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α-decay branching ratio of 180Pt
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A study of the 180Hg decay chain performed at the CERN-ISOLDE facility has allowed the ground-state–to–

ground-state α decay of 180Pt to be investigated. A more precise α-decay branching ratio of bα (180Pt) = 0.52(5)%

has been deduced. The reduced α-decay width calculated using the new value provides a more consistent picture

of the systematics for Jπ = 0+ → 0+ ground-state–to–ground-state state α decays of neutron-deficient, even-

even platinum isotopes.
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I. INTRODUCTION

Alpha decay is a useful probe for studying the underlying

structures of nuclei involved in the process. For example,

reduced α-decay widths (δ2
α) are particularly sensitive to the

overlap in wave function between the initial and final states

connected by the decay [1]. These may be calculated, for

instance, using the Rasmussen approach [2], which requires

experimental α-decay energies and partial half-lives. The lat-

ter are dependent on α-decay branching ratios (bα), which are

often challenging to measure in nuclei with small bα values
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due to only low statistics and/or the presence of more intense

α decays.

In this work, we report on a more precise bα for the
180Pt ground state (g.s.). This value was extracted from decay

data recorded during the same experiment as described in

Refs. [3,4].

The currently accepted value bα (180Pt) ≈ 0.3% came from

a study by Siivola [5], in which 180Pt was produced in 16O +
170,172Yb, 19F + 169Tm, and 20Ne + 162Er fusion-evaporation

reactions. The bα values for several platinum isotopes were

deduced by comparing measured α-decay intensities to ex-

pected production yields, based on similar heavy-ion reactions

studied in the rare-earth region. Due to this approach, the

extracted value of bα (180Pt) ≈ 0.3% had a large uncertainty

factor of 3–5 [5].

II. EXPERIMENT

A detailed description of the experiment can be found in

Refs. [3,4], while only the information pertinent to the present

work is provided here. In our study, 180Pt was produced in

the 180Hg → 180Au → 180Pt β-decay chain, shown in Fig. 1.

An isotopically pure ion beam of 180Hg was produced at the

ISOLDE facility [13,14] through spallation reactions induced

by a 1.4-GeV proton beam impinged upon a molten lead

target, followed by a three-step, resonance laser ionization
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FIG. 1. Schematic of the 180Hg decay chain, showing the iso-

topes and α-decay energies important to the present work. The

bα (180Pt) = 0.52(5)% value is taken from the results of our study

(see Sec. III), and Eα (180Pt) = 5160(5) keV is from Ref. [6]. All

other data are taken from Refs. [7–12].

process in the VADLIS [15,16] in order to selectively ionize

the mercury atoms of interest. The ions were extracted and

accelerated by a 30-kV potential difference, and separated ac-

cording to their mass-to-charge ratio by the ISOLDE general

purpose separator.

The 180Hg ion beam was then delivered to the Windmill

system [17,18] for decay measurements. The beam entered

the Windmill through the central hole of an annular silicon de-

tector (Si1), and was implanted into one of ten, 20-µg cm−2-

thick carbon foils mounted upon a rotatable wheel. A second

silicon detector (Si2) was placed a few millimeters behind

the foil being irradiated. The data presented in the current

work were taken in runs where the wheel was not rotated

to avoid loss of activity during the dedicated bα measure-

ments. Furthermore, due to the specific conditions during this

measurement, only events recorded in Si2 were used in the

following analysis. The full width at half maxima of the α-

decay peaks recorded by Si2 within the Eα = 5000–6200-keV

region of interest were ≈30 keV.

The energy calibration for Si2 was performed using

Eα (180Hg) = 6119(4) keV [19] and Eα (180Pt) = 5160(5) keV

for the g.s.-to-g.s. decay of 180Pt. The latter was deduced in

our recent study of gold isotopes and will be discussed in

Ref. [6]. Our new value differs significantly from Eα (180Pt) =

5140(10) keV reported by Siivola [5] but has a higher preci-

sion. In addition to the energy calibration, our Eα (180Pt) value

will be used in the δ2
α calculations presented in Sec. IV.

III. RESULTS

Figure 2(a) shows the singles α-decay spectrum recorded

by Si2. The spectrum readily illustrates the purity of the
180Hg beam, as only the decays of 180Hg, its daughter and its

granddaughter nuclei are seen.

The two most intense peaks in Fig. 2(a) belong to the

well-known decays of 180Hg [Eα = 6119(4) keV] [19] and
176Pt [Eα = 5753(3) keV] [8]. The low-intensity Eα (180Hg) =

5862(5) keV fine-structure (f.s.) decay is also visible [20]. The
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FIG. 2. (a) Energy spectrum of singles α-decay events measured

in Si2 at A = 180, (b) zoomed view of the 4900–5400-keV region,

fitted with a linear background plus two Crystal Ball functions (red

line), the individual contributions from the α decays of 172Os and
180Pt are shown by the blue lines, (c) the residual between the fit and

the data shown in panel (b). The main α-decay peaks are labeled with

the corresponding isotope and α-particle energies.

structure seen in the Eα = 5460–5560-keV region is due to the

f.s. α line of 176Pt [Eα = 5530(3) keV] [12] and the complex

f.s. decay of 180Au [6,20,21]. The α-decay peak of 180Pt is

seen to be partially overlapping with the 5106(4)-keV 172Os

α-decay peak [12]. The two peaks lie on top of a significant

background from the low-energy tails of the higher-energy

and higher-intensity α decays of 176Pt and 180Hg.

