
This is a repository copy of Vectorization-aware loop unrolling with seed forwarding.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/155722/

Version: Accepted Version

Proceedings Paper:
Rocha, RCO, Porpodas, V, Petoumenos, P et al. (4 more authors) (2020) Vectorization-
aware loop unrolling with seed forwarding. In: Pouchet, L-N and Jimborean, A, (eds.) CC
2020: Proceedings of the 29th International Conference on Compiler Construction. The
29th ACM SIGPLAN 2020 International Conference on Compiler Construction (CC 2020),
22-23 Feb 2020, San Diego, CA, USA. Association for Computing Machinery , pp. 1-13.
ISBN 978-1-4503-7120-9

https://doi.org/10.1145/3377555.3377890

© 2020 by the Association for Computing Machinery, Inc (ACM). This is an author
produced version of a paper published in CC 2020: Proceedings of the 29th International
Conference on Compiler Construction. Uploaded in accordance with the publisher's self-
archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1145/3377555.3377890
https://eprints.whiterose.ac.uk/id/eprint/155722/
https://eprints.whiterose.ac.uk/

Vectorization-Aware Loop Unrolling
with Seed Forwarding

Rodrigo C. O. Rocha
University of Edinburgh, UK

r.rocha@ed.ac.uk

Vasileios Porpodas
Intel Corporation, USA

vasileios.porpodas@intel.com

Pavlos Petoumenos
University of Manchester, UK

pavlos.petoumenos@manchester.ac.uk

Luís F. W. Góes
PUC Minas, Brazil

lfwgoes@pucminas.br

Zheng Wang
University of Leeds, UK

z.wang5@leeds.ac.uk

Murray Cole
University of Edinburgh, UK

mic@inf.ed.ac.uk

Hugh Leather
University of Edinburgh, UK

hleather@inf.ed.ac.uk

Abstract

Loop unrolling is a widely adopted loop transformation, com-

monly used for enabling subsequent optimizations. Straight-

line-code vectorization (SLP) is an optimization that ben-

efits from unrolling. SLP converts isomorphic instruction

sequences into vector code. Since unrolling generates re-

peatead isomorphic instruction sequences, it enables SLP to

vectorize more code. However, most production compilers

apply these optimizations independently and uncoordinated.

Unrolling is commonly tuned to avoid code bloat, not max-

imizing the potential for vectorization, leading to missed

vectorization opportunities.

We are proposing VALU, a novel loop unrolling heuristic

that takes vectorization into account when making unrolling

decisions. Our heuristic is powered by an analysis that es-

timates the potential benefit of SLP vectorization for the

unrolled version of the loop. Our heuristic then selects the

unrolling factor that maximizes the utilization of the vector

units. VALU also forwards the vectorizable code to SLP, al-

lowing it to bypass its greedy search for vectorizable seed

instructions, exposing more vectorization opportunities.

Our evaluation on a production compiler shows that VALU

uncovers many vectorization opportunities that were missed

by the default loop unroller and vectorizers. This results in

more vectorized code and significant performance speedups

for 17 of the kernels of the TSVC benchmarks suite, reaching

up to 2× speedup over the already highly optimized -O3. Our

evaluation on full benchmarks from FreeBench and MiBench

shows that VALU results in a geo-mean speedup of 1.06×.

CCS Concepts · Software and its engineering→Com-

pilers.

Keywords SIMD, SLP, Auto-Vectorization, Loop Unrolling

ACM Reference Format:

Rodrigo C. O. Rocha, Vasileios Porpodas, Pavlos Petoumenos, Luís

F. W. Góes, Zheng Wang, Murray Cole, and Hugh Leather. 2020.

Vectorization-Aware Loop Unrolling with Seed Forwarding. In Pro-
ceedings of the 29th International Conference on Compiler Construc-
tion (CC ’20), February 22ś23, 2020, San Diego, CA, USA. ACM, New

York, NY, USA, 13 pages. https://doi.org/10.1145/3377555.3377890

1 Introduction

Modern high-performance processors include short SIMD

vector units to support higher computational throughput.

Making effective use of the vector units is critical for extract-

ing maximum performance from these processors.

There are two general classes of vectorizers. Traditional

loop-based vectorizers [2, 3] detect instructions that can

be vectorized across loop iterations. Superword-Level Paral-

lelism (SLP) [23, 43], on the other hand, are not limited by the

loop structure. They identify isomorphic groups of instruc-

tions that can be vectorized within any straight-line code

sequence, whether in a loop body or outside loops altogether.

Loop unrolling is commonly applied before the SLP vector-

ization pass. Unrolling the loop body generates straight-line

code with repeating computational and memory access pat-

terns. This makes finding vectorizable instructions much

more likely. The motivation for this work comes from the

realization that, in state-of-the-art compilers, unrolling and

SLP vectorization are completely independent and uncoor-

dinated. Unrolling is guided by its own heuristic, mainly

considering how unrolling affects code size. As a result, this

1

https://doi.org/10.1145/3377555.3377890

CC ’20, February 22ś23, 2020, San Diego, CA, USA Rocha, Porpodas, Petoumenos, Góes, Wang, Cole, and Leather

heuristic makes good unrolling decisions with regards to

vectorization only incidentally.

In this work, we propose Vectorization-Aware Loop Un-

rolling (VALU), a novel unrolling approach that offers a

strong coupling with SLP vectorization. Our approach is

two-fold. First, VALU uses a novel analysis, named Potential
SLP, that performs vectorization and profitability analyses

that would be performed by SLP as if the loop had been un-

rolled (without unrolling it yet). If vectorization is deemed

profitable, the loop is then actually unrolled by a factor that

maximizes utilization of the vector units on the target ar-

chitecture. Second, VALU has a seed forwarding mechanism

that keeps track of unrolled copies of vectorizable seed in-

structions identified in the original context and forwards

them directly to the SLP vectorizer. VALU knows by defi-

nition that unrolled instructions are isomorphic, while the

SLP vectorizer needs to discover which group of instructions

in the unrolled loop will lead to isomorphic use-def graphs,

without an expensive search. By forwarding this informa-

tion, we can bypass SLP’s greedy seed collection, improving

vectorization.

Our approach uncovers many vectorization opportunities

that were completely missed by LLVM’s loop unroller. Unlike

traditional unrolling, VALU only unrolls loops when enough

code will be vectorized away. Therefore, it can afford to make

aggressive unrolling decisions, when that is estimated to pay

off. When evaluated on the TSVC [6] benchmark suite, VALU

improves SLP vectorization by up to 6× and 30% on average,

enabling SLP to outperform the loop vectorizer for 26 kernels

of the TSVC suite. VALU also improves performance by up

to 2×, with a geometric mean of 5%, compared to the highest

optimization setting (-O3). We have also evaluated VALU

on two full benchmarks, FreeBench and MiBench, where it

achieves a geo-mean percentual speedup of 6%.

To summarize, our main contribution is providing a strong

coupling between loop unrolling and the SLP vectorizer, with

a two-way communication channel between the two passes.

• We enable much better vectorization by analyzing in-

structions in the rolled context.

• We choose better unroll factors by knowing how vec-

torization will be applied.

• We find better vectorization seeds before loop un-

rolling and forward them directly to the SLP vectorizer.

2 Background

2.1 Loop Unrolling

Loop unrolling creates multiple copies of the loop body, in

order to perform multiple iterations at once, adjusting the

loop control accordingly to preserve its original semantics.

The number of copies is called the unrolling factor [9, 16, 30].
The immediate benefit comes from reducing the loop control

overhead. By converting loops into straight-line code, loop

unrolling also enables or improves subsequent optimizations.

1. Collect seed instructions

Seeds empty?
2.

Get seed

No

3.

Profitable?

Build SLP graph4.

5.

Code Generation6.

Yes

Done

Yes

No

Figure 1. Overview of Bottom-up SLP.

Excessive unrolling may impair performance, mainly due

to increased register pressure and instruction cachemisses [10,

46]. For this reason, most unrolling heuristics will not unroll

a loop above a certain factor, if the estimated size of the

unrolled loop body exceeds an empirically set threshold.

2.2 SLP Vectorization

Superword-Level Parallelism (SLP) is a straight-line-code

vectorizer that was first introduced by Larsen and Amaras-

inghe [23]. SLP tries to find isomorphic instruction sequences

and vectorize them if profitable. Some variants of this algo-

rithm have been implemented in production compilers, with

Bottom-Up SLP [43] being widely adopted due to its low

runtime overhead and its good coverage.

Figure 1 shows a diagram of the bottom-up SLP algo-

rithm [43]. It first identifies instructions, called seed instruc-
tions, that are likely to form vectorizable sequences, such

as stores instructions or reductions trees (step 1). Starting

from a group of seeds (step 3), the algorithm follows their

use-def chains towards their operands to grow the SLP graph

(step 4). Once this process encounters instructions that can-

not form a vectorizable group (e.g, due to non-matching

opcodes), it forms a non-vectorizable group and it stops fur-

ther exploring this path. Non-vectorizable groups indicate

that scalar-to-vector data movement is required.

