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How proteins’ negative cooperativity emerges from entropic optimisation of
versatile collective fluctuations
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1)Department of Physics, University of York, Heslington, York, YO10 5DD, UK
2)Department of Physics & Centre for Medieval Studies, Humanities Research Centre,

University of York, Heslington, York, YO10 5DD, UK

(Dated: 17 October 2019)

The fact that allostery, a non-local signalling between distant binding sites, can arise mainly from the entropy
balance of collective thermal modes, without conformational change, is by now well known. However, the
propensity to generate negative cooperativity is still unclear. Starting from an elastic-network picture of small
protein complexes, in which effector binding is modelled by locally altering interaction strengths in lieu of
adding a node-spring pair, we elucidate mechanisms particularly for such negative cooperativity. The approach
via a few coupled harmonic oscillators with internal elastic strengths, allows to trace individual eigenmodes,
their frequencies, and their statistical weights, through successive bindings. We find that alteration of the
oscillators’ couplings is paramount to covering both signs of allostery. Binding-modified couplings create a rich
set of eigenmodes individually for each binding state, modes unaccessible to an ensemble of non-interacting
units. The associated shifts of collective-mode frequencies, non-uniform with respect to modes and binding
states, result in an enhanced optimisability, reflected by a subtle phase map of allosteric behaviours.

I. INTRODUCTION

Regulation of activity via intra-protein, non-local sig-
nalling, called allosteric communication, is vital for many
proteins to perform their functions1–3. For these al-
losteric proteins, binding events separated in space (and
time) communicate remotely: binding one ligand either
favours or inhibits the binding of a second, often identical
one, at a site distant across the protein. Inhibition, or
negative cooperativity, is essential in gene transcription,
exemplified by the Catabolite Activator Protein of Es-
cherichia coli4,5, a transcription factor of the CRP/FNR
family. Anti-cooperativity or negative allostery are com-
mon alternative terms. However, most basic models of
allosteric regulation fail to capture negative cooperativ-
ity, which requires, inter alia, an enhanced sensitivity to
ligand concentrations over a large range.
Whilst the term ‘allostery’ had been coined upon dis-

covering binding-site cooperativity enabled by structural
changes of proteins1,6, alternative routes to allostery via
modifications of statistically significant, collective modes
of structurally mostly unaltered proteins7 are by now
well established8–12. To quantify this entropy-driven
allostery, methods within the class of elastic network
models (ENM), covering a spectrum of levels of coarse-
graining, have proved successful5,13–16. In these protein
models, treatment of generic interactions in linear re-
sponse or harmonic approximation provides many ad-
vantages, yet restrictions as well: the eigenspectrum
of thermal motion is readily accessible. Low-frequency
global modes compatible with linear response, consis-
tently dominate the predicted motion via large Boltz-
mann weights in the classical partition function. Yet this

a)Electronic mail: alice.vonderheydt@york.ac.uk

κ

prot

(a)

κ

κκc

prot complex

(b)

ακ

lig 1

κβκc

lig 2
coop

act?

(c)

FIG. 1. (a) Protein or protomer represented by a scissor-
shaped oscillator; (b) two coupled units; (c) binding at one
modelled by local interaction-strength alterations.

approach fails to account for contributions from dynam-
ical constraints on the omitted finer-grained, e.g., side-
chain, structures17,18.
To analyse a representative class of ENMs with trans-

parent eigensystems that result in negative cooperativ-
ity, we focus on small rings of elastically coupled os-
cillators, each additionally possessing an internal elas-
tic mode. Without loss of generality, we may depict
each oscillator as scissor-shaped with a spring at each
end, cf., Fig. 1, which establishes ties to the idea of an
‘allosteron’11,19,20, originally designed as a single unit to
exemplify positive allostery. Building a model from the
nodes’ internal elastic structure in this way, avoids zero-
energy modes of global translation and rotation usually
predicted as an artefact of elastic network theory. In
fact, this model can be perceived as a suitably coarse-
grained ENM. Still, the emergence of distinctively col-
lective modes and a non-uniform evolution of eigenvalues
and -modes in response to binding, is enabled by the
coupling alone. We recall that non-interacting elastic
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units whose internal strengths are thought to be altered
in equal steps, can capture positive allostery only11. This
follows from the free energies’ logarithmic dependence on
isolated mode strengths. Hence, any form of this model
would be too restricted for the purpose of studying neg-
ative cooperativity.
Harmonic-oscillator rings with one-dimensional cou-

