as (Jafari & Yu, 2015)  ሾܣଵ۩ܣଶሿఈ ൌ ቂܣଵఈ  ଶఈܣ ǡ ଵఈܣ  ଵܣଶఈቃሾܣ ٓ ଶሿఈܣ ൌ ሾܣଵఈ െ ଶఈܣ ǡ ଵఈܣ െ ଵܣଶఈሿሾܣ ٖ ଶሿఈܣ ൌ ሾܣଵఈܣଶఈ  ଶఈܣଵఈܣ െ ଶఈܣଵఈܣ ǡ ଶఈܣଵఈܣ  ଶఈܣଵఈܣ െ ଶఈሿܣଵఈܣ

   (15) 

For all 21 pp   operations, we use convolutions for the discrete probability distributions 

  )()()( 12,22,1121 xpxpxppp ini
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The above definitions satisfy the Hukuhara difference (Alieva, Pedryczb, Kreinovich, & 

Huseynov, 2016) ܼଵ ٚு ܼଶ ൌ ܼଵଶ ܼଵ ൌ ܼଶ ْ ܼଵଶ 

Here if ܼ ଵ ٚு ܼଶ prevail, the  -level is ሾܼଵ ٚு ܼଶሿן ൌ ሾܼଵఈ െ ܼଶఈ ǡ ܼଵן െ ܼଶןሿ  
Obviously, ܼ ଵ ٚு ܼଵ ൌ Ͳ , ܼଵ ٚ ܼଵ ് Ͳ. 

If A  is a triangle function, the absolute value of the Z-number ),( pAZ   is 

|))||||(||,||||(|)( 222111 cbapcbaxZ       (16) 

Now we utilize fuzzy equations (3) or (4) to model the uncertain nonlinear 

system (2). The parameters of the fuzzy equations (3) or (4) are in the form of Z-

numbers  ݕ ൌ ܽଵۨ ଵ݂ሺݔሻ۩ܽଶۨ ଶ݂ሺݔሻ۩ ǥ ۩ܽۨ ݂ሺݔሻ     (17) 



or  ܽଵۨ ଵ݂ሺݔሻ۩ܽଶۨ ଶ݂ሺݔሻ۩ ǥ ۩ܽۨ ݂ሺݔሻ ൌܾଵۨ݃ଵሺݔሻ۩ܾଶۨ݃ଶሺݔሻ۩ ǥ ۩ܾۨ݃ሺݔሻ ْ       (18)ݕ

where ia  and ib  are Z-numbers. (18) is considered to be more general as compared to 

(17), it is termed as dual fuzzy equation. 

Taking into consideration a particular case, )( ki xf  has polynomial pattern,  ሺܽଵۨݔሻ ْ ǥ ْ ሺܽۨݔሻ ൌ ሺܾଵۨݔሻ ْ ǥ ْ ሺܾۨݔሻ ْ     (19)ݕ

(19) is termed as dual polynomial based on Z-number. 

The main intention associated with the modeling is to diminish error in midst of 

two output ky  and .kz  As ky  is noted as a Z-number and kz  is considered to be crisp Z-

number, hence we apply the minimum of every points as the model mentioned below  
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By the definition of absolute value (abs), we conclude  
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The modelling constraint (20) is to uncover ),(1 ku ),(2 ku ),(3 ku )),(( 1 kvp  ))(( 2 kvp  and 

))(( 3 kvp  in such a manner  
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Considering (21), we have  
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(22) can be resolved by the application of linear programming methodology 
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here ,ja  ,jb  ,kx  ,ja  jb  and kx  are explained as mentioned in (13). Henceforth, the 

superior way of approximating )( kxf  at the juncture kx  is ky  . The minimization of 

the approximation error which is termed as k  is achieved. 