Next, the algorithm estimates the profitability of vectoriz-

ing the instructions in the SLP graph (step 5). The total profit

is the one of converting groups of scalar instructions into

vectors minus the overhead of gathering the inputs of the

vector instructions. If profitable, SLP replaces each group of

scalar instructions in the graph with their equivalent vector

version (step 6). Otherwise, the code remains unmodified.

The process then continues with the next seed group until

all seeds have been explored (step 2).

3 Motivating Example

In this section, we present an example to demonstrate that ex-

isting unrolling heuristics are ineffective in exposing vector-

ization opportunities for SLP. Instead, an ideal loop unroller

would be able to identify exactly which loops are profitable

2

Vectorization-Aware Loop Unrolling with Seed Forwarding CC ’20, February 22ś23, 2020, San Diego, CA, USA

1 float Af[N], Bf[N], Cf[N], Df[N], Ef[N];

2 double Ad[N], Bd[N], Cd[N], Dd[N], Ed[N];

3 for (int k = 0; k < N; k++) {

4 Af[k] = Bf[k]*Cf[k] + Df[k]*Ef[k];

5 Ad[k] = Bd[k]*Cd[k] + Dd[k]*Ed[k];

6 }

(a) Source code of a loop that is unrolled twice by the default loop

unroller.

1 for (int k = 0; k < SIZE; k+=2) {

2 Af[k:k+1] = Bf[k:k+1]*Cf[k:k+1] +

3 Df[k:k+1]*Ef[k:k+1];

4 Ad[k:k+1] = Bd[k:k+1]*Cd[k:k+1] +

5 Dd[k:k+1]*Ed[k:k+1];

6 }

(b) After unrolling the loop by a factor of 2, the SLP vectorizer

will generate this sub-optimal vectorized code, underutilizing the

vector units available in the target architecture.

1 for (int k = 0; k < SIZE; k+=8) {

2 Af[k:k+7] = Bf[k:k+7]*Cf[k:k+7] +

3 Df[k:k+7]*Ef[k:k+7];

4 Ad[k:k+3] = Bd[k:k+3]*Cd[k:k+3] +

5 Dd[k:k+3]*Ed[k:k+3];

6 Ad[k+4:k+7] = Bd[k+4:k+7]*Cd[k+4:k+7] +

7 Dd[k+4:k+7]*Ed[k+4:k+7];

8 }

(c) The loop could instead be unrolled by 8 times, resulting in a

SLP-vectorized code that is around 2× faster than when unrolling

only twice, by fully utilizing the vector units available.

Figure 2. Example where the default loop unroller uses a

sub-optimal unrolling factor.

to be vectorized by SLP after unrolling and what is the un-

rolling factor that uncovers enough code to maximize the

utilization of the target vector units.

Figure 2a shows a loop with a small loop body, just two

statements long. Loop unrolling uses its heuristics to de-

termine the unrolling factor, comparing the expected code

size increase against a threshold. In this particular example,

LLVM unrolls it only by a factor of two, because the cost

of unrolling it further exceeds the threshold. Although the

unrolled loop may be vectorized, as shown in Figure 2b, this

can result in poor utilization of the vector units.

A vectorization-aware technique should be able to antic-

ipate that the unrolled loop can be vectorized by SLP and

select an unroll factor that maximizes performance. In our

example of Figure 2a, we achieve this by unrolling as many

times as needed by the smallest data type to fill the vector

register. For a 256-bit vector length and a smallest data type

of 32 bits (array Ai), this leads to an unrolling factor of 8.

After unrolling and vectorizing with SLP, we get the code in

Figure 2c, which does better than that of Figure 2b.

Code with bigger data types will also be unrolled more

times than can fit in the vector registers. For example, the in-

structions operating on doubles will still be unrolled 8 times

instead of the just 4 times. This is not a concern, however,

because the vectorizer will generate more vector instructions

for them, twice as many in this case, as shown in Figure 2c.

For slightly bigger loops or slightly lower unroll thresh-

olds, the default loop unroller may completely bail-out on un-

rolling and prevent SLP from vectorizing the loop altogether.

Just changing the unroll threshold to improve vectorization

is not a reasonable strategy. Loops can be vectorizable re-

gardless of their sizes, then some vectorization opportunities

might be missed for any unrolling threshold. At the same

time, high thresholds would unroll scalar loops by very large

factors impacting performance. SLP vectorization cannot

rely on the default loop unroller, because its heuristics may

decide not to unroll profitable loops for vectorization.

The end result shown in Figure 2c also differs from that

produced by LLVM’s loop vectorizer. The loop vectorizer

selects a single vector length, based on the largest data type,

for the whole loop body, so that all instructions in the loop

can be vectorized with the same vector length. The ideal loop

unroller should choose the best unrolling factor to maximize

performance. Usually, the version with mixed vector lengths

tends to be faster as it better utilizes the vector units [40].

4 Vectorization-Aware Loop Unrolling

In this section, we describe our vectorization-aware loop

unrolling (VALU). The core idea is to perform an analysis

on the original loop that looks for code that could be vec-

torized by SLP once the loop gets unrolled. After unrolling,

VALU forwards to SLP the instructions that are profitable

for vectorization, bypassing SLP’s greedy seed collection.

4.1 Potential SLP Graph

In order to identify if loop unrolling would be beneficial for

vectorization, VALU performs an analysis inspired by the

SLP algorithm. Traditional SLP analysis builds an SLP graph

that represents the combined use-def graphs of the groups

of scalar instructions that are considered for vectorization1.

VALU uses a different data-structure, called Potential SLP
graph. This is built from one use-def graph of the scalar in-

structions in the rolled loop. However, Potential SLP graph

reproduces the state of an equivalent SLP graph that would

be built if the loop was unrolled by a specific unrolling fac-

tor. For example, Figure 3c shows the Potential SLP graph

obtained by VALU when applied to the loop from Figure 3a,

which contains the use-def graph shown in Figure 3b. The

Potential SLP graph is able to estimate the same profitability

cost as the one computed by the SLP graph in Figure 3e,

which is built from the already unrolled loop shown in Fig-

ure 3d. This is a key aspect of how VALU is able to precisely

unroll loops that are profitable for SLP vectorization.

1Each node in the SLP graph contains the group of scalars that are consid-

ered for vectorization, and the edges represent the combined dependencies

among the groups of scalars.

3

CC ’20, February 22ś23, 2020, San Diego, CA, USA Rocha, Porpodas, Petoumenos, Góes, Wang, Cole, and Leather

1 for (int i = 0; i < N; ++i) {

2 A[i] = B[i]*C[D[i]];

3 }

(a) Source code.

A[i]

S

*

L

B[i]

L

C[D[i]]

(b) Use-def graph.

S

*

L L

A[i]

B[i]
{0,+,1}

{0,+,1}

-1

-1

-1 S

*

L L

C[D[i]]
Unkown SCEV

+2

Cost = -1

VF=2

(c) Potential SLP graph.

1 for (int i = 0; i < N; i+=2) {

2 A[i] = B[i] * C[D[i]];

3 A[i+1] = B[i+1] * C[D[i+1]];

4 }

(d) Loop unrolled by a factor of two.

L

A[i:i+1]

B[i:i+1]

-1

-1

-1 SS

**

LL L +2

Cost = -1

VF=2

C[D[i]]
C[D[i+1]]

(e) SLP graph built from the unrolled loop.

Non−Vectorizable +/−#CostVectorizable

1 for (int i = 0; i < N; i+=2) {

2 int id0 = D[i];

3 int id1 = D[i+1];

4 CVec = { C[id0], C[id1] };

5 A[i:i+1] = B[i:i+1]*CVec;

6 }

(f) Partially vectorized loop by SLP after loop unrolling.

Figure 3. Example shows how the Potential SLP graph ob-

tained by VALU mirrors the SLP’s analysis in the unrolled

loop.

Figure 4 shows a diagram of the algorithm for the VALU

heuristic. VALU starts by scanning the loop body and col-

lecting seed instructions. At the moment, we only consider

store instructions and reduction trees, but other instructions

can also be used as seeds. Contrary to SLP that only collects

vectorizable store instructions, VALU collects all store in-

structions, as detailed in Section 4.7. After collecting these

seed instructions, we calculate the best vectorization factor

(VF) based on the data type of the seed instructions. This

factor is required for building the Potential SLP graph. VALU

selects a vectorization factor that maximizes the utilization

1. Collect seeds from loop

Seeds empty?
2.

Get seed

No

3.

Profitable?

Build Potential SLP graph

Get VF for Potential SLP4.

5.

6.

Add graph to Worklist7.