plings may appear oversimplified to address allostery.
With a minimal two-parameter binding model, how-
ever, these rings possess all requirements for non-trivial
allosteric behaviour. As regards modelling of protein
networks, even 1D springs faithfully map the connec-
tivity, i.e., interacting pairs and degrees of nodes —
amino acids, protomers, or proteins —, depending on
the coarse-graining. Given the accessibility of individ-
ual eigenmodes and associated -values, the impact of
collective modes’ interplay can be scrutinised, beyond
mere numerical scanning of free-energy maps. Rings with
their intrinsically stable topology are ubiquitous as both
oligomeric proteins and complexes which involve several
proteins, e.g., chaperones21,22. Haemoglobin, a hetero-
tetramer ring, binds oxygen cooperatively23,24. Faces of
polyhedral viral capsids are further prominent examples
of rings, with highly symmetric inter-ring coupling25,26.
Due to their periodic boundaries and symmetries, small
rings may capture some of the salient intrinsic features of
assemblies with more degrees of freedom as well. Whilst
negative cooperativity has been found inter alia for ENM
dimers, trimer and tetramer rings with binding-modified
couplings20,27, the aim here is to detail the mechanism

for one workable and representative case.
This paper is organised as follows. The model is in-

troduced in Section II, including definitions relating to
elastic matrices and allosteric free energies. Section III is
dedicated to the derivation and detailed analysis of eigen-
system changes and their impact on cooperativity for the
case of trimer rings, with a focus on those parameter sets
which result in negative cooperative binding. The subset
of pure coupling-strength alterations, a model instruc-
tive by its minimal parameter set sufficient to map both
signs of allostery, is discussed in Subsec. III C. We sum-
marise in Section IV, and show potential future paths
along these lines.

II. MODEL

A. Coupled harmonic oscillators with binding-modified
interaction strengths

We model protein complexes with effector binding by
coupled harmonic oscillators, and the binding of a lig-
and as a local alteration of interaction strengths, in
lieu of adding an oscillator-spring pair. Each oscillator
is assumed to possess an internal elastic mode, whose
strength may be altered by binding, independently of the
strength alteration of adjacent couplings. The following
set of properties proves to be sufficient to capture and

display a mechanism for both signs of allostery:

• Internal elastic mode of strength κ, may represent
protein’s or protomer’s ‘breathing’ mode

• Positive [in-phase] interaction of � 2 oscillators,
within harmonic approximation, via elastic cou-
pling mode of strength κc

• Binding at one oscillator’s site changes mode
strengths locally, by the factor α for the internal,
respectively, β for the adjacent coupling, modes

Depending on the desired level of coarse-graining, each
oscillator may resemble a protein multimer, a single pro-
tein, or, maybe most intuitively, a protein’s subunit, e.g.,
a helix dimer of scissor shape. However, the scissor shape
constitutes neither a constraint nor a completely faithful
picture, but one possible geometric interpretation of the
mathematical structure of positive harmonic coupling.
The parameters which define the model of coupled os-
cillators with binding sites are summarised in Fig. 1.

B. Elastic energies

We go on to sketch the statistical-mechanical path to
allosteric free energies by means of the basic dimer model
represented in Fig. 1. First, the positive coupling of two
oscillators, in linear response, results in the elastic part
of the Hamiltonian (without momenta)

H(0) =
1

2
(x1, x2)H

(0)(x1, x2)
†, (1)

a quadratic form in terms of the amplitudes x1, x2, with
the elastic matrix or Hessian

H(0) =

✓

κ+ κc �κc

�κc κ+ κc

◆

(2)

In general, the elastic matrix encodes the coupled pairs,
or the network’s topology, along with relative interaction
strengths. With regards to binding, H(0) is the elastic
matrix of the unbound [apo] state.
Second, we apply the local modification of interaction

strengths induced by ligand binding. To facilitate trans-
parency in matrix calculations later, we switch to dimen-
sionless elastic matrices in units of the internal mode
strength κ, introducing the ratio Kc := κc/κ of coupling
to internal mode strength. The dimensionless elastic ma-
trix of the singly bound state reads

Ĥ(1) =

✓

α+ βKc �βKc

�βKc 1 + βKc

◆

(3)

Herein, the parameter α quantifies the factor by which
the internal-mode strength is modified upon binding, and
β is the factor by which the strengths of adjacent cou-
plings are modified. Finally, the completely bound [holo]
state, with respect to ligands, features the elastic matrix

Ĥ(2) =

✓

α+ β2Kc �β2Kc

�β2Kc α+ β2Kc

◆

(4)
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By construction, the eigenvalues of a dimensionless elas-
tic matrix give the squared frequencies, in units of κ, of
the respective eigenmodes. It may be worthwhile to re-
call that, to comply with linear response, only modes of
reasonably small eigenfrequencies contribute to the spec-
trum of fluctuations relevant for entropy-driven allostery.
Also, in practice, protein modes will be overdamped,
which, however, does not affect their amplitudes from
the point of view of statistical mechanics.