The process involved in order to design the controller is to obtain ,ku  in such a 

manner that the output related to the plant ky  can approach to the desired output ,ky  or 

the trajectory tracking error diminishes  
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This control entity can be regarded as to detect a solution ku  for the following 

dual equation on the basis of Z-number  ൫ܽଵۨ ଵ݂ሺݔሻ൯۩൫ܽଶۨ ଶ݂ሺݔሻ൯۩ ǥ ۩൫ܽۨ ݂ሺݔሻ൯ ൌሺܾଵۨ ଵ݃ሺݔሻሻ۩ሺܾଶۨ݃ଶሺݔሻሻ۩ ǥ ۩ሺܾۨ݃ሺݔሻሻ ْ  (27)    כݕ
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Controllability of uncertain nonlinear systems via dual fuzzy equations and 

Z-numbers 

As the primary concern of control is finding out ku  as mentioned in (18) which is relied 

on Z-number, the controllability constraint signifies that the dual fuzzy equation (18) 

involves solution. 

We need the following lemmas for displaying the solution of (18) 

Lemma 1: If the coefficients of the dual equation (18) are Z-numbers, then the solution 

ku  satisfies  

          xgxf j
m
jj

n
j domaindomain 11      (28) 

Proof. Assume Zu ˆ
0   is considered to be a solution of (18), the dual equation which 

relies on Z-numbers turns out to be  ൫ܽଵۨ ଵ݂ሺݑሻ൯۩ ǥ ۩൫ܽۨ ݂ሺݑሻ൯ ൌ ሺܾଵۨ ଵ݃ሺݑሻሻ۩ ǥ ۩ሺܾۨ݃ሺݑሻሻ ْ  כݕ

As )( 0uf j  and )( 0ug j  prevails, 0u  domain   ,xf j  0u  domain   xg j  . 

Subsequently, it can be inferred that n
ju 10   domain    1Cxf j   and m
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in which W  is condensing and continuous, also it is bounded as ),()( zrzW   Dz  

and .0)( zr  )(zr  can be considered as the evaluation of .z   
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Proof. As long as W  is uprising, it is quite obvious from (29) that (31) prevail. In this 

case we verify that }{ ip  conjoins to some Zw ˆ  and wwW )( . The set 

,...},,{ 210 pppB   is enclosed and }{)( 0pBWB  , thus ))(()( BWrBr  , here )(Br  

denotes the quantification of non-compactness of B  . It is observed from W  that 

0)( Br , i.e., B  is a proportionally compact set. Thus, there prevail an outflow of 
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to (Aliev, Huseynov, Aliyev, & Alizadeh, 2015) the supremum metrics
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similar logic, we obtain 22
~ qwp  , and formally, nn qwp  ~  ,...)3,2,1( n . Here, 

considering limit n , we extract www  ~ . 
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21


MM ddZ   

))(),((
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UU ddZ  , ]1,0[ . If ia  and jb  ( ,1 ni  mj 1  ) in (18) are Z-

numbers and they suffice the Lipschitz condition  
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 (32) 

also, the upper bounds of the functions if  and jg  are ,ff i   ,gg j   then the dual 

fuzzy equation (18) has a solution u  in the set mentioned below  

 ))((,
~

2121
),(),(

2211 
 HHgmfnuuZuKH   (33) 

Proof. Since ia  and jb  are Z-numbers and from (32) we have  

݀ெሺߙǡ ሻߚ ൌ ൬ቀܽଵெభሺߙሻǡ ܽଵெమሺߚሻቁ ٖ ଵ݂ሺݔሻ൰ ْ ǥ ْ ൬ቀܽெభሺߙሻǡ ܽெమሺߚሻቁ ٖ
݂ሺݔሻ൰ ٓு ሺܾଵெభሺߙሻǡ ܾଵெమሺߚሻሻ ٖ ଵ݃ሺݔሻሻ ٓு ǥ ٚு ሺሺܾெభሺߙሻǡ ܾெమሺߚሻሻ ٖ ݃ሺݔሻሻ  

