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The magnetic anisotropy of antiferromagnets plays a crucial role in stabilizing the magnetization of many

spintronic devices. In noncollinear antiferromagnets such as IrMn, the symmetry and temperature dependence of

the effective anisotropy are poorly understood. Theoretical calculations and experimental measurements of the

effective anisotropy constant for IrMn differ by two orders of magnitude, while the symmetry has been inferred

as uniaxial in contradiction to the assumed relationship between crystallographic symmetry and temperature

dependence of the anisotropy from the Callen-Callen law. In this Rapid Communication, we determine the

effective anisotropy energy surface of L12- IrMn3 using an atomistic spin model and constrained Monte

Carlo simulations. We find a unique cubiclike symmetry of the anisotropy not seen in ferromagnets and that

metastable spin structures lower the overall energy barrier to a tenth of that estimated from simple geometrical

considerations, removing the discrepancy between experiment and theory. The temperature scaling of the

anisotropy energy barrier shows an exponent of 3.92, close to a uniaxial exponent of 3. Our results demonstrate

the importance of noncollinear spin states on the thermal stability of antiferromagnets with consequences for the

practical application of antiferromagnets in devices operating at elevated temperatures.

DOI: 10.1103/PhysRevB.100.220405

I. INTRODUCTION

The magnetic anisotropy of antiferromagnetic (AF) materi-

als plays a key role in the stability of many spintronic devices

[1–5] and exchange bias effects [6–8]. Recently, interest in the

properties of AF materials has increased due to their emerging

applications in AF spintronic [3,5] and neuromorphic com-

puting devices [9] where the antiferromagnet is the active ele-

ment. The magnetic anisotropy energy density as determined

experimentally is a free-energy difference between maximum

and minimum on the free-energy surface where the tempera-

ture variation of the anisotropy arises from spin fluctuations.

For clarity, we refer to the intrinsic quantity, determined from

ab initio calculations, as the magnetocrystalline anisotropy

energy (MAE) and the experimental temperature-dependent

free-energy density as the magnetocrystalline anisotropy con-

stant K . Magnetic anisotropy is usually classified by sym-

metry in expansions of spherical harmonics with azimuthal

and rotational components [10] describing uniaxial and cubic

forms of the anisotropy. The temperature dependence of the

anisotropy is intrinsically related to the order of the harmonics

[10,11] and is well understood for ferromagnets. In contrast,

the magnetic anisotropy of antiferromagnets is poorly un-

derstood due to the difficulty in experimental measurements,

the complexity of the materials, and noncollinear magnetic

structure.

Iridium manganese (IrMn) is the material chosen for many

AF spintronic devices due to its high thermal stability and
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large exchange bias field. In devices, the ordering and compo-

sition is tuned for optimal performance but here we focus on

the L12 ordered IrMn3 phase due to the existence of extensive

experimental [12,13] and theoretical [14–16] data. Theoretical

calculations by Szunyogh et al. [14] found an extremely

large second-order MAE for IrMn3, leading to a predicted

magnetocrystalline anisotropy energy density of the order of

3 × 107 J/m3 at 0 K. Vallejo-Fernandez et al. [17,19] calcu-

lated a value of the anisotropy constant K = 6.2 × 105 J/m3

at 300 K or K = 14.8 × 105 J/m3 at 0 K, almost two orders

of magnitude lower than the expected value from theoretical

calculations [14]. The experimental estimate of the anisotropy

constant of IrMn is sensitive to the value of the switching

attempt frequency ( f0) in the Arrhenius Néel law given by

1/τ = f0 exp

(

−
�E

kBT

)

, (1)

where τ is the relaxation time, �E is the energy barrier, kB

is the Boltzmann constant, and T is the temperature. Origi-

nally, Vallejo-Fernandez et al. used a value of f0 = 109 s−1

[17] but more recent estimates suggest values closer to f0 =

(2.1 ± 0.4)1012 s−1 [19]. Determination of the exact value of

the attempt frequency is therefore critical to determining the

effective anisotropy in AF materials.

A further unresolved problem relates to the symmetry of

the IrMn3 anisotropy. Vallejo-Fernandez [17] and Craig et al.

[20] calculated the anisotropy by fitting to the temperature

dependence of the magnetization using a Callen-Callen [11]

power law KAF(T )/KAF(0) = (nAF(T )/nAF(0))l , with nAF the

AF sublattice magnetization. The exponent l reflects the sym-

metry of the anisotropy, which itself generally reflects that

of the lattice. Agreement with experimental measurements

[17] requires an exponent of l ∼ 3 (uniaxial) rather than
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l ∼ 10 (cubic anisotropy). Szunyogh et al. [14] showed that

the local energy surface for individual spins is uniaxial by

rotating the triangular ground state about the (111) direction.

Both experiment and theory agree that the anisotropy has

an approximately uniaxial form. However, this contradicts

the predicted relationship between crystallographic symmetry

and the temperature dependence of the anisotropy from the

Callen-Callen and Zener relations [10,11].

In this Rapid Communication, we resolve this apparent

contradiction by determining the equilibrium anisotropic free-

energy surface and by calculation of the temperature de-

pendence and scaling of the effective anisotropy. We find

that the anisotropy of IrMn3 possesses a unique symmetry

neither uniaxial nor cubic in nature and has an unusual scaling

exponent of l = 3.92, not seen for ferromagnetic materials.