C. Allosteric free energies

Allosteric free energies quantify the difference of free
energies of binding of successive events; free energies of
binding in turn measure changes of free energy upon
binding. Via computing the classical partition functions
from the determinants of the respective states elastic ma-
trices, the thermal-fluctuation or entropic free energy of
binding for one site bound is obtained as

∆F (1)

kBT
=

1

2
log

det Ĥ(1)

det Ĥ(0)
(5)

The free energy of binding at two sites, now relative to
the singly bound state, is, analogously,

∆F (2)

kBT
=

1

2
log

det Ĥ(2)

det Ĥ(1)
(6)

With reference to these three states, the allosteric free
energy that characterises the cooperativity of a second
binding, conditional on a first binding, is

∆∆F (2,1)

kBT
:=

∆F (2) �∆F (1)

kBT
(7)

=
1

2
log

det Ĥ(2) det Ĥ(0)

(det Ĥ(1))2

This definition amounts to a discrete second-order deriva-
tive, and so calls for cooperativity to be evaluated for
exactly three states of effector-binding. Hence, in the
case of complexes with more than two binding sites, the
states for which cooperativity is analysed must be speci-
fied. Whenever individual eigenmodes are accessible and
identifiable with their eigenvalues throughout all binding
states, as for small rings, this expression can be recast to
display each mode’s contribution:

∆∆F (2,1)

kBT
=

1

2

X

i

log
λ
(2)
i λ

(0)
i

λ
(1)
i λ

(1)
i

(8)

(i indexes linearly independent modes). Values of
∆∆F (2,1) > 0 indicate the free energy of binding, ∆F (2),
involved in the transition from one to two bound sites,
to be larger than ∆F (1), from zero to one; this amounts
to negative cooperativity of the two binding events.

D. Limitations of a single-oscillator model

Due to the free energy’s logarithmic dependence on (ef-
fective) mode strengths, models which employ two equal
consecutive strength alterations of isolated or statically
coupled units fail to capture negative cooperativity. The
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FIG. 2. (a) Two-step internal-strength modification of a
single (uncoupled) elastic unit —(a0) no, (a1) one binding;
(a2) two bindings— gives rise to (b) positive cooperativity,

∆∆F (2,1) < 0, only.

corresponding mechanism for a single ‘allosteron’ — two
springs coupled rigidly; a single degree of freedom — is
illustrated in Fig. 2. Independently of the sign of the
first free energy of binding, ∆F (1) (indicated by one of
the vertical arrows in the lower panel of Fig. 2), the sec-
ond, ∆F (2) (indicated by the other arrow), will be either
a smaller increase or a larger decrease of free energy.

E. Fluctuation allostery of a dimer with binding-modified
interaction strengths

For a first idea of coupled oscillators’ complex allosteric
landscape, the dimer with two binding sites, cf., Fig. 1
and Eqs. (2) to (4), proves an instructive case. Evalu-
ation of the allosteric free energy as a function of the
binding-modifiers α and β results in the map shown in
Fig. 3. Negative cooperative binding, indicated by posi-
tive values of ∆∆F (2,1), is found in an extended param-
eter region for locally (binding-site) softened couplings,
β < 1, for both signs of the internal-strength factor α.
Perhaps surprisingly, another region of negative cooper-
ativity opens from the point α = 1, β = 1 towards β > 1.

This definition amounts to a discrete second-order deriva- tive, and so calls for cooperativity to be evaluated for exactly three states of effector-binding. Hence, in the case of complexes with more than two binding sites, the states for which cooperativity is analysed must be speci- fied.

D. Limitations of a single-oscillator model

Two-step internal-strength modification of a single (uncoupled) elastic unit —(a0) no, (a1) one binding; (a2) two bindings

(a0)

(a1)

(a2)

characterises the cooperativity of a second binding, conditional on a first binding

E. Fluctuation allostery of a dimer with binding-modified interaction strengths For a first idea of coupled oscillators’ complex allosteric landscape, the dimer with two binding sites, cf., Fig. 1 and Eqs. (2) to (4), proves an instructive case. Evalu- ation of the allosteric free energy as a function of the binding-modifiers α and β results in the map shown in Fig. 3. Negative cooperative binding, indicated by posi- tive values of ∆∆F (2,1) , is found in an extended param- eter region for locally (binding-site) softened couplings, β < 1, for both signs of the internal-strength factor α. Perhaps surprisingly, another region of negative cooper- ativityopensfromthepointα=1,β=1towardsβ>1.
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FIG. 3. Allosteric free energy ∆∆F (2,1)(α,β) of a dimer, at
an initial coupling-to-internal strength ratio Kc = 0.5.

III. RESULTS: NEGATIVE COOPERATIVITY

Using the coarse-grained ENM with coupling modifica-
tion introduced above, we go on to highlight how negative
cooperativity arises. Given the uniformly positive coop-
erativity of the single-mode system, for even slightly more
complex multi-mode networks, the detailed changes of
the eigenspace are significant. The chosen class of small
networks is minimal in regard to capturing negative co-
operativity, in that the mechanism delivers a non-trivial
landscape of allostery, yet remains sufficiently transpar-
ent to reveal its underlying structure.