Hence 

 ȁ݀ெሺߙǡ ሻߚ െ ݀ெሺ߮ǡ ሻȁߩ ൌ ൫ȁ ଵ݂ሺݔሻȁۨหሺܽଵெభሺߙሻǡ ܽଵெమሺߚሻ ٚு ሺܽଵெభሺ߮ሻǡ ܽଵெమሺߩሻሻห൯ ْǥ ْ ൫ȁ ݂ሺݔሻȁۨหሺܽெభሺߙሻǡ ܽெమሺߚሻ ٚு ሺܽெభሺ߮ሻǡ ܽெమሺߩሻሻห൯ ْ൫ȁ ଵ݃ሺݔሻȁۨหሺܾଵெభሺߙሻǡ ܾଵெమሺߚሻ ٚு ሺܾଵெభሺ߮ሻǡ ܾଵெమሺߩሻሻห൯ ْ ǥ ْ൫ȁ݃ሺݔሻȁۨหሺܾெభሺߙሻǡ ܽெమሺߚሻሻ ٚு ሺܾெభሺ߮ሻǡ ܾெమሺߩሻሻห൯   (34) 

With respect to the Lipschitz condition (32), (34) is 
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In the same manner, the upper limits suffice  

  )(),(),(   HHgmfndd UU  

As the lower limit ,0),(),(   MM dd  with respect to Lemma 2 the solution 

contains in HK  and is defined in (33). 

Lemma 3: Let us consider the data number to be m and also we suggest the order of the 

equation to be n  in (19) that suffices  

12  nm        (35) 

considering ,1 mk   hence the solutions of (24) and (25) are  ))(()( 22 kpk    

)(3 k 0))(( 3 kp   

Proof. Since  
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Let us opt 12 n  points through ))(,( kk xfx  and find the following interpolation dual 

polynomial based on Z-number on these data  
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       (37) 

Let   )}({max kk xfkhj   and ,0j  as a result we can transform the dual 

polynomial (19) to the other form of new dual polynomial   jkh  . This suggested 

recent dual polynomial based on Z-number suffices (36). Since the presumable spot of 

(24) are 0)(2 k  and ,0))(( 2 kp   so it should be zero. In the similar manner, 

outcome can be extracted for (25).Ŷ 



 kx  and )( kxf  are crisp Z-numbers. In case of ,1 nk   there should be a 

validated solution for the equation approximation (Mhaskar & Pai, 2000). 

Theorem 2: If there is a big amount of data number as (35) and the dual polynomial 

based on Z-number (19) satisfies  

       10,,,, 212211  ruurDuxjuxjD kkkkkk      (38) 

where  j  exhibits a dual polynomial based on Z-number, ݆ሺݔଵǡ ଵሻǣݑ ሺܽଵ ٖ ଵሻݔ ْ ǥ ْ ሺܽ ٖ ଵݔ ሻ ൌ ሺܾଵ ٖ ଵሻݔ ْ ǥ ْ ሺܾ ٖ ଵݔ ሻ ْ  ଵ  (39)ݕ

  vuD ,  is the Hausdorff distance related to Z-numbers u  and v ,  
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 yxd ,  is the supremum metrics considering fuzzy sets, then (19) contains a distinct 

solution u . 

Proof. According to lemma 2, there exist solutions for (23)-(25), if there are numerous 

data which satisfy (35). Neglecting deficit of generality, let we consider the solutions 

for (23)-(25) are at par with ,0kx  which tends to .0u  (38) signifies  j  in (39) is 

continuous. If we select 0  in such a manner that   ,, 0 uyD k  hence  

  )1(),,( 00 ruuxjD k   

where .),0( 00 uuj   Taking into our account we choose x  close to ,0  ],,0[ sxk   ,0s

so  
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0 kk
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yyD
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Assume }{
mky  be a succession in ,0S  for any ,0  the computation of )(0 N  can be 

done in such a manner    , 0, Nnm   . Hence kk yy
m
  for ],0[ sxk   . Henceforth  

        00 ,,, uyDyyDuyD
mm kkkk        (40) 



 for all ],,0[ sx  ).(0 Nm  As 0  is randomly minute,  

  0,uyD k        (41) 

 for all ],0[ sx  . Now we validate that ky  is continuous at 00 x  . Taking into 

consideration 0  , there prevails 01   in such a manner  

      100 ,,,   uyDyyDuyD
mm kkkk  

for every ),(0 Nm  by means of (41), while 10 ||  xx  , ky  is continuous at 00 x . 