Yes

Find best VF for Worklist8.

Return best VF9.

Yes

No

Figure 4. The high-level algorithm for the VALU heuristic.

of vector units in the target architecture. This can be com-

puted based on the bit-size of the instruction’s data type

and the maximum size of vectors supported by the target

architecture. For example, a 64-bit store on a 256-bit vector

architecture corresponds to a vectorization factor of 4. Please,

note that the vectorization factor selected particularly for

a Potential SLP graph corresponds to the desired unrolling

factor of the enclosing loop. Consequently, VALU’s unrolling

factor is bounded by the target-vector length.

Next, given the seed instructions and their correspond-

ing vectorization factors, VALU builds a Potential SLP graph

for each one of them. This is done by following the use-def

chain, towards the definitions, inserting the instructions to

the Potential SLP graph. Once the algorithm encounters in-

structions that cannot possibly form a vectorizable group by

the SLP pass after unrolling, it forms a final non-vectorizable

node. The green nodes represent all vectorizable nodes. The

red node for C[D[i]] in Figure 3c is an example of a non-

vectorizable node, due to its indirect memory addressing.

This process repeats until we have reached non-vectorizable

nodes or load instructions. This completes the Potential SLP

graph.

While finding isomorphic code is an expensive task for

SLP, VALU does not suffer from this same problem since

the unrolled copies of the loop will inevitably contain iso-

morphic code. For this reason, most nodes in the Potential

SLP graph are trivially vectorizable, such as those formed

by arithmetic, logical, or casting instructions. Memory oper-

ations and function calls, on the other hand, require some

special treatment. In particular, VALU needs to analyze if

the memory instructions can be widened, i.e., whether or

not their unrolled copies will form groups with vectorizable

access patterns. Section 4.3 describes this analysis in more de-

tail. Function calls are vectorizable if their callees are known

vectorizable intrinsics.

4

Vectorization-Aware Loop Unrolling with Seed Forwarding CC ’20, February 22ś23, 2020, San Diego, CA, USA

Since each Potential SLP graph has its own vectorization

factor, we may end up with many profitable Potential SLP

graphs in the same loop, each with a different vectorization

factor. This introduces a conflict, as the vectorization factor

corresponds to the desired unrolling factor of the enclosing

loop. We need a way for choosing a single unrolling factor

from multiple vectorization factors. The solution is simple:

we select the least common multiple among the vectorizaton

factors, since this is the only way to ensure that all of them

will get vectorized in the future by SLP, while also fully

utilizing the vector units of the target architecture. Because

all vectorization factors are powers of two, this means that,

in practice, we can simply select the maximum among them

for the unrolling factor.

4.2 Profitability of Potential SLP Graph

As it was mentioned in Section 4.1, a necessary step is de-

ciding whether the Potential SLP graph is profitable, i.e.,

whether the unrolled scalar code will be considered prof-

itable by the SLP vectorizer. This is done with the help of the

compiler’s target-specific cost model. The cost of each node

is calculated as the differenceVectorCost −ScalarCost , with

negative cost values implying that the vector code performs

better than the equivalent scalar code. The ScalarCost of a

node in the Potential SLP graph is the cost of its scalar in-

struction multiplied by the number of copies that will be pro-

duced after the loop is unrolled by VF times. TheVectorCost

is estimated assuming that all unrolled copies of the scalar

instruction will be packed into a VF-wide vector. We also ac-

count for any additional costs related to inserting/extracting

data to/from the potential vector instructions. For example,

a vectorizable instruction in our Potential SLP graph may

have uses outside the graph. In this case we would have to

extract the data from the vector (possibly with the help of

some additional instructions) and feed it to its uses.

4.3 Widening Memory Instructions

While arithmetic, logical, and casting instructions are triv-

ially vectorizable by simply widening the data type, memory

instructions are more challenging. The best performing vec-

tor memory instructions are the ones accessing consecutive

memory addresses. Therefore, we consider a memory in-

struction in the Potential SLP graph as vectorizable, only if

its unrolled copies point to consecutive memory addresses. If

the addresses are not consecutive but instead follow a strided

pattern with small constant strides, these memory instruc-

tions may also be vectorized, but this is not currently handled

well by the SLP pass, so we are considering them as non-

vectorizable. Modern processors do provide support for non-

consecutive memory access patterns, but these are usually

more costly than their consecutive counterparts, therefore

we need to account for this when widening [4].

This memory access analysis is performed symbolically

using chains of recurrences [5, 13], implemented by LLVM’s

scalar evolution framework (SCEV). Chains of recurrences

(CR) is a formalism used to represent closed-form functions

at regular intervals [52]. In compilers, it is largely used to

represent induction variables and memory access patterns,

allowing the compiler to reason about loops and memory

operations in a systematic way. We are using LLVM’s SCEV

analysis to perform the memory access analysis, which de-

termines which of the memory instructions in the Potential

SLP graph will be vectorized or not.

4.4 Dependence Analysis

The SLP pass relies on dependence analysis to check that the

code semantics are not violated by vectorization. LLVM’s

SLP implements this as part of a scheduling step, which tests

whether the groups of instructions to be vectorized, can be

moved to a single point in the code, without violating any

dependencies. During the construction of the SLP graph, SLP

tests whether the instructions are schedulable, and will only

form a vectorizable group if they are. If not, the group node

is labeled as non-vectorizable.

Before actually unrolling the loop, VALU needs to perform

a similar analysis to check whether the unrolled code will

have data dependencies that prevent vectorization. Some of

the tooling for this analysis is also common to the loop vector-

izer, which we adapted for VALU. While the loop vectorizer

analyzes the whole loop at the same time, VALU analyzes

the data dependency of individual instructions. During the

construction of the Potential SLP graph, VALU can analyze if

the unrolled replicas of the instructions will be schedulable,

preserving all dependencies.

4.5 Partial Vectorization

VALU handles partial vectorization seamlessly. The Potential

SLP graph grows until a load instruction or non-vectorizable

node is found. As long as the cost model estimates that it

is profitable to vectorize a Potential SLP graph, it will be

considered for vectorization, regardless if the Potential SLP

graph is fully vectorizable or not. Figure 3 shows such an

example where both VALU and SLP coordinate to partially

vectorize a loop that contains indirect memory accesses. As

we show in Section 5, this is an important advantage over

the loop vectorizer.

4.6 Code Size Concerns

Although VALUwill temporarily increase the size of the code

and potentially increase the register pressure after unrolling,

we rely on the SLP vectorization to bring the code of the

unrolled loops close to their initial sizes. However, we cannot

always avoid code size increase.

First, partially unrolling a loop may create extra code for

maintaining the program’s semantics. For example, if the

trip count is not divisible by the unrolling factor or the trip

count is not statically known, we need to create a cloned

5

CC ’20, February 22ś23, 2020, San Diego, CA, USA Rocha, Porpodas, Petoumenos, Góes, Wang, Cole, and Leather

Original Code

Partially

Vectorizable

Loop
Unrolled and

Vectorized

LoopUnrolled Loop

After Loop

Distribution

Unrolled Loop

Unrolled and

Vectorized

Loop

Partial Vectorization

after Loop DistributionPartial Vectorization

Non-Vectorizable Independent Code Non-Vectorizable Input Code
Vectorizable Code Vectorized Code

Figure 5. An illustrative example of a partially vectorizable

loop that shows how the non-vectorizable part of the loop is

also replicated. If some of this code is independent from the

vectorizable part of the loop, then loop distribution could

reduce unnecessary replication.

loop to perform the remainder iterations after the unrolled

loop [44].

Significant code size increase can also result from partially

vectorizable loops. When a fully vectorizable loop is unrolled,

all unrolled copies will be grouped together in a vector form,

canceling out the effects in code size. However, when an

unrolled loop is only partially vectorizable, all copies of the

non-vectorizable code will remain scalar. This is illustrated

in Figure 5. After the loop gets unrolled and vectorized, the

resulting loop will still contain multiple copies of the non-

vectorizable code.

There is a way to mitigate this code increase if part of

the non-vectorizable code is completely independent of the

vectorizable code in the loop. We can perform loop distribu-

tion and only unroll the loop that contains the vectorizable

code, as shown in Figure 5. This loop may still contain non-

vectorizable code that interacts directly with the vectorizable

part of the loop, but the impact on code size increase will be

smaller. When this is not possible, we provide a threshold

that specifies the minimum proportion of vectorizable code

in a loop to consider unrolling it. Loops with little vectoriz-

able code are ignored.