A. Map of fluctuation allostery for trimer rings

Before continuing to the mode-specific analysis, a
global map of the allosteric free energy ∆∆F (2,1) from
Eq. (7), of a representative trimer ring, in Fig. 4, allows
us to identify the parameter region relevant to negative
cooperativity. Here, the three states chosen to evaluate
allosteric behaviour according to Eq. (7), are the apo
state, i.e., without ligands bound, the singly bound, and
the doubly bound state. That the small ENM features at
least one ‘inactive’ site, still essential in supporting the
collective modes relevant for fluctuation allostery, may
aide the focus on the mechanism for a reasonably general
case. The corresponding allosteric free energy according
to Eqs. (7) or (8), as a function of α, β, Kc, is given in
Appendix B. In Fig. 4, negative cooperativity, indicated
by positive values of ∆∆F (2,1), occurs mainly for locally
binding-softened couplings, β < 1, again for both signs
of α. However, weakly negative cooperativity also exists
in a confined, closed region of strengthened couplings,
β > 1, for values of α of the order of 1.
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FIG. 4. Allosteric free energy ∆∆F (2,1)(α,β) of a trimer ring,
at an initial coupling-to-internal strength ratio Kc = 0.5. The
circle marks the modifier pair (α,β) discussed in detail in
Sec. III B, the dashed line the case analysed in Sec. III C.

B. Eigensystems of trimer rings

We begin the analysis of how negative cooperativity
emerges from the rings’ eigensystems, by identifying the
eigenmodes and -values of the unbound [apo] state of
a trimer ring; see Fig. 5 for an illustration of this first
case. In what follows, miniature spring-bound scissors
(purple) inside circles at the triangles’ corners represent
the oscillators, while springs (green) along the triangles
edges represent the couplings. A smaller number of coils
and a brighter green will indicate softening of a coupling
spring. All descriptions of amplitude vectors implicitly
assume fluctuation modes to be overdamped, thus refer
to the respective modes’ adiabatic continuations.

The smallest eigenvalue, λ
(0)
1 = 1, belongs to the adi-

abatic continuation of a mode labelled 1, in which all
three oscillators’ fluctuations have equal amplitudes and
signs, shown by [red] arrows in the top panel of Fig. 5.
(For Gaussian networks without internal degrees of free-
dom, the analogous uniform-translation mode has zero
frequency.) In the unbound state, a single larger eigen-
value is shared or degenerate by two different eigenmodes,
visualised in the bottom panel of Fig. 5: The mode de-
picted by dotted [orange] arrows, labelled 2 in the follow-
ing, has two equal entries; the remaining entry has the
opposite sign and twice the amplitude. In the mode de-
picted by solid [blue] arrows, labelled 3 in what follows,
two oscillators fluctuate out-of-phase with equal ampli-
tudes, the third is at rest. Mode 3 will be seen to be
invariant, except for the order of its entries, under any
binding-induced modification of parameters. We pause
to observe that, due to the symmetry of the unbound
state, each of its eigenvectors is invariant under label
permutations.

Allosteric free energy ∆∆F(2,1)(α,β) of a dimer, at FIG. 3. an initial coupling-to-internal strength ratio Kc = 0.5.
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FIG. 5. Eigenmodes and -values of a trimer ring in the (un-
bound) state without ligand binding; (a) mode 1, (b) modes

2 and 3. Numerical eigenvalues λ
(0)
2,3 displayed for Kc = 0.5.

Moving on to the singly bound state, we recall that
one oscillator’s internal strength is altered by a factor α,
here α = 2, the strength of the adjacent coupling springs
by a factor β, here β = 0.3. The situation is shown in
Fig. 6, with the bound site displayed as a filled circle,
for α > 1, β < 1, the parameter set marked by a small
open circle in Fig. 4. (Explicit expressions for the eigen-
values and -modes of all three binding states, in terms of
α, β, and Kc, can be found in Appendix A.) In fact, the
adapted eigenmodes’ shapes for any parameter set can be
inferred from symmetry considerations: Mode 1, with all
amplitudes in phase and of equal signs, now has a single
amplitude differing in magnitude from the two remain-
ing equal ones, located at the bound site, which breaks
the (complete) symmetry of the apo state. This single
amplitude is markedly smaller than the two remaining
ones. Mode 2, by eigenvalue conjugate to 1, maintains
the structure of two equal entries, and one of opposite
sign and different amplitude. The last is now pinned at
the bound site via the mentioned local symmetry reduc-
tion. Similarly, the site at rest in the anti-phase mode 3,
whose vector entries are invariant under the modifiers α,
β, is also confined to the bound site. The zero amplitude
of the only oscillator whose breathing mode is changed by

α, implies that the respective eigenvalue λ
(1)
3 is affected

by the coupling-strength modifier β only.