As a result (19) contains a distinct solution 0u  . Ŷ 

The necessary circumstance in order to establish the controllability (existence of 

solution) related to the dual equation (27) is (28), the sufficient condition related to the 

controllability is (32). For majority of membership functions, such as triangular 

functions and the trapezoidal function, the Lipschitz condition (32) is fulfilled. In this 

case it is considered to be controllable. 

 

Figure 1: A feed-forward neural network (NN) approximates the solutions of fuzzy 

equation 
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Figure 2: A feedback neural network (FNN) approximates the solutions of fuzzy 

equation 

Utilization of neural networks for fuzzy controller design 

It is not possible to acquire an analytical solution for (27). Here, neural networks are 

utilized to approximate the solution (control). In order to fit the neural networks, (27) is 

written as  ൫ܽଵ ٖ ଵ݂ሺݔሻ൯۩ ǥ ۩ሺܽ ٖ ݂ሺݔሻሻ ٓு ൫ܾଵ ٖ ଵ݃ሺݔሻ൯ ٓு ǥ ٓு ሺܾ ٖ݃ሺݔሻሻ ൌ  (42)         כݕ

We use two types of neural networks, feed-forward and feedback neural 

networks to approximate the solution of (42), see Figure 1 and Figure 2. The Z-numbers 

ia  and ib  represents the inputs of the neural network, the Z-number ky  represent the 

output.  xfi  and  xg j  are the Z-number weights. 

 The main idea is to detect appropriate weights of neural networks in such a 

manner that the output of the neural network ,ˆky  approaches the desired output .ky  

From the view point of control, it is utter necessity to find out a suitable controller ku  

which is a function of ,x  in such a manner that the plant (1) ky  (crisp value) estimates 

the Z-number .ky   
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In the control point of view, we want to find a controller ku  which is a function 

of ,x such that the output of the plant (1)ky (crisp value) approximates the Z-number.ky   

The input Z-numbers ia  and ib  are primarily implemented to   -level as (13) 
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The next step is initiated by multiplying the above relations with the Z-number weights 

 xfi  and  xg j  and summarized as  
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Here   }0|{  xfiM
if
  ,   },0|{  xfiC

if
    }0|{  xfiM if
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  },0|{  xfiC if


   }0|{  xgjM
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The neural network output is  

   
gfgfk QOOOy  ,ˆ        (45) 

The error of the training is  ݁ ൌ כݕ ٚ  ොݕ

here   ,, 
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A cost function, which is generated on the basis of Z-numbers is implemented 

for the training of the weights as mentioned below  
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kkkkk yyJyyJJJJ     (46) 

It is quite obvious, 0kJ  when     .ˆ   kk yy   



The vital positiveness lies within the least mean square (46) is that it has a self-

correcting feature that makes it suitable to function for arbitrarily vast duration without 

shifting from its constraints. The mentioned gradient algorithm is subjected to 

cumulative series of errors and is convenient for long runs in absence of an additional 

error rectification procedure. 

The gradient technique is now utilized to train the Z-number weights  xfi  and 

 xg j  . The solution 0x  is the function of  xfi  and  .xg j  We compute 
0x

Jk


  and 

0x
Jk


  

which are mentioned as  
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According to the chain rule 
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 can be calculated the same as above. 

The solution 0x  is upgraded as 
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Here   is the rate of the training .0   



For the requirement of increasing the training process, the adding of the 

momentum term is mentioned as 
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Here .0  After the updating of 0x  , it is necessary to substitute it to the weights 

 0xfi  and  0xg j  . 

