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GISAXS modeling 

To quantify and compare the phase separation in the non-fullerene photovoltaic blends, the 1D 

GISAXS profiles were fitted using a universal model expressed in Equation 1 using the fitting 

software SasView (Version 3.1.2). The first term of the equation is the so-called 

Debye−Anderson−Brumberger (DAB) term, where q is the scattering wave vector, A1 is an 

independent fitting parameter, and ξ is the average correlation length of the PBDB-T domain. The 

second term represents the contribution from fractal-like aggregations of IT-M. Here, P(q, R) is the 

form factor of IT-M. S(q, R, η, D) is the fractal structure factor, which describes the interaction 

between primary particles (defined as 4 nm in our fitting) in this fractal-like aggregation system, 

with R the mean radius of primary IT-M aggregates, and η the correlation length of the fractal-like 

structure. The average correlation length of the clustered IT-M phases can be defined by the Guinier 

radius (Rg) of the network, where Rg= ∀#∃(∃&∋)
) ∗η.  

 

 

 

 

 

Caculation of donor:acceptor ratio from XPS measurements 
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XPS data were obtained using a Kratos Axis Supra (Kratos Analytical, Manchester, UK) 

having a monochromated Al Kα source. All spectra were recorded using a charge neutralizer to limit 

differential charging. The main carbon peak is referenced to 284.5 eV. Depth profiles of different 

samples were generated by Minibeam 6 gas cluster ion source rastering a 2.5 kV Ar500
+ cluster beam 

over a 3 mm x 3 mm area giving a typical sample current of 5.53 nA. The data was fitted using 

CASA XPS with Shirley backgrounds using the Kratos sensitivity factor library. To identify 

PBDB-T and IT-M, we first measured the PBDB-T and IT-M pure films to identify the content of C, 

N, O, and S atoms in pure PBDB-T and IT-M films. Afterwards, we identify the C, S, O content in 

PBDB-T as CPBDB-T wt%, SPBDB-T wt%, O PBDB-T wt%, and the C, S, O, N content in IT-M as CIT-M 

wt%, S IT-M wt%, OIT-M wt%, NIT-M wt%. We then measured PBDB-T:IT-M blend films and 

identified the C, N, O, S content as (C from blend) wt%, (N from blend) wt%, (O from blend) wt%, 

(S from blend) wt%. Since IT-M contain N atom but PBDB-T does not has N atom, we therefore 

use N atom to calculate the IT-M content in the PBDB-T:IT-M blend films. The content of C, O, S 

comes from IT-M can be calculated as: 

 (C from IT-M) wt% = (N from blend film) wt% * CIT-M wt% / NIT-M wt%,  

 (O from IT-M) wt% = (N from blend film) wt% * OIT-M wt% / NIT-M wt%,  

 (S from IT-M) wt% = (N from blend film) wt% * SIT-M wt% / NIT-M wt%.  

Afterwards, we used (C from blend) wt%, (O from blend) wt%, (S from blend) wt% to deduce 

(C from IT-M) wt%, (O from IT-M) wt%, (S from IT-M) wt% to obtain the (C from PBDB-T) wt%, 

(O from PBDB-T) wt%, and (S from PBDB-T) wt%. Furthermore, we use (C from PBDB-T) wt%, 

(O from PBDB-T) wt%, (S from PBDB-T) wt% to check the accuracy of our results. The 

appearance of Ti atoms marks the appearance of the TiO2 layer during depth profiling. The S atoms 

in PEDOT:PSS consist those from the thiophene unit in PEDOT and those from the sulfonate unit in 

PSS, whilst the S 2p of PEDOT and PSS locates at 165 and 169 eV respectively. The appearance of 

S atoms from the PSS unit marks the appearance of the PEDOT:PSS layer during depth profiling. 

As the ratio of S atoms from PEDOT and those from PSS is fixed, we can then determine the total S 

atoms contributed by PEDOT:PSS. Then the S atoms from PBDB-T can be obtained by subtracting 

the total S atoms by S atoms contributed by IT-M and PEDOT:PSS. All film thicknesses after 

etching were confirmed using a Dektak 150 stylus profilometer.  
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Figure S1 SPM topographic images of PBDB-T:IT-M films cast on (a, b, c) PEDOT:PSS and (d, e, 

f) TiO2 substrates with (a, c) none annealing, (b, d) 80ć annealing, (c, f) 160ć annealing. (g) and 

(f) are SPM topographic images of pure PBDB-T and IT-M films. (e) The RMS surface roughness 

of images a-h. 
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Figure S2. Multi-Peak fitting results of the OOP (010) peaks of PBDB-T:IT-M (a) upon 80 oC 

thermal annealing and (b) upon 160 oC thermal annealing.  

 

Figure S3. Absorption spectra of PBDB-T:IT-M with different annealing temperature. 

 

 

Figure S4. Root square plot of (a) electron current densities versus bias voltage of the ITO/TiO2 

/Active layer/Ca/Ag electron-only devices after different annealing treatments, and (b) hole current 

densities versus bias voltage of the ITO/PEDOT:PSS/Active layer/MoO3/Ag hole-only devices. 

 

          

Figure S5. The equivalent circuit model to fit the impedance spectra. 
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