The doubly bound state is visualised in Fig. 7, for the
same set of α > 1, β < 1 as in Fig. 6. The amplitude
configuration of the in-phase mode 1 changes consider-
ably once more, in that now only one larger amplitude is
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1 = 1.11λ
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3 = 1 + (2 + β)Kc

λ
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3 = 2.15
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FIG. 6. Eigenmodes and -values in the singly bound state; (a)
modes 1 and 2, (b) mode 3; numerical values for Kc = 0.5,
α = 2, β = 0.3.
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FIG. 7. Eigenmodes and -values in the doubly bound state;
(a) modes 1 and 2, (b) mode 3; numerical values for Kc = 0.5,
α = 2, β = 0.3.
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present, localised at the unbound, non-strengthened site.
This is the pinning site also for the single anti-phase entry
of mode 2, however, of tiny amplitude compared to the
large equal amplitudes at the bound sites. Mode 3, with
its vector entries independent of binding state and modi-
fiers, is accommodated by restricting the single unbound
site to be at rest.

The evolution of the eigenvalues under the binding
transitions is summarised in Fig. 8. For the parameters
discussed, eigenvalues λ2 and λ3 first differentiate, then
exchange order in a list according to size, almost regain-
ing parity in the doubly bound state. On the first bind-
ing, both λ2 and λ3 decrease relative to their values in
the unbound state. Because for mode 2, the singled-out
amplitude pinned at the internally strengthened, bound
site is large, the decrease in λ2 is less than that in λ3.
Through the second binding, λ2 continues to decrease,
however, moderately. In contrast, λ3 increases slightly

again relative to λ
(1)
3 , due to the two nonzero entries of

mode 2 at the stiffened sites, additionally loading the two
stronger, i.e., only partially weakened couplings.

The maps of mode-specific contributions according
to Eq. 8 to the allosteric free energy ∆∆F (2,1)(α,β),
in Fig. 9, underline how non-uniformly the modes and
their impacts onto ∆∆F (2,1) transform under binding.
Whereas mode 1’s contribution to allostery is globally
small, modes 2 and 3 have nearly opposite impacts in re-
gard to signs of allostery. In particular, for the parameter
set chosen, marked by a circle toward the bottom right
border of the map, mode 3 is clearly the mode decisive
for the sign of allostery, as readily seen from the order of
eigenvalues in Fig. 8.

A preliminary conclusion from this example-supported
discussion is that optimal adaption and localisation of
eigenmodes minimises the free energy (change) of bind-
ing, ∆F (1), at the first event already. An essential part of
this optimisation is the pinning of the entropically ‘costly’
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FIG. 9. Mode-specific contributions to allosteric free energy
∆∆F (2,1)(α,β); Kc = 0.5 as in Fig. 4.Note the zoom into a
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anti-phase mode 3 such that the first bound, here inter-
nally stiffened, site is confined to remain at rest. Simi-
larly, the second mode of comparatively high frequency
(2 in our labelling) adapts to the first binding by lo-
calising at the bound site the single amplitude out of
phase with the two others, thus loading the weakened
couplings only. For the second binding, with another
stiffened site constraining further the thermally acces-
sible states, this entropic optimisation of the modes is
seen to work less effectively. Negative allostery is seen
to be brought about by different modes’ eigenfrequen-
cies changing with marked inhomogeneity through bind-
ing. Finally, a coupled-oscillator model’s potential for
re-ordering of modes according to the magnitude of asso-
ciated eigenvalues might be a vital ingredient of entropy-
driven allostery of both signs in general. This contrasts
with the scenario for a single elastic degree of freedom,
allowing for two equal increments of a sole effective mode
strength only, as illustrated in Fig. 2.

C. Coupling-strength alteration only

Within the model introduced, negative allostery can
be realised even without modifying the internal mode
strength under ligand binding, i.e., on the vertical line
α = 1 in the map of Fig. 4. One reason not to have se-
lected such a system for visualisation in the first place is
that for α = 1, all eigenmodes shown in Fig. 5 remain in-
variant under binding, up to permutation or localisation
of entries, as we explain in the following.
Due to the binding protocol affecting the coupling only,

the symmetry with respect to the three oscillators’ inter-
nal strengths is conserved, leaving all modes’ amplitude
ratios invariant. The elastic matrix Ĥ remains a linear
combination of the identity matrix 1 (recall all oscilla-
tors possess identical internal strengths) and a matrix C
of connectivity or Laplacian form,