4.7 Forwarding Seeds to SLP

Straight-line code vectorization is a graph isomorphism prob-

lem and as such, an optimal solution has exponential time

complexity. SLP Vectorizers [43] in production compilers

are designed around heuristic-based algorithms that limit

the exploration to instructions that have a good chance of

success. They collect seed instructions (e.g., stores to consec-

utive memory addresses) and perform a localized exploration

on the use-def chains rooted at these seeds. The collection

of seed instructions, however, is both computationally ex-

pensive and is itself guided by heuristics whenever multiple

grouping alternatives are available. This can lead to missed

vectorization opportunities if the seed collection does not

form a seed group with the instructions generated by un-

rolling. VALU can help by forwarding the seed instructions

that drive its unrolling decision to SLP, effectively bypassing

SLP’s seed collection for these instructions, and increasing

the probability of success.

VALU collects the seeds during its Potential SLP graph

formation. The Potential SLP graph is built from a single seed

instruction. The unrolled copies of this single seed instruc-

tion will then become the seed instructions to form the first

group node of an SLP graph. Instead of expecting SLP’s seed

collection to find these same instructions and group them

correctly, VALU can assist the SLP vectorizer. To achieve that,

VALU keeps track of the unrolled copies of the profitable

seed instructions while performing the unrolling and shares

them with the SLP vectorizer. This guarantees that SLP will

be applied on unrolled copies of instructions that are trivially

isomorphic and profitable for vectorization. This is preferred

to relying on SLP’s greedy seed collection, which may miss

these vectorization opportunities in the unrolled code.

There are two cases where seed forwarding is extra helpful:

non-vectorizable stores and reduction computations.

1 for (int i = 0; i < LEN; i++) {

2 a[ip[i]] = b[i] + c[i] * d[i];

3 }

(a) Kernel S491 with an example of a non-vectorizable store in-

struction that leads to a partially vectorizable SLP graph.

+

L *

L L

b[i]
{0,+,1}

-1

-1

+2

+

L

Cost = -3

VF=2

*

c[i]
{0,+,1}

-1 L

d[i]
{0,+,1}

-1 L

-1

a[ip[i]]
S

Unkown SCEV

scatter

(b) Potential SLP graph.

Figure 6. VALU partial vectorization with non-vectorizable

store instructions as seeds.

4.7.1 Non-Vectorizable Stores

Figure 6 shows a loop with a store instruction which is

non-vectorizable, due to its indirect addressing, but its value

operand is part of a profitable SLP graph for vectorization.

Since unrolling generates copies of the loop body, VALU is

aware that although the store is non-vectorizable, it is possi-

ble that the unrolled copies of its value operand will result

6

Vectorization-Aware Loop Unrolling with Seed Forwarding CC ’20, February 22ś23, 2020, San Diego, CA, USA

1 int sum = 0;

2 for (int i = 0; i<SIZE; i++) {

3 sum += ((DAG#1)*(DAG#2)) + ((DAG#3)*(DAG#4))

4 }

(a) Reduction loop before unrolling. The DAGs represent sub-

expressions that may be different from one another.

+

o +
Seed

0

DA
G

#1

* *

DAG
#2

DAG

#3

DAG#
4

(b) Use-def graph with re-

duction before unrolling.

DAG
#1

*

*
D
A
G

#
2

DAG#
3

+

o

DA
G

#1

+

*

D
A
G

#
4

0

+

+
Seeds

*

DAG
#2

DAG

#3

DAG#
4

(c) Use-def graph with reduction af-

ter unrolling by a factor of 2.

Figure 7. Horizontal reduction before and after unrolling.

We highlight the seeds for isomorphic graphs.

in isomorphic use-def graphs that are profitable for SLP vec-

torization. For this reason, if the store is non-vectorizable,

VALU builds the Potential SLP graph starting from its value

operand, as shown in Figure 6b. If this Potential SLP graph

is profitable for vectorization, VALU forwards these as seed

instructions for SLP.

Without seed forwarding from VALU, SLP performs seed

collection in the already unrolled loop. LLVM’s SLP does

not track these non-vectorizable store instructions, for com-

plexity reasons. As such it fails to collect its predecessors as

seeds and will not vectorize it. The loop vectorizer cannot

handle this loop either as it requires partial vectorization.

4.7.2 Reduction Computations

VALU seed forwarding can also improve SLP vectorization

of reductions. Figure 7b shows the use-def graph for the

reduction from the loop shown in Figure 7a.

Currently, the SLP seed collection is performed by follow-

ing the use-def chains, starting from the ϕ-node, grouping

the first set of nodes that differ from the reduction operator.

SLP considers all instructions with the same opcode of the

reduction operator as part of the reduction computation. In

the example shown in Figure 7, the SLP vectorizer collects

all multiplication instructions as seeds and proceeds to form

the SLP graph. A major problem arises with loop unrolling

(Figure 7c), which generates copies of the loop body and

makes it harder to identify the reduction and its immediate

operands. SLP may greedily select a group of additions as

seeds, which may be a non-profitable group. However, it is

trivial for VALU to identify the seeds highlighted in Figure 7c

and forward them to the SLP vectorizer.

5 Experimental Results

5.1 Experimental Setup

Our evaluation platform is a Linux 4.4.27, glibc-2.22 based

system with an Intel®Core i7-4770 CPU and 16 GiB of RAM.

We implemented VALU as a standalone pass in LLVM 8 and

was placed just before the SLP vectorizer in the compilation

pipeline. We compiled all benchmarks using clangwith the

following flags: -O3 -ffast-math -march=native

-mtune=native -mllvm -slp-vectorize-hor.

These options enable the default loop unroller (DU) as well

as both SLP and the Loop Vectorization (LV).

We evaluate our approach on three benchmark suites2:

TSVC [6], FreeBench [18], and MiBench [15]. First, we pro-

vide a detailed analysis on several of the TSVC kernels, which

were specifically designed for evaluating vectorizing compil-

ers. Then, we provide performance results on both FreeBench

and MiBench, which include full benchmark programs from

a wide range of application domains.

SLP, being a straight-line-code vectorizer, is not expected

to find many opportunities for vectorization in the TSVC

kernels, which is exactly what makes it a great suite for

evaluating the effectiveness of VALU. Since the TSVC suite

contains a large number of kernels (151), we only show the

kernels with a performance difference of at least 2% or more

compared to the baseline. In total, 52 kernels are hidden from

the plots. Regardless, geometric means and averages refer

to all 151 TSVC kernels. For our performance results we ran

each workload 25 times and we show the arithmetic average

of the speedup across all runs, as well as the 95% confidence

interval of the speedup as a min-max bar.

5.2 Overall Performance

The performance speedup of enabling VALU over -O3 is

shown in Figure 8a. VALU significantly improves the LLVM

baseline with a speedup of up to 2×, and a geometric mean

of 1.05× (5% improvement) across the whole benchmark

suite. This is a promising result, given the heavily optimized

baseline and that for most kernels there is little room for

improvement when applying SLP.

As we dicuss later in Section 5.3, many of the significant

speedups shown in Figure 8a are due to partial vectorization

enabled by VALU, such as the kernel S255. However, the few

regressions observed, more specifically the kernels S258 and

S292, also represent two loops that get unrolled by VALU

and later partially vectorized by SLP. Both VALU and the SLP

vectorizer rely on the compiler’s built-in cost model when

checking for profitability, which can cause performance re-

gressions when the cost model contains inaccuracies. The

rest of the results show the expected behavior: better costs

lead to better performance.

Figure 8b isolates the effect of more intelligent unrolling

on SLP vectorization. It shows the speedup of VALU over

2These benchmarks can also be found in the LLVM benchmark suite.

7

CC ’20, February 22ś23, 2020, San Diego, CA, USA Rocha, Porpodas, Petoumenos, Góes, Wang, Cole, and Leather

S
2
5
8

S
2
9
2

S
3
1
8

S
1
7
2

S
3
1
5

S
0
0
0

S
3
1
3

v
d
o
tr

S
1
1
1
5

S
2
5
2

S
2
7
1
1

S
2
7
1
2

v
p
v
tv

v
tv
tv

v
p
v
p
v

S
4
1
2
1

S
4
4
2

S
4
2
1

S
2
7
1

S
1
2
7

S
1
2
5
1

S
1
2
8
1

S
3
1
9

S
2
4
3

S
2
5
1

S
1
1
9

S
1
2
7
9

S
2
7
2

S
1
3
5
1

S
1
5
2

S
4
5
2

S
4
5
1

S
2
2
3
3

S
2
5
4

S
2
7
1
0

S
2
7
4

S
2
7
6

S
4
3
1

v
b
o
r

S
1
7
1

v
if

S
3
5
1

v
tv

v
p
v

S
3
2
5
1

S
4
7
1

S
1
7
4

S
1
7
5

v
p
v
ts

S
1
7
3

S
4
5
3

S
2
7
3

S
1
2
2
1

S
1
1
1
9

S
1
2
4

S
1
3
1

S
1
6
2

S
3
1
7

S
1
2
5

S
3
5
3

S
1
5
1

S
3
5
2

S
2
2
4
4

S
1
2
1

S
1
1
6
1

S
1
1
1
2

S
2
7
8

S
2
7
9

S
1
1
6

S
1
7
6

S
2
5
3

S
1
3
1
1
0

S
3
1
1
3

S
1
4
2
1

S
4
4
1

S
3
1
1

S
3
1
2

S
2
1
1
1

S
3
1
6

S
3
1
4

v
s
u
m
r

S
4
4
3

S
4
1
1
2

S
1
1
5

S
1
3
2

S
3
1
1
1
1

S
2
4
4

S
2
9
1

S
1
2
1
3

S
2
1
1

S
4
1
1
4

S
1
2
4
4

S
4
1
1
7

S
2
2
5
1

S
2
1
2

S
2
6
1

S
1
1
2

S
2
5
5

S
2
4
1

G
M
e
a
n0.0

0.5

1.0

1.5

2.0

S
p
e
e
d
u
p

1
.0
5

...