The solution related to the dual equation (27) can also be estimated by feedback 

neural network, as Figure 2. In this case, the inputs are the nonlinear Z-number 

functions  xfi  and  ,xg j  the concerned weights are taken to be as Z-numbers ia  and 

.jb  The training error ke  has been utilized here in order to update x  . Once the 

nonlinear operations  xf i  and  xg j  are performed, fO  and gO  are considered to be 

similar to (44). The output related to the neural network is taken as similar to (45). 

Simulations 

In this section, we use several applications to show how to use the fuzzy equation with 

Z-number to design the fuzzy controller. 

 Example 1: The main intention of the chemical reaction between the poly ethylene 

(PE) and poly propylene (PP) is to produce a preferred substance (PS). If x  is 

considered to be the material cost, then the cost of PE is taken to be x  and 2x  is 

considered to be the cost of PP. The PE and PP weights which are uncertain, are 

sufficed by the triangle function (7). It is our requirement to generate two different types 

of PS. If we urge the cost in the midst is ,)]1,9.0,8.0(),37.421,55.400,50.360[(  yp  

what can be the cost x ? The PE weights are stated as  

)]1,9.0,8.0(),6352.2,1081.2,5811.1[(

)]1,8.0,7.0(),9131.3,35412.3,7951.2[(
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The PP weights are stated as  

)]1,8.0,6.0(),0311.5,4721.4,9131.3[(

)]1,875.0,7.0(),8797.5,3452.5,8107.4[(
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The modeling of the above mentioned relation can be carried out using the dual 

equation and Z-numbers  ሾሺʹǤͻǡ͵Ǥ͵ͷͶǡ͵Ǥͻͳሻǡ ݔሺͲǤǡͲǤͺǡͳሻሿۨ ْ ሾሺͶǤͺͳǡͷǤ͵ͶǡͷǤͺͻሻǡ ଶݔሺͲǤǡͲǤͺͷǡͳሻሿۨ ൌሾሺͳǤͷͺǡʹǤͳͲǡʹǤ͵ͷʹሻǡ ݔሺͲǤͺǡͲǤͻǡͳሻሿۨ ْ ሾሺ͵ǤͻͳǡͶǤͶǡͷǤͲ͵ͳͳሻǡ ଶݔሺͲǤǡͲǤͺǡͳሻሿۨ ْሾሺ͵ͲǡͷͲǡͶͲͲǤͷͷǡͶʹͳǤ͵ሻǡ   ሺͲǤͺǡͲǤͻǡͳሻሿ
In this case     ,11 xxgxf       .2

22 xxgxf   The exact solution is demonstrated by  

)]1,96.0,8.0(),9022.19,3919.19,3712.18[( px   

We utilize feedforward (NN) and feedback (FNN) neural networks to estimate the 

solution .x  The learning rate is .02.0  The initial state is 

)].1,9.0,8.0(),24.24,71.23,66.22[()0( px   The approximation outcomes are exhibited 

in Table 1. The modeling errors are displayed in Figure 3. 

Table 1. Neural networks approximate the Z-numbers

k xk with NN k xk with FNN

1 22.53,23.68,24.10,p0.6,0.8,0.85 1 22.33,23.38,23.99,p0.7,0.8,0.85

2 21.79,22.83,23.20,p0.7,0.8,0.85 2 20.98,22.13,22.761, p0.7,0.85,0.9

   

35 18.67,19.71,20.23,p0.8,0.92,1 18 18.49,19.51,20.13,p0.8,0.92,1

36 18.38,19.40,19.91,p0.8,0.96,1 19 18.37,19.39,19.90,p0.8,0.96,1

 



Figure 3: Approximation errors of the neural networks 

We can see that both neural networks give worthy performance. We use the following 

to transfer the Z-numbers to fuzzy numbers, 
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Consider )]85.0,8.0,6.0(),99.23,38.23,33.22[(),( ppAZ   , then 

 77.0;99.23,38.23,31.22Z  and so 

).993.2377.0,384.2377.0,331.2277.0(Z   The results of neural networks 

approximation for the fuzzy numbers are displayed in Table 2. 