The g.s.-to-g.s. bα (180Pt) value was deduced by using the

number of 180Hg α decays in Fig. 2, Nα (180Hg), to calculate

the number of β decays feeding to 180Au and then to 180Pt

(see decay scheme in Fig. 1). This approach treats the number

of 180Au and 180Hg β decays as approximately equal, as the

correction for the small 180Au α-decay branch [bα (180Au) ≈

0.6% taken from Ref. [6]]1 is negligible compared to the

statistical error on Nα (180Pt) extracted from Fig. 2 (≈ 10%).

Thus, Nα (180Hg) and Nα (180Pt) may be directly compared in

order to calculate bα (180Pt), such that

bα (180Pt) =
Nα (180Pt)

Nα (180Hg)

bα (180Hg)
(1 − bα (180Hg))

, (1)

where bα (180Hg) = 48(2)% [11,12].

To evaluate Nα (180Pt), the Eα = 4900–5900-keV region of

Fig. 2(b) was fitted with the ROOT Minuit minimizer [22],

using a binned-likelihood method. A linear function was used

to model the background and Crystal Ball functions [23–25],

which shared the same set of parameters to describe the

width and tails of the peaks were used for the 180Pt and

1A study at SHIP [21] deduced a lower limit of bα (180Au) > 1.8%.

However, this limit was calculated using the bα (180Pt) ≈ 0.3% value

with the factor of 3–5 uncertainty [5]. Furthermore, the expression

used to calculate bα (180Au) was incorrect (see Table 2 in Ref. [21]),

as confirmed in private communications with the authors of the study.
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FIG. 3. Reduced α-decay widths for Jπ = 0+ → 0+, g.s.-to-g.s.

decays of even-A platinum (•), mercury (�), and lead (�) isotopes,

calculated using the Rasmussen approach [2] with data taken from

Refs. [8–12,26,27]. The open star is the δ2
α (180Pt) calculated using

the results from the present work and Ref. [6].

172Os α-decay peaks. The red line in Fig. 2(b) shows the

result of the fitting procedure, the blue lines represent the

contributions from the 180Pt and 172Os α decays. Figure 2(c)

shows the residual between the result of the fitting procedure

and the data shown in Fig. 2(b). The Nα (180Hg) value was

assessed in a similar way, however we assumed background-

free conditions. Using the results from the fitting procedure a

value of bα (180Pt) = 0.52(5)% was deduced.

IV. DISCUSSION

The reduced widths of Jπ = 0+ → 0+ g.s.-to-g.s. decays

of even-A platinum isotopes calculated using the Rasmussen

approach [2] are shown in Fig. 3, along with those for

even-A mercury and lead isotopes. The open star represents

δ2
α (180Pt) = 101(13) keV, calculated using the bα value from

the current work and Eα = 5160(5) keV from Ref. [6].

In general, Fig. 3 displays the expected behavior (see Fig. 3

in Ref. [28] and Fig. 4 in Ref. [29]), whereby the δ2
α (0+

g.s. →

0+
g.s.) values, or equivalently the α-particle preformation prob-

abilities, decrease as the proton number approaches Z = 82.

This trend was interpreted in Ref. [28] as an effect of the Z =

82 shell closure on the α-decay process. As further shown in

Ref. [29], the N = 126 shell closure displays a similar influ-

ence, whereby δ2
α values at N = 126 are the smallest along an

isotopic chain and an increase followed by a saturation in δ2
α

is observed as N reduces towards and beyond the N = 104

midshell.

Our new δ2
α (180Pt) value is first of all in better agreement

with these systematics than δ2
α (180Pt) = 74 keV calculated

using the data from Ref. [5]. Furthermore, the new value

reveals that as expected [29] the δ2
α for platinum isotopes

is saturated in the 88 � N � 104 region, with near-constant

values of δ2
α ≈ 113 keV.

One noticeable feature in Fig. 3 is the δ2
α =

156(10)-keV value for 178Pt (N = 100) which is ≈30%

larger than those of other platinum isotopes in the saturation

region. The T1/2(178Pt) [30–32] and bα (178Pt) [33,34] values

from different studies are consistent with one another, which

suggests that the experimental δ2
α (178Pt) value is reliable.

Therefore the jump in δ2
α could possibly be related to the

change in deformation when going from 178Pt to 180Pt [35],

and related to the possible change in the configuration mixing

in the corresponding ground states [20,36,37]. Alternatively,

this could be a sign of evolving nuclear structures between

the α-decay daughter nuclei, 174,176Os.

In addition to the large δ2
α (178Pt) value, the other noticeable

features of the platinum chain in Fig. 3 are the sizable error

bars on δ2
α (184,186Pt) (N = 106, 108). More precise measure-

ments of bα (184,186Pt) are required in order to determine

whether there is a smooth transition towards the saturated δ2
α

values, as would usually be expected.

V. CONCLUSION

Decay data recorded at the CERN-ISOLDE facility have

been used to deduce a more precise value of bα (180Pt) =

0.52(5)%. This value has been used to calculate the reduced

width of the 180Pt g.s.-to-g.s. α decay, which is in better

agreement with the δ2
α systematics in the region than the value

calculated using the current literature value.
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