(a) Speedup of O3+VALU over O3

S
2
5
8

S
2
9
2

S
3
1
8

S
1
7
2

S
3
1
5

S
0
0
0

S
3
1
3

v
d
o
tr

S
1
1
1
5

S
2
5
2

S
2
7
1
1

S
2
7
1
2

v
p
v
tv

v
tv
tv

v
p
v
p
v

S
4
1
2
1

S
4
4
2

S
4
2
1

S
2
7
1

S
1
2
7

S
1
2
5
1

S
1
2
8
1

S
3
1
9

S
2
4
3

S
2
5
1

S
1
1
9

S
1
2
7
9

S
2
7
2

S
1
3
5
1

S
1
5
2

S
4
5
2

S
4
5
1

S
2
2
3
3

S
2
5
4

S
2
7
1
0

S
2
7
4

S
2
7
6

S
4
3
1

v
b
o
r

S
1
7
1

v
if

S
3
5
1

v
tv

v
p
v

S
3
2
5
1

S
4
7
1

S
1
7
4

S
1
7
5

v
p
v
ts

S
1
7
3

S
4
5
3

S
2
7
3

S
1
2
2
1

S
1
1
1
9

S
1
2
4

S
1
3
1

S
1
6
2

S
3
1
7

S
1
2
5

S
3
5
3

S
1
5
1

S
3
5
2

S
2
2
4
4

S
1
2
1

S
1
1
6
1

S
1
1
1
2

S
2
7
8

S
2
7
9

S
1
1
6

S
1
7
6

S
2
5
3

S
1
3
1
1
0

S
3
1
1
3

S
1
4
2
1

S
4
4
1

S
3
1
1

S
3
1
2

S
2
1
1
1

S
3
1
6

S
3
1
4

v
s
u
m
r

S
4
4
3

S
4
1
1
2

S
1
1
5

S
1
3
2

S
3
1
1
1
1

S
2
4
4

S
2
9
1

S
1
2
1
3

S
2
1
1

S
4
1
1
4

S
1
2
4
4

S
4
1
1
7

S
2
2
5
1

S
2
1
2

S
2
6
1

S
1
1
2

S
2
5
5

S
2
4
1

G
M
e
a
n0

2

4

6

S
p
e
e
d
u
p

1
.2
9

...

(b) Speedup of VALU+SLP over DU+SLP

S
2
5
8

S
2
9
2

S
3
1
8

S
1
7
2

S
3
1
5

S
0
0
0

S
3
1
3

v
d
o
tr

S
1
1
1
5

S
2
5
2

S
2
7
1
1

S
2
7
1
2

v
p
v
tv

v
tv
tv

v
p
v
p
v

S
4
1
2
1

S
4
4
2

S
4
2
1

S
2
7
1

S
1
2
7

S
1
2
5
1

S
1
2
8
1

S
3
1
9

S
2
4
3

S
2
5
1

S
1
1
9

S
1
2
7
9

S
2
7
2

S
1
3
5
1

S
1
5
2

S
4
5
2

S
4
5
1

S
2
2
3
3

S
2
5
4

S
2
7
1
0

S
2
7
4

S
2
7
6

S
4
3
1

v
b
o
r

S
1
7
1

v
if

S
3
5
1

v
tv

v
p
v

S
3
2
5
1

S
4
7
1

S
1
7
4

S
1
7
5

v
p
v
ts

S
1
7
3

S
4
5
3

S
2
7
3

S
1
2
2
1

S
1
1
1
9

S
1
2
4

S
1
3
1

S
1
6
2

S
3
1
7

S
1
2
5

S
3
5
3

S
1
5
1

S
3
5
2

S
2
2
4
4

S
1
2
1

S
1
1
6
1

S
1
1
1
2

S
2
7
8

S
2
7
9

S
1
1
6

S
1
7
6

S
2
5
3

S
1
3
1
1
0

S
3
1
1
3

S
1
4
2
1

S
4
4
1

S
3
1
1

S
3
1
2

S
2
1
1
1

S
3
1
6

S
3
1
4

v
s
u
m
r

S
4
4
3

S
4
1
1
2

S
1
1
5

S
1
3
2

S
3
1
1
1
1

S
2
4
4

S
2
9
1

S
1
2
1
3

S
2
1
1

S
4
1
1
4

S
1
2
4
4

S
4
1
1
7

S
2
2
5
1

S
2
1
2

S
2
6
1

S
1
1
2

S
2
5
5

S
2
4
1

G
M
e
a
n0

1

2

3

4

5

S
p
e
e
d
u
p

0
.9
1

0
.7

VALU+SLP

DU+SLP

...

(c) Speedup of VALU+SLP and DU+SLP over the loop vectorizer (LV)

Figure 8. Evaluation of the effect of VALU when applied on top of the baseline O3 or on top of the standalone SLP. To simplify

presentation, we only show kernels that have a speedup or a slowdown of more than 2% in any of the plots. Geometric means

include all kernels, whether shown or not.
LLVM’s default loop unroller with SLP vectorization en-

abled but loop vectorization disabled. In other words, the

baseline is using the additional -fno-vectorize and

-fslp-vectorize flags, and we show the speedup due

to enabling VALU over this setting. Since VALU is well co-

ordinated with the requirements of SLP, it is expected that

more code will get vectorized compared to the default loop

unroller. This figure supports our argument that the default

loop unrolling heuristics are inappropriate for preparing

code for the SLP vectorizer. VALU uncovers vectorization

opportunities that result in speedups of up to 6× compared

to the default loop unroller, with a geometric mean of 1.29×

(29% improvement) across all 151 kernels in the TSVC bench-

marks.

Figure 8c compares SLP against loop vectorization. The

baseline is -O3 with loop vectorization but without SLP

(-fno-slp-vectorize). The figure shows the speedup

over this baseline with the loop vectorizer disabled, SLP

enabled, and either the default loop unroller or VALU enabled.

The figure highlights two key points that were motivated

in Section 3: (i) VALU enables SLP to handle loops where

the loop vectorizer fails, and (ii) VALU helps to close the

performance gap between SLP and the loop vectorizer. A

good coordination between the loop unroller and the SLP

vectorizer is essential for SLP to reach, or even exceed, the

performance of the loop vectorizer.

Although SLP combined with VALU can cover many of

the same loops covered by the loop vectorizer, there are still

multiple cases where the loop vectorizer generates faster

code than SLP even when combined with the VALU unroller.

In most of them, it is due to some missing features in LLVM’s

8

Vectorization-Aware Loop Unrolling with Seed Forwarding CC ’20, February 22ś23, 2020, San Diego, CA, USA

1 for (int i = 0; i < LEN-1; i++) {

2 a[i] = b[i] * c[i] * d[i];

3 b[i] = a[i] * a[i+1] * d[i];

4 }

Figure 9. Kernel S241 with complex data dependences

that require instruction reordering before vectorization.

VALU+SLP vectorized version results in gains higher than

2× over -O3.

specific implementation of SLP and a better SLP implemen-

tation would be able to vectorize the code. This means that

the best configuration should still include both vectorizers,

in addition to our new VALU loop unroller that provides

significant speedup on top of -O3, as shown in Figure 8a.

In the following sections, we discuss key strengths of VALU

and also how to improve the LLVM’s SLP implementation

in more details. Finally, we report the compilation overhead

of our approach.

5.3 Overall Analysis of the Performance Results

As expected, the loop vectorizer performs very well on this

loop-only benchmark suite. However, there are two classes

of loops where VALU+SLP outperforms the loop vectorizer:

(1) loops that contain loop-independent dependences; and (2)

loops that can only be partially vectorized. Because SLP

operates on groups of use-def graphs separately, it is able

to handle loop-independent dependences out of the box,

leaving the problem of placing the vectorized instructions to

the scheduler (see Section 4.4). Similarly, because SLP grows

its graph until the point where it is no longer vectorizable,

partial vectorization is intrinsic to it. As long as the SLP

graph is considered profitable, it will be vectorized.