Table 2. Neural networks approximate the fuzzy numbers

k xk with NN k xk with FNN

1 19.358,20.349,20.709 1 19.593,20.517,21.051

2 19.205,20.125,20.448 2 18.844,19.878,20.442

   

35 17.720,18.710,19.203 18 17.548,18.517,19.107

36 17.541,18.513,19.000 19 17.538,18.509,18.996
 

The Z-numbers increase degree of reliability of the information. The crucial factor is 

that Z  -information is not only the most generalized depiction of real-world 

uncomplicated information but also is the highest narrative power extracted from human 

cognition outlook as compared to fuzzy number. The comparison between the Z-

number )]1,96.0,8.0(),91.19,40.19,38.18[( pZ   and fuzzy number )00.19,51.18,54.17(  

for 36k  is shown in Figure 4. We see that the Z-number incorporates with various 

information and the solution of the Z-number is more accurate. The membership 

function for the restriction in the Z-number is ).91.19,40.19,38.18(
ZA  It can be in 

probability form. 

Example 2: The insulating materials center is considered to be the source of heat. The 

materials width are not precise and hence they suffice the trapezoidal function (8),  
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)]92.0,85.0,8.0(),086.0,054.0,032.0,021.0[(

)]9.0,87.0,7.0(),428.0,214.0,107.0,096.0[(

)]1,9.0,8.0(),527.0,210.0,105.0,084.0[(

)]9.0,83.0,7.0(),197.0,164.0,153.0,131.0[(
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 see Figure 5. The coefficient associated with conductivity materials are 1fxKA   , 

2fxxKB   , 1
2 gxKC   , 2gxKD   , where x  is considered to be as the 

elapsed time. The control object is to reveal the time in case the thermal resistance at the 

right side attains  ypR )]9.0,8.0,75.0(),1241.0,0424.0,0293.0,0162.0[(  . The 

thermal balance model is (Holman, 1997):  
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Figure 4: Z-number and fuzzy number 

 

Figure 5: Heat source 
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The exact solution is )]1,95.0,8.0(),1559.6,1039.4,0779.3,0519.2[( px   (Holman, 

1997). The learning rate is 1.0  (NN) and 005.0  (FNN). The neural networks 

approximation results are displayed in Table 3 and Table 4. The modeling errors are 

displayed in Figure 6.  

Table 3. Neural networks approximate the Z-numbers

k xk with NN k xk with FNN

1 5.97,6.98,7.93,9.98,p0.6,0.8,0.85 1 5.98,6.99,7.97,9.98,p0.7,0.85,0.87

2 5.43,6.38,7.35,9.302,p0.75,0.8,0.9 2 5.37,6.10,7.12,9.16,p0.7,0.85,0.87

   

61 2.11,3.170,4.22,6.33,p0.8,0.9,1 45 2.08,3.14,4.14,6.29,p0.8,0.96,1

62 2.06,3.08,4.11,6.17,p0.8,0.94,1 46 2.05,3.08,4.11,6.16,p0.8,0.94,1
 

Table 4. Neural networks approximate the fuzzy numbers

k xk with NN k xk with FNN

1 5.13,5.99,6.841,8.576 1 5.36,6.25,7.14,8.939

2 4.93,5.79,6.671,8.440 2 4.81,5.46,6.37,8.199

   

61 2.00,3.00,4.007,6.008 45 1.99,3.00,3.95,6.004

62 1.96,2.934,3.915,5.870 46 1.95,2.93,3.90,5.864
 

 

Figure 6: Approximation errors of the neural networks 

Example 3: The pipe 1d  which is carrying water is subdivided into three different pipes 

2d  , 3d  , 4d  , refer Figure 7. The areas of the pipes are uncertain, they suffice the 

trapezoidal function (8), 
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)]95.0,9.0,8.0(),210.0,105.0,084.0,031.0[(

)]1,91.0,8.0(),419.0,209.0,104.0,052.0[(

)]1,9.0,75.0(),843.0,737.0,632.0,421.0[(
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 The velocities of water flowing through the pipes are controlled with the help of valves 

parameter ,x  3
1 xv   , 22

xev   , xv 3  (Streeter,1999). The flow in pipe 4d  is initiated 

using the control object which is represented by  

)]95.0,87.0,8.0(),056.293,332.93,890.40,478.11[( pQ  

 We need to find the valve control parameter .x  By mass balance  

QvAvAvA  332211  

 The exact solution is demonstrated by )]1,92.0,8.0(),298.7,212.5,170.4,127.3[( px  

(Streeter, Wylie, & Benjamin, 1999). The learning rate of NN is .08.0  The neural 

networks approximation results are displayed in Table 5 and Table 6. 