H = 1 +KcC, (9)

so that Ĥ and C share a common set of eigenvectors
in all three binding states. For the chosen deterministic
rings, the matrix C encodes harmonic interactions be-
tween fixed pairs, independently of the order or the de-
gree of altering the strength of these interactions. Also,
the in-phase mode 1 belongs to the kernel of all Lapla-
cian matrices (whose rows and columns sum to zero),
thereby attaining a nonzero eigenfrequency purely from
the internal elastic strengths, or the identity matrix, the
latter constant for all three states. In effect, not only
is the eigenfrequency belonging to mode 1 invariant un-
der pure coupling-strength alterations, but also mode 1
itself. For a three-dimensional (orthogonal) eigensystem
of symmetric matrices, this restricts also the remaining
modes 2 and 3 to be invariant, up to index permutations.
However, along the statistical-mechanics lines of

analysing negative allostery, this case is worthwhile

apo(0) singly bound(1) holo(2)

λ1 1 1 1

λ2 1 + 3Kc 1 + 3βKc 1 + 3βKc

λ3 1 + 3Kc 1 + (2 + β)Kc 1 + (1 + 2β)βKc

TABLE I. Binding-induced evolution of the eigenvalue spec-
trum for coupling-strength alteration only, α = 1.
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FIG. 10. Eigenvalues for Kc = 0.5, α = 1, β = 0.3. Modes in
each stack: left, solid (red) 1; centre (yellow) 2; right, hatched
(blue) 3.

studying, as an extreme case of the mentioned dispar-
ity of the eigenfrequencies’ evolution. In Table I, we
summarise the eigenvalues for the general case of α = 1,
whereas the evolution for a specific set of coupling param-
eters (Kc,β) is displayed in Fig. 10. As hinted at above,
mode 1 does not load any couplings, irrespectively of
their (modified) strengths, therefore, eigenvalue λ1 does
not change at all under binding. The relevant coupling
term of λ2, associated with a mode of two equal entries,
and one entry antiparallel, twice as large, is multiplied
by the coupling modifier β in the first binding, however,
sees no incremental change in the second binding. By in-
spection of Figs. 6 and 7, the relative motion of mode 2 is
sensitive only to the same two, singly altered, couplings
in both states. In contrast, the first binding changes the
coupling term of λ3, associated with anti-parallel motion
of two allosterons, one at rest, only sub-linearly. The
second binding, however, causes a multiplication of the
entire coupling term by β, because in the holo state, the
nonzero anti-parallel amplitudes are re-localised to load
the softest coupling (Fig. 7).
Analysis of the allosteric free energy’s sign in this case

shows that anti-cooperative binding, or ∆∆F (2,1) > 0,
occurs also for a range of β > 1, provided the initial
coupling-to-internal strength ratio Kc < 2. The exact
condition for negative cooperativity reads as follows:

β <
5Kc + 2

3K2
c

(β 6= 1) (10)
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1. Perturbation analysis

An alternative, perhaps more familiar, way of comput-
ing the (approximate) changes in eigenfrequencies under
consecutive bindings, is provided by perturbation theory,
routinely applied in quantum mechanics. By relative en-
ergy and size of a typical ligand, compared with protein
scales, allosteric regulation is in fact of perturbative na-
ture in most cases28. However, as for the chosen system,
all frequency ratios can be computed exactly, we only
sketch the approach here.
First, for the transition to the singly bound state, the

perturbation Hamiltonian’s matrix, with the parameter
ε := β � 1, is

∆Ĥ(1,0) = εKc

0

B

@

1 �1 0

�1 2 �1

0 �1 1

1

C

A
(11)

For unaltered internal strengths, also the perturbation
matrices maintain the form of connectivity or Lapla-

cian matrices. With the normalised eigenvectors, v̂
(0)
i ,

i = 1, 2, 3, of the reference (unbound) state according to
Eqs. (A2a) to (A2c), we find

∆λ
(1,0)
1 =

D

v̂
(0)
1 |∆Ĥ(1,0)|v̂

(0)
1

E

= 0 (12a)

∆λ
(1,0)
2 =

D

v̂
(0)
2 |∆Ĥ(1,0)|v̂

(0)
2

E

= 3 εKc (12b)

∆λ
(1,0)
3 =

D

v̂
(0)
3 |∆Ĥ(1,0)|v̂

(0)
3

E

= εKc (12c)

Note that for the coupling modifier β = 0.3, chosen for
Fig. 10, the perturbation parameter ε < 0. For this per-
turbation linear in ε, the first-order perturbation analysis
yields the exact changes, as expected, and confirmed by
inspection of Table I. The magnitude of change in λ2 is
three times as large as that in λ3.
The transition from the first to the second binding is

encoded in the linear perturbation matrix

∆Ĥ(2,1) = εKc

0

B

@

1 0 �1

0 1 �1

�1 �1 2

1

C

A
, (13)