We can also assign the loops where VALU+SLP misses

performance opportunities in two classes: (1) reductions

computations; and (2) loops with control flows that require

predication. Overall, LLVM’s loop vectorizer supports more

idioms than its SLP implementation, resulting in missed

opportunities for VALU+SLP. We discuss in detail all these

cases in the subsequent subsection.

5.3.1 Loop-Independent Dependences

Loop-independent dependences are between different in-

structions within the same iteration of a loop. This adds

complexity to the code and frequently inhibits vectorization

by the LLVM’s loop vectorizer, especially as this requires

instruction reordering to allow vectorization. The two main

examples are kernels S241 and S112, where VALU+SLP gets

more than 2× speedup on top of -O3. Other significant ex-

amples are the kernels S1213, S1244, S211, and S212.

For the kernel S241 shown in Figure 9, while the loop vec-

torizer fails, VALU+SLP can successfully vectorize this loop.

SLP only needs to make sure that it loads a[i+1:i+8]

before updating a[i:i+7]. Because each statement in this

loop is handled separately, by analyzing their use-def chains,

1 for (int i = n1-1; i < LEN; i++) {

2 k = ip[i];

3 a[i] = b[i] + c[LEN-k+1-2] * d[i];

4 k += 5;

5 }

Figure 10. Kernel S4114 with indirect addressing.

VALU+SLP version achieves about 1.5× speedup over -O3.

after VALU unrolls it, SLP is able to schedule the vectorizable

instructions and preserve data dependencies. The vectorized

code results in a speedup higher than 2× over -O3.

5.3.2 Partially Vectorizable Loops

One benefit of VALU+SLP over LLVM’s LV is that it can par-

tially vectorize loops containing non-vectorizable code. The

loop in Figure 10, taken from the kernel S4114, is such a case.

It contains an indirect memory access c[LEN-k+1-2] that

cannot be vectorized. While the loop vectorizer bails out

completely, VALU+SLP vectorizes it partially, improving the

performance of this loop by about 50%.

Specifically, if VALU unrolls the loop, SLP can partially

vectorize the code and leave the indirect memory access.

This means that the scalar loads c[LEN-k+1-2] must be

inserted into a vector, but this overhead is taken into account

by our Potential SLP analysis and is found to be profitable.

Other kernels that also include indirect addressing are

S4112 and S4117, which also result in significant speedups.

In addition to indirect memory accesses, there are many

other loops that are partially vectorized by VALU+SLP that

LV is unable to handle, such as S2251, S244, S255, and S291.

5.3.3 Seed Forwarding

VALU’s seed forwarding mechanism is an effective way of

overcoming major limitations in existing vectorizers. Fig-

ure 11 shows a loop that is poorly vectorized by SLP without

the assistance of VALU’s seed forwarding, as the computa-

tion being stored in adjacent addresses is not fully isomor-

phic. However, VALU groups the interleaved stores that are

fully isomorphic, resulting in a vectorized code with a per-

formance equivalent to that produced by the loop vectorizer.

Benchmarks S1111 and S491 (Figure 6) are loops that neither

one of the vectorizers were able to handle because of the

access pattern used by the store instruction. However, VALU

also collects store instructions that cannot be widened, using

its value operand as the seed for a Potential SLP graph.

5.3.4 Reduction Computations

The loop vectorizer in LLVM is able to generate efficient

code for reductions. This accounts for all exceptionally well

performing cases of LV. Although VALU is able to identify

reductions, especially because max- or min-reductions are

lowered into select-based reductions, LLVM’s SLP implemen-

tation has a limited support for reductions. The two most

serious limitations are that it cannot handle product-based

9

CC ’20, February 22ś23, 2020, San Diego, CA, USA Rocha, Porpodas, Petoumenos, Góes, Wang, Cole, and Leather

1 j = -1;

2 for (int i = 0; i < LEN/2; i++) {

3 j++;

4 a[j] = b[i] + c[i] * d[i];

5 j++;

6 a[j] = b[i] + d[i] * e[i];

7 }

Figure 11. Kernel S127. Loop shows an induction variable

with multiple increments. Example where forwarding seeds

makes life easier for the SLP vectorizer.

1 for (int i = 0; i < LEN; i++) {

2 if (e[i] >= t) {

3 a[i] += c[i] * d[i];

4 b[i] += c[i] * c[i];

5 }

6 }

Figure 12. S272. This loop has a conditional branch. LLVM’s

loop vectorizer is able to vectorize this loop using predication,

which is not yet supported by the SLP implementation.

reductions and it reduces the vector lanes inside the loop
instead of outside the loop. The former makes it impossible

to vectorize cases that the loop vectorizer does, the latter

reduces the benefits of vectorization.

The list of kernels with reduction in Figure 8c includes:

S13110, S31111, S311, S312, S313, S314, S316, S317, S319,

S3113, S352, vdotr, and vsumr. Because the kernels S31111

and S352 are a reduction where the inner loop has already

been unrolled, the loop vectorizer is unable to handle it. For

the other kernels with reduction, however, the loop vector-

izer is able to generate very efficient code.

5.3.5 Predicated Vectorization

The loop vectorizer is also able to effectively handle loops

that contain conditional branches, such as the loop in Fig-

ure 12, taken from the kernel S272. In these cases, it generates

a vectorized code that uses masks to predicate the execution

for particular vector lanes.

Similar cases of predication, with varied levels of complex-

ity, can be found in the kernels: S1161, S124, S1279, S253,

S271, S2710, S2711, S2712, S272, S273, S274, S441, S443, and

vif. For all of them, we are limited by the implementation

of SLP in LLVM which does not support predicted SLP vec-

torization, despite proposed techniques to achieve this [45].

On such cases, our unrolling technique has any effect, so we

only consider single-block loops in our heuristic.

5.4 Compilation Time

Wemeasured the wall clock time for compiling the full TSVC

benchmark suite using O3+VALU and normalizing it to O3.

Enabling VALU leads to a modest overall compilation over-

head of 16% over O3, considering the whole compilation

pipeline. Most of this overhead is due to the fact that after

loop unrolling, subsequent optimizations, including the SLP

vectorizer, and the backend will have more code to process.

M
B
/j
p
e
g

M
B
/b
it
c
o
u
n
t

F
B
/p
if
ft

M
B
/g
s
m

F
B
/p
c
o
m
p
re
s
s
2

M
B
/d
ij
k
s
tr
a

M
B
/p
a
tr
ic
ia

F
B
/m

a
s
o
n

F
B
/d
is
tr
a
y

M
B
/l
a
m
e

F
B
/a
n
a
ly
z
e
r

F
B
/f
o
u
ri
n
a
ro
w

M
B
/t
y
p
e
s
e
t

M
B
/C
R
C
3
2

M
B
/a
d
p
c
m

M
B
/s
u
s
a
n

M
B
/r
ij
n
d
a
e
l

F
B
/n
e
u
ra
l

M
B
/s
h
a

M
B
/i
s
p
e
ll

M
B
/b
lo
w
fi
s
h

M
B
/s
tr
in
g
s
e
a
rc
h

G
M
e
a
n

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

S
p
e
e
d
u
p 1
.0
6

Figure 13. Speedup of O3+VALU over O3 on full bench-

marks.

Interestingly, if we compare VALU+SLP with the loop vec-

torizer (LV), VALU+SLP results in about 8% faster compila-

tion. This shows that the compilation overhead of VALU+SLP

is within acceptable bounds. The difference in compilation

time comes from different sources, which includes the time

spent during the vectorization itself, but also because loop

unrolling can still be applied after the loop vectorizer.

5.5 Performance on Full Benchmarks

The kind of code accelerated by VALU is not found only in

benchmarks suites designed to test vectorizers. We tested

VALU on the benchmarks of the FreeBench and MiBench

suites, on top of the baseline -O3 which already includes

both vectorizers and the default loop unrolling. Shown in

Figure 13, VALU achieves a significant speedup on five of

these benchmarks, with stringsearch getting 45% faster, and

an overall geometric mean speedup of 1.06.

6 Related Work

6.1 Loop Unrolling

Loop unrolling is a well-studied code transformation tech-

nique, implemented in most compilers. There is a wide range

of studies on loop unrolling [9, 30]. Traditionally, this was

applied only to FOR-loops at the source level [1]. Later, more

general techniques have been proposed to perform loop un-

rolling [16, 44], including nested and remainder loops.

Unroll-and-jam is a loop unrolling technique for outer

loops, unrelated to vectorization. With unroll-and-jam, the

compiler unrolls outer loops and then fuses the unrolled

copies of the inner loops [7, 8, 34]. Similarly, Ferrer et al. [14]

shows how to unroll loops that already contain OpenMP

task parallelism, fusing the tasks after unrolling to reduce

unnecessary multi-threading overheads.