 

Figure 7: Water channel system 

d2
A 2

V 2

A 3

A 1

d1 V 1

d4

V 3

Q = c te

A 4

d3



Table 5. Neural networks approximate the Z-numbers

k xk with NN k xk with FNN

1 5.75,6.77,7.74,9.76,p0.6,0.8,0.85 1 5.87,6.88,7.86,9.877,p0.7,0.81,0.85

2 5.32,6.26,7.13,9.20,p0.7,0.8,0.87 2 5.15,6.00,7.00,9.002,p0.7,0.85,0.9

   

55 3.14,4.19,5.22,7.32,p0.8,0.9,1 20 3.13,4.18,5.22,7.312,p0.85,0.9,1

56 3.13,4.18,5.22,7.31,p0.8,0.93,1 21 3.13,4.178,5.21,7.305,p0.8,0.92,1

Table 6. Neural networks approximate the fuzzy numbers

k xk with NN k xk with FNN

1 4.94,5.81,6.65,8.38 1 5.18,6.07,6.94,8.71

2 4.72,5.54,6.31,8.15 2 4.63,5.39,6.28,8.08

   

55 2.98,3.97,4.96,6.94 20 2.97,3.97,4.95,6.93

56 2.97,3.97,4.95,6.94 21 2.97,3.96,4.95,6.93
 

 We can see that FNN is much faster and more robust compared with NN. After 

converting the Z-numbers to fuzzy numbers, it is possible to extract the fuzzy rules. 

Now we compare our method with the other existing algorithms. 

Ɣ In (Noorani, Kavikumar, Mustafa, & Nor, 2011), the ranking methodology is 

suggested in order to extract the real roots associated to a dual fuzzy polynomial 

equation. It is qxDxDxDxCxCxC n
n

n
n  ...... 2

21
2

21  

 where Rx  , ,,...,,,..., 11 nn DDCC  and q  are fuzzy numbers. The dual fuzzy 

polynomial equation is converted to the system associated to the crisp dual polynomial 

equations. This conversion is carried out by utilizing ranking methodology on the basis 

of three parameters namely value, ambiguity and fuzziness. This method is applicable 

only when the variables are crisp, e.g., this method is not able to find the solution of 

dual fuzzy equations. Also the solutions of the three parameters, value, ambiguity and 

fuzziness, are not related to generate solutions. 

Ɣ In (Mosleh, 2013), the modified Adomian decomposition method is applied for 

solving the following dual polynomial equations  
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 where ,x  ,c  and all coefficients are fuzzy numbers. Figure 8 shows the comparison 

results. We can see that our neural networks based algorithm and the modified Adomian 

decomposition method can approximate the solutions of the dual fuzzy equations. 

However, the convergence speeds of the neural network based algorithms are faster. 

 

Figure 8: Approximation errors of the neural networks and modified Adomian 

decomposition method 

Conclusions 

In this paper, the classical fuzzy equation is modified such that its coefficients are Z-

numbers. The dual type of this fuzzy model is applied to model uncertain nonlinear 

systems. We give the relation between the solution of the fuzzy equations and the 

nonlinear system control. The controllability of the fuzzy system is proposed. Two 

types of neural networks are applied to approximate the solutions of the fuzzy 

equations. Modified gradient descent algorithms are used to train the neural networks. 

The novel methods are validated by several benchmark examples. The future works are 

the application of the mentioned methodologies for fuzzy differential equations. 
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