A nonlinearity arises at sites 2 and 3, whose interaction
is altered by factor β2 due to the second binding at site 3,
which follows the first binding at site 2. The first-order
perturbation theory, however, predicts the following, in-
accurate, changes in eigenvalues:

∆λ
(2,1)
1 ⇡

D

v̂
(1)
1 |∆Ĥ(2,1)|v̂

(1)
1

E

= 0 (14a)

∆λ
(2,1)
2 ⇡

D

v̂
(1)
2 |∆Ĥ(2,1)|v̂

(1)
2

E

=
3

2
εKc (14b)

∆λ
(2,1)
3 ⇡

D

v̂
(1)
3 |∆Ĥ(2,1)|v̂

(1)
3

E

=
3

2
εKc, (14c)

particularly, erroneously, a change of λ2 under the sec-
ond binding. Despite this shortcoming of treating the

transition from the singly to the doubly bound state per-
turbatively, the ‘mode-coupling’ pathway to negative al-
lostery is still visible; after the first binding, modes 2 and
3 switch roles as concerns largest coupling to the binding
— a path accessible to a coupled multi-mode model only.

IV. CONCLUSIONS

In this work, we have devised and analysed low-
dimensional elastic network models (ENM) with local
variation of harmonic interaction strengths to capture the
mechanism of allosteric proteins’ negative entropic coop-
erativity. Our main conclusion is that strength variation

of couplings emanating from a site upon effector binding
is essential for ENM with constant number of oscillators
to map entropic cooperativity of both signs. While we
had observed negative cooperativity in coupling-varied
linear and ring ENM formed of 2–5 oscillators earlier20,
trimer rings have been chosen as an example set amenable
to the detailed analysis considered inescapable. Original
eigensystems distinctive of each binding state, found also
in this simple example set, are accessible exclusively to
a coupled system. Negative cooperativity arises entrop-
ically when the eigenfunction response to the variation
of coupling strengths is tuned in a particular way. As
a manifestation of this subtle tuning, modes of initially
identical or similar eigenfrequency separate through the
two bindings, and may even exchange positions in the
order of their eigenfrequencies. In the class of low-
dimensional, coupling-varied ENM whose cooperativity
we looked into, the possibility of two consecutive alter-
ations of the same coupling results in nonlinear effects.
The last add to the complexity of the maps of coopera-
tivity and potentially open up routes to negative cooper-
ative binding not originally aimed at. However, hinting
at requirements for negative cooperativity applicable to a
larger class of protein ENM, a binding-induced sequence
of coupling-strength alterations within the same ‘chain’
of sites might be a crucial ingredient.
In Sec. III B, we have seen in detail how modes of com-

paratively large frequency in the unbound state can be
adjusted to the reduced symmetry of the singly bound
state. Larger amplitudes are confined to internally softer
sites, and/or load weaker couplings only, resulting in a
decrease or minimal increase of free energy by the first
binding. At the second binding, the mode optimisation
towards entropy change minimisation turns out to be less
effective, presumably due to the constraints imposed on
the modes’ symmetries and patterns already by the first
event. For binding-induced internal stiffening and weak-
ening of couplings, with respect to entropy maximisa-
tion, internal stiffening of another, so far unaffected site
overcompensates the second (multiplicative) weakening
of coupling strengths, which may affect springs modified
already. If for the first event, free energy decreased, the
second event can only accommodate a smaller reduction
of free energy, or even effects a slight increase.
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Although the results clearly suggest that binding-
induced modification of coupling strengths is required for
constant-spring-number ENM to map negative (in addi-
tion to positive) cooperativity, we had to stop short of iso-
lating and proving minimally sufficient requirements. A
rigorous proof along these lines will be the obvious follow-
up to the present study To corroborate that, put slightly
differently, networks with static coupling can map pos-
itive cooperativity only, more ENM amenable to mode
analysis should be studied, or revisited. One of the next-
simplest models are tetramer rings, providing addition-
ally the chance to evaluate a holo state of non-adjacent
sites20. Cooperativity in the assembly of networks of high
symmetry, e.g., viral capsids25, is worthwhile analysing
by statistical mechanical tools for ENM as well. Another
extension of this work relates to the coupling of modes
in dynamic allostery18, addressing the interplay of slow
and fast modes due to, e.g., side-chains.
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Appendix A: Eigensystems of trimer rings

For a quicker view on the modes’ overall patterns, we
provide orthogonal, but non-normalised eigenbases.