VALU is the first loop-unrolling technique, to the best of

our knowledge, that provides a strong coupling between loop

unrolling and SLP vectorization. Unlike prior unrolling work

that aims at balancing code size increase with improving

10

Vectorization-Aware Loop Unrolling with Seed Forwarding CC ’20, February 22ś23, 2020, San Diego, CA, USA

the applicability of generic optimizations, VALU is able to

identify loops that are valid and profitable to be vectorized.

There has also been a significant amount of work on

iterative optimization or other approaches for tuning the

unrolling factor [20, 21, 24, 46]. However, even if these ap-

proaches manage to find the best unrolling factor to uncover

SLP vectorization, which is usually infeasible on a per loop

basis, they are still insufficient to vectorize those loops that

require VALU’s seed forwarding. As described in Section 4.7,

there are cases where SLP can be unable to properly identify

the seed instructions in order to vectorize the unrolled loop.

6.2 Loop and Function Auto-Vectorization

Auto-vectorization techniques have traditionally focused on

vectorizing loops [49]. The basic implementation conceptu-

ally strip-mines the loop by the vector factor and widens

each scalar instruction in the body to work on multiple data

elements. The effectiveness of loop vectorizing compilers

has been studied by Maleki et al. [26]. Many fundamental

problems of loop vectorization have been addressed by early

work on the Parallel Fortran Converter [2, 3, 11, 22, 48].

Since then, numerous improvements to the basic algorithm

have been proposed in the literature and production com-

pilers [4, 12, 31, 32, 42]. For example, Stock et al. [47] uses

machine learning to train a profitability model for the loop

vectorizer.

Whole function vectorization has been proposed by Kar-

renber et al. [19, 41]. This is particularly important for map-

ping programming models like OpenCL onto vector units. A

different approach is presented by Masten et al. [27] which

discusses how function/kernel vectorization could be pre-

sented as a loop-vectorization problem. Finally,Moll et al. [29]

present a novel control-flow linearization algorithm, for use

in function/kernel vectorizers.

6.3 SLP Auto-Vectorization

A complementary technique to the loop vectorizer has been

introduced by Larsen and Amarasinghe [23], the SLP vector-

izer, which focuses on straight-line code. Since its original

work, several improvements have been proposed for the

straight-line-code (SLP-style) vectorization [17, 25, 28, 33,

45].

The bottom-up SLP algorithm has recently been improved

in several ways. [37] introduces padding the code with re-

dundant instructions to generate isomorphism and improve

vectorization. In [36] the SLP region is pruned to scalarize

groups of instructions that harm the vectorization cost, while

in [35] a larger unified SLP region is used, to overcome limi-

tations caused by the region formation. In [50] vectorization

is enabled for SIMD widths that are not supported by the

target hardware. Finally, extensions to SLP that focus on

commutative operations are presented in [38, 39].

Combining loop-vectorization with SLP was proposed in

loop-aware SLP [43] and implemented in GCC. This work

combines SLP-style parallelism with the loop vectorizer,

which allows it to vectorize both across iterations and within

a single iteration. Zhou et al. [51] improve this technique

by extending the exploration performed by the algorithm,

improving the effectiveness of the mixed inter and intra-loop

vectorization. Both approaches rely on SLP-style parallelism

that must already be exposed in the loop body, which means

that VALU would be complementary to them. This is differ-

ent from our work.

7 Conclusion

This paper presented Vectorization-Aware Loop Unrolling

(VALU), a novel compiler heuristic for identifying loop un-

rolling opportunities to enable the straight-line-code vector-

ization. VALU does so by identifying if loop unrolling will

be profitable for the SLP vectorizer and what loop unroll

factor can maximize the utilization of the target architec-

ture’s vector units. VALU determines the unroll factor by

employing Potential SLP, a novel vectorization and profitabil-

ity analysis on the original rolled loop as if it was unrolled.

We implemented VALU in LLVM. and evaluated it on the

TSVC vectorization testing suite. Our experimental results

show a great SLP vectorization improvement compared to

the LLVM’s default loop unrolling heuristic, and very signif-

icant performance improvements over O3.

Acknowledgment

This work has been supported by the UK Engineering and

Physical Sciences Research Council (EPSRC) under grants

EP/L01503X/1 (CDT in Pervasive Parallelism), EP/P003915/1

(SUMMER), and EP/M01567X/1 (SANDeRs). This work was

supported by the Royal Academy of Engineering under the

Research Fellowship scheme.

References
[1] FE Allen and J Cocke. 1971. A catalogue of optimizing transformations.

IBM Research Center, Thomas J. Watson.

[2] John R Allen and Ken Kennedy. 1982. PFC: A program to convert Fortran
to parallel form. Technical Report 82-6. Department of Mathematical

Sciences, Rice University.

[3] John Randy Allen and Ken Kennedy. 1987. Automatic Translation

of Fortran Programs to Vector Form. Tranactions on Programming
Languages and Systems (TOPLAS) 9, 4 (1987).

[4] Andrew Anderson, Avinash Malik, and David Gregg. 2015. Automatic

Vectorization of Interleaved Data Revisited. ACM Trans. Archit. Code
Optim. 12, 4 (Dec. 2015), 50:1ś50:25.

[5] Diego Andrade, Manuel Arenaz, Basilio B. Fraguela, Juan Touriño, and

Ramón Doallo. 2007. Automated and accurate cache behavior analysis

for codes with irregular access patterns. Concurrency and Computation:
Practice and Experience 19, 18 (2007), 2407ś2423.

[6] David Callahan, Jack Dongarra, and David Levine. 1988. Vectoriz-

ing compilers: A test suite and results. In Supercomputing’88.[Vol. 1].,
Proceedings. IEEE, 98ś105.

[7] Steve Carr and Yiping Guan. 1997. Unroll-and-jam Using Uniformly

Generated Sets. In Proceedings of the 30th Annual ACM/IEEE Interna-
tional Symposium on Microarchitecture (MICRO 30). IEEE Computer

Society, Washington, DC, USA, 349ś357.

11

CC ’20, February 22ś23, 2020, San Diego, CA, USA Rocha, Porpodas, Petoumenos, Góes, Wang, Cole, and Leather

[8] Steve Carr and Ken Kennedy. 1994. Improving the Ratio of Mem-

ory Operations to Floating-point Operations in Loops. ACM Trans.
Program. Lang. Syst. 16, 6 (Nov. 1994), 1768ś1810.

[9] Keith Cooper and Linda Torczon. 2003. Engineering a Compiler: In-
ternational Student Edition. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA.

[10] JackW. Davidson and Sanjay Jinturkar. 1996. Aggressive loop unrolling

in a retargetable, optimizing compiler. In Compiler Construction, Tibor
Gyimóthy (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 59ś73.

[11] James Davies, Christopher Huson, Thomas Macke, Bruce Leasure, and

Michael Wolfe. 1986. The KAP/S-1- An advanced source-to-source

vectorizer for the S-1 Mark IIa supercomputer. In Proceedings of the
International Conference on Parallel Processing.

[12] Alexandre E. Eichenberger, Peng Wu, and Kevin O’Brien. 2004. Vec-

torization for SIMD Architectures with Alignment Constraints. In

Proceedings of the Conference on Programming Language Design and
Implementation (PLDI).

[13] Robert van Engelen. 2001. Efficient Symbolic Analysis for Optimizing

Compilers. In Proceedings of the 10th International Conference on Com-
piler Construction (CC ’01). Springer-Verlag, London, UK, UK, 118ś132.

[14] Roger Ferrer, Alejandro Duran, Xavier Martorell, and Eduard Ayguadé.

2010. Unrolling Loops Containing Task Parallelism. In Proceedings
of the 22Nd International Conference on Languages and Compilers for
Parallel Computing (LCPC’09). Springer-Verlag, Berlin, Heidelberg,
416ś423.

[15] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,

and R. B. Brown. 2001. MiBench: A free, commercially representative

embedded benchmark suite. In Proceedings of the Fourth Annual IEEE
International Workshop on Workload Characterization.

[16] J. C. Huang and T. Leng. 1999. Generalized loop-unrolling: a method for

program speedup. In Proceedings 1999 IEEE Symposium on Application-
Specific Systems and Software Engineering and Technology. ASSET’99
(Cat. No.PR00122). 244ś248.

[17] Joonmoo Huh and James Tuck. 2017. Improving the Effectiveness of

Searching for Isomorphic Chains in Superword Level Parallelism. In

Proceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-50 ’17). ACM, New York, NY, USA, 718ś729.

[18] J. Hwang, S. Zeng, F. y. Wu, and T. Wood. 2013. A component-based

performance comparison of four hypervisors. In 2013 IFIP/IEEE In-
ternational Symposium on Integrated Network Management (IM 2013).
269ś276.

[19] Ralf Karrenberg and Sebastian Hack. 2011. Whole-function vectoriza-

tion. In Proceedings of the 9th Annual IEEE/ACM International Sympo-
sium on Code Generation and Optimization. IEEE Computer Society,

141ś150.