1. Unbound [apo] state

In analogy with the examples of elastic matrices pre-
sented in Subsec. II B, the elastic matrix of the unbound
trimer ring reads

Ĥ(0) =
0

B

@

1 + 2Kc �Kc �Kc

�Kc 1 + 2Kc �Kc

�Kc �Kc 1 + 2Kc

1

C

A
, (A1)

Its eigenvalues and eigenvectors are

λ
(0)
1 = 1 v

(0)
1 =

0

B

@

1

1

1

1

C

A
(A2a)

λ
(0)
2,3 = 1 + 3Kc v

(0)
2 =

0

B

@

1

�2

1

1

C

A
(A2b)

v
(0)
3 =

0

B

@

�1

0

1

1

C

A
(A2c)

2. Singly bound state

The elastic matrix of the state with one occupied bind-
ing site (labelled 2, without loss of generality),

Ĥ(1) =
0

B

@

1 + (1 + β)Kc �βKc �Kc

�βKc α+ 2βKc �βKc

�Kc �βKc 1 + (1 + β)Kc

1

C

A
, (A3)

features the eigenvalues and -vectors

λ
(1)
1 = 1 + (1� r1)βKc v

(1)
1 =

0

B

@

1

r1
1

1

C

A
(A4)

λ
(1)
2 = 1 + (1� r2)βKc v

(1)
2 =

0

B

@

1

r2
1

1

C

A
(A5)

with

r1,2 := f ±
p

2 + f2 r2 = �
2

r1
(A6a)

f

✓

α� 1

βKc

◆

:= �
1

2

✓

1 +
α� 1

βKc

◆

(A6b)

λ
(1)
3 = 1 + (2 + β)Kc v

(1)
3 =

0

B

@

�1

0

1

1

C

A
(A7)

3. Doubly bound [holo] state

The elastic matrix of the state with two occupied bind-
ing sites (here, labelled 2 and 3),

Ĥ(2) = (A8)
0

B

@

1 + 2βKc �βKc �βKc

�βKc α+ (1 + β)βKc �β2Kc

�βKc �β2Kc α+ (1 + β)βKc

1

C

A
,

has eigenvalues and -vectors as follows:

λ
(2)
1 = α+ (1� s1)βKc v

(2)
1 =

0

B

@

s1
1

1

1

C

A
(A9)

λ
(2)
2 = α+ (1� s2)βKc v

(2)
2 =

0

B

@

s2
1

1

1

C

A
(A10)

Although the results clearly suggest that binding- induced modification of coupling strengths is required for constant-spring-number ENM to map negative (in addi- tion to positive) cooperativity, we had to stop short of iso- lating and proving minimally sufficient requirements. A rigorous proof along these lines will be the obvious follow- up to the present study To corroborate that, put slightly differently, networks with static coupling can map pos- itive cooperativity only, more ENM amenable to mode analysis should be studied, or revisited.
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with

s1,2 := g ±
p

2 + g2 (A11a)

g

✓

α� 1

βKc

◆

:= �
1

2

✓

1�
α� 1

βKc

◆

(A11b)

λ
(2)
3 = α+ (1 + 2β)βKc v

(2)
3 =

0

B

@

0

1

�1

1

C

A
(A12)

Appendix B: Allosteric free energy

The allosteric free energy according to the definition
Eq. (8), evaluated for trimer rings and the parameter set
α, β, Kc, takes the form

2
∆∆F (2,1)

kBT
= log

⇣

α+ (1 + 2α)βKc

⌘

(1 + 3Kc)
⇣

α+ (2 + α)βKc

⌘2 (B1)

+ log
(1 + 3Kc)

⇣

α+ (1 + 2β)βKc

⌘

⇣

1 + (2 + β)Kc

⌘2
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des Blutes auf dessen Sauerstoffbindung übt,” Skand. Arch. Phys-
iol. 15, 401–412 (1904).

25A. Zlotnick, “To Build a Virus Capsid: An Equilibrium
Model of the Self Assembly of Polyhedral Protein Complexes,”
J. Mol. Biol. 241, 59 (1994).

26R. Twarock, “Mathematical virology: a novel approach to the
structure and assembly of viruses,” Phil. Trans. R. Soc. A 364,
3357 (2006).

27H. Toncrova, Coarse-grained models of biomolecule dynamics

and allostery, Ph.D. thesis, University of Leeds (2010).
28E. Guarnera and I. N. Berezovsky, “On the perturbation nature
of allostery: sites, mutations, and signal modulation,” Curr. Op.
Struct. Biol. 56, 18 (2019).


	How proteins' negative cooperativity emerges from entropic optimisation of versatile collective fluctuations 
	Abstract
	Introduction
	Model
	Coupled harmonic oscillators with binding-modified interaction strengths
	Elastic energies
	Allosteric free energies
	Limitations of a single-oscillator model
	Fluctuation allostery of a dimer with binding-modified interaction strengths

	Results: Negative cooperativity
	Map of fluctuation allostery for trimer rings 
	Eigensystems of trimer rings
	Coupling-strength alteration only
	Perturbation analysis 


	Conclusions
	Acknowledgments
	Eigensystems of trimer rings
	Unbound [apo] state
	Singly bound state
	Doubly bound [holo] state

	Allosteric free energy