[20] Toru Kisuki, Peter M. W. Knijnenburg, Mike F. P. O’Boyle, François

Bodin, and Harry A. G. Wijshoff. 1999. A feasibility study in itera-

tive compilation. In High Performance Computing, Constantine Poly-
chronopoulos, Kazuki Joe Akira Fukuda, and Shinji Tomita (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 121ś132.

[21] P. M. W. Knijnenburg, T. Kisuki, and M. F. P. O’Boyle. 2002. Iterative
Compilation. Springer Berlin Heidelberg, Berlin, Heidelberg, 171ś187.

[22] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe. 1981.

Dependence Graphs and Compiler Optimizations. In Proceedings of
the Symposium on Principles of Programming Languages.

[23] S. Larsen and S. Amarasinghe. 2000. Exploiting Superword Level Par-

allelism with Multimedia Instruction Sets. In Proceedings of the Con-
ference on Programming Language Design and Implementation (PLDI).

[24] Hugh Leather, Edwin Bonilla, and Michael O’Boyle. 2009. Automatic

Feature Generation for Machine Learning Based Optimizing Compila-

tion. In Proceedings of the 7th Annual IEEE/ACM International Sympo-
sium on Code Generation and Optimization (CGO ’09). IEEE Computer

Society, Washington, DC, USA, 81ś91.
[25] J. Liu, Y. Zhang, O. Jang, W. Ding, and M. Kandemir. 2012. A compiler

framework for extracting superword level parallelism. In Proceedings of

the Conference on Programming Language Design and Implementation
(PLDI).

[26] Saeed Maleki, Yaoqing Gao, Maria J. Garzarán, Tommy Wong, and

David A. Padua. 2011. An Evaluation of Vectorizing Compilers. In

Proceedings of the International Conference on Parallel Architectures and
Compilation Techniques (PACT).

[27] Matt Masten, Evgeniy Tyurin, Konstantina Mitropoulou, Hideki Saito,

and Eric Garcia. 2018. Function/Kernel Vectorization via Loop Vector-

izer. Proceedings of the 5th Workshop on The LLVM Compiler Infrsatruc-
ture in HPC (LLV-HPC) (2018).

[28] Charith Mendis and Saman Amarasinghe. 2018. GoSLP: Globally Opti-

mized Superword Level Parallelism Framework. Proc. ACM Program.
Lang. 2, OOPSLA (Oct. 2018), 28.

[29] Simon Moll and Sebastian Hack. 2018. Partial control-flow lineariza-

tion. In Proceedings of the 39th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation. ACM, 543ś556.

[30] Steven S. Muchnick. 1997. Advanced compiler design and implementa-
tion. Morgan Kaufmann Publishers, San Fransisco, California, USA.

[31] Dorit Nuzman, Ira Rosen, and Ayal Zaks. 2006. Auto-vectorization

of Interleaved Data for SIMD. In Proceedings of the Conference on
Programming Language Design and Implementation (PLDI). ACM, 132ś

143.

[32] Dorit Nuzman and Ayal Zaks. 2008. Outer-loop vectorization: revisited

for short SIMD architectures. In Proceedings of the International Con-
ference on Parallel Architectures and Compilation Techniques (PACT).

[33] Y. Park, S. Seo, H. Park, H.K. Cho, and S. Mahlke. 2012. SIMD Defrag-

menter: Efficient ILP Realization on Data-parallel Architectures. In

Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS).

[34] D. Petkov, R. Harr, and S. Amarasinghe. 2002. Efficient pipelining

of nested loops: unroll-and-squash. In Proceedings 16th International
Parallel and Distributed Processing Symposium. 6 ppś.

[35] Vasileios Porpodas. 2017. SuperGraph-SLP Auto-Vectorization. In

2017 International Conference on Parallel Architecture and Compilation
(PACT). IEEE, 330ś342.

[36] Vasileios Porpodas and Timothy M Jones. 2015. Throttling automatic

vectorization: When less is more. In 2015 International Conference on
Parallel Architecture and Compilation (PACT). IEEE, 432ś444.

[37] Vasileios Porpodas, Alberto Magni, and Timothy M. Jones. 2015. PSLP:

Padded SLP Automatic Vectorization. In Proceedings of the International
Symposium on Code Generation and Optimization (CGO).

[38] Vasileios Porpodas, Rodrigo C. O. Rocha, Evgueni Brevnov, Luís F. W.

Góes, and Timothy Mattson. 2019. Super-Node SLP: Optimized Vector-

ization for Code Sequences Containing Operators and Their Inverse

Elements. In Proceedings of the 2019 IEEE/ACM International Sympo-
sium on Code Generation and Optimization (CGO 2019). IEEE Press,

Piscataway, NJ, USA, 206ś216.

[39] Vasileios Porpodas, Rodrigo C. O. Rocha, and Luís F. W. Góes. 2018.

Look-ahead SLP: Auto-vectorization in the Presence of Commutative

Operations. In Proceedings of the 2018 International Symposium on Code
Generation and Optimization (CGO 2018). ACM, New York, NY, USA,

163ś174.

[40] Vasileios Porpodas, Rodrigo C. O. Rocha, and Luís F. W. Góes. 2018.

VW-SLP: Auto-vectorization with Adaptive Vector Width. In Proceed-
ings of the 27th International Conference on Parallel Architectures and
Compilation Techniques (PACT ’18). ACM, New York, NY, USA, 12:1ś

12:15.

[41] R. Karrenberg and S. Hack. 2012. Improving performance of OpenCL on

CPUs. In International Conference on Compiler Construction. Springer,
1ś20.

[42] Gang Ren, Peng Wu, and David Padua. 2006. Optimizing Data Permu-

tations for SIMD Devices. In Proceedings of the Conference on Program-
ming Language Design and Implementation (PLDI).

12

Vectorization-Aware Loop Unrolling with Seed Forwarding CC ’20, February 22ś23, 2020, San Diego, CA, USA

[43] I. Rosen, D. Nuzman, and A. Zaks. 2007. Loop-aware SLP in GCC. In

GCC DevelopersâĂŹ Summit.
[44] Vivek Sarkar. 2000. Optimized Unrolling of Nested Loops. In Proceed-

ings of the 14th International Conference on Supercomputing (ICS ’00).
ACM, New York, NY, USA, 153ś166.

[45] J. Shin, M. Hall, and J. Chame. 2005. Superword-level parallelism in the

presence of control flow. In Proceedings of the International Symposium
on Code Generation and Optimization (CGO).

[46] Mark Stephenson and Saman Amarasinghe. 2005. Predicting Unroll

Factors Using Supervised Classification. In Proceedings of the Inter-
national Symposium on Code Generation and Optimization (CGO ’05).
IEEE Computer Society, Washington, DC, USA, 123ś134.

[47] Kevin Stock, Louis-Noël Pouchet, and P. Sadayappan. 2012. Using

Machine Learning to Improve Automatic Vectorization. ACM Trans.
Archit. Code Optim. 8, 4, Article 50 (Jan. 2012), 23 pages.

[48] Michael Wolfe. 1988. Vector optimization vs. vectorization. In Super-
computing. Springer.

[49] Michael Joseph Wolfe. 1995. High Performance Compilers for Parallel
Computing. Addison-Wesley.

[50] Hao Zhou and Jingling Xue. 2016. A compiler approach for exploiting

partial SIMD parallelism. ACM Transactions on Architecture and Code
Optimization (TACO) (2016).

[51] Hao Zhou and Jingling Xue. 2016. Exploiting mixed SIMD parallelism

by reducing data reorganization overhead. In Proceedings of the 2016
International Symposium on Code Generation and Optimization. ACM,

59ś69.

[52] Eugene V. Zima. 1995. Simplification and Optimization Transforma-

tions of Chains of Recurrences. In Proceedings of the 1995 International
Symposium on Symbolic and Algebraic Computation (ISSAC ’95). ACM,

New York, NY, USA, 42ś50.

13

	Abstract
	1 Introduction
	2 Background
	2.1 Loop Unrolling
	2.2 SLP Vectorization

	3 Motivating Example
	4 Vectorization-Aware Loop Unrolling
	4.1 Potential SLP Graph
	4.2 Profitability of Potential SLP Graph
	4.3 Widening Memory Instructions
	4.4 Dependence Analysis
	4.5 Partial Vectorization
	4.6 Code Size Concerns
	4.7 Forwarding Seeds to SLP

	5 Experimental Results
	5.1 Experimental Setup
	5.2 Overall Performance
	5.3 Overall Analysis of the Performance Results
	5.4 Compilation Time
	5.5 Performance on Full Benchmarks

	6 Related Work
	6.1 Loop Unrolling
	6.2 Loop and Function Auto-Vectorization
	6.3 SLP Auto-Vectorization

	7 Conclusion
	References