II. METHOD

To study the anisotropy of L12- IrMn3 we use an atomistic

spin model where the energy of the system is defined using

the spin Hamiltonian

H = −
∑

i< j

Ji jSi · S j −
kN

2

z
∑

i �= j

(Si · ei j )
2, (2)

where Si is a unit vector describing the spin direction on Mn

site i, kN = −4.22 × 10−22 is the Néel anisotropy constant,

and ei j is a unit vector from site i to site j, z is the number

of nearest neighbors and Ji j is the exchange interaction. The

effective exchange interactions (Ji j) were limited to nearest

(Jnn
i j = −6.4 × 10−21 J/link) and next-nearest (Jnnn

i j = 5.1 ×

10−21 J/link) neighbors [21]. In IrMn, the magnetocrystalline

anisotropy arises from the large spin-orbit coupling between

Mn and Ir sites [14]. Here we map the local anisotropies at

each Mn site to a Néel pair anisotropy model [21,22] which

gives exact agreement with the ab initio calculations [14]. The

Néel model reflects the local site symmetry to give the correct

easy axes for each Mn site and by performing coherent spin

rotations as in Ref. [14], we find the same angular dependence

of the anisotropy energy.

III. RESULTS

To verify the model we calculated the ground-state spin

structure of ordered L12 IrMn3 using a Monte Carlo metropo-

lis algorithm with the adaptive update method [23,24] and

implemented in the VAMPIRE software package [25]. The 8 ×

8 × 8 nm3 system was initially equilibrated at a temperature

of 1500 K (above the Néel temperature) to thermalize the

spins. The system was then cooled to 0 K using a linear

cooling function over 106 Monte Carlo steps to find the

ground-state spin configuration. In agreement with previous

experimental [12,13] and ab initio results [14], we find that

ordered L12-IrMn3 has a triangular (T 1) spin structure where

the magnetic moments lie parallel to the [111] planes as shown

in Fig. 1. There are eight [111] planes and, by symmetry, IrMn

has eight magnetic ground states.

The energy barrier separating two ground states is the

minimum energy path for the spins to rotate between them

and defines the effective anisotropy and the thermal stability.

[100]

Θ

Φ

[001]

[010]

FIG. 1. Visualization of the simulated ground-state spin structure

of L12-IrMn3 obtained from zero-field cooling. The spin directions

show an average spin of each magnetic sublattice direction over the

whole sample. The corner atoms represent Ir and so have no net

magnetic moment. The simulated spin structure agrees with exper-

imental measurements [12,13] and first-principles simulations [14].

Crystallographic directions and reference directions for constraint

angles (θ , φ) for the sublattice magnetization are shown inset.

To calculate the energy barrier, we use the constrained Monte

Carlo algorithm to determine the free-energy surface and the

energy barrier to magnetic reversal [26]. Here, we constrain

the direction of magnetization of a single Mn sublattice while

allowing all other spins to relax to obtain the equilibrium spin

structure with a constraint applied. By scanning all angles

(θ, φ), the energy surface is obtained. For each value of θ

and φ, the (8 nm)3 system was initially heated to 1500 K

to thermalize the spins and then cooled to 0 K. Due to the

constraint, the system cannot reach a full equilibrium and so

the total internal torque (τ ) is nonzero and given by

τ = −M ×
∂F

∂M
, (3)

where F is the Helmholtz free energy which is a function of

M. Since F cannot be computed directly, we reconstruct it by

numerical integration of the torque

F = F0 +

∫ M ′

M

(M′ × T) · dM′ (4)

taken along any path between two points on the energy

surface. The computed energy surface at 0 K is shown in

Fig. 2(a) and has a complicated structure with four minima.

The energy minima lie at φ ∼ ±56◦, corresponding to the

expected easy directions of the constrained sublattice. To

calculate the energy barrier between two adjacent minima, we

compute the minimum energy path between them as shown in

Fig. 2(b). The calculated 0 K anisotropy is 1.78 × 106 J/m3,

which is an order of magnitude lower than that for rigid

rotation of spins calculated by Szunyogh et al. [14] and has

massively reduced the disparity between the experiment and

theory with this result being less than 10% off the experi-

mental measurement. The surprising reduction arises due to

a bobbing motion of the unconstrained spins which results

from the competition between the exchange and anisotropy

220405-2
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FIG. 2. (a) Simulated anisotropy energy surface for ordered L12-

IrMn3 at 0 K recovered from the integral of the total torque given by

Eq. (4). The marked path shows the minimum energy route between

the two energy minima. (b) Cross section of the anisotropy surface at

T = 0 K showing the minimum energy path to reversal. The energy

barrier �EB to move between the minima is shown.

energies leading to small deviations from the ground-state

spin structure when the AF spins are rotated. This is particu-

larly relevant to macroscopic approximations of AF materials

with Néel vectors where the sublattices are always assumed to

have a fixed local spin structure. The remaining difference in

the values of the effective magnetic anisotropy could be due

to different ordering or defects in the experimental samples,

but our results finally resolve the large disparity between the

theoretically calculated and experimentally measured mag-

netic anisotropy of IrMn3. We note that, although the energy

surface illustrated in Fig. 2(a) has an unusually complex

form, the minima themselves exhibit a fourfold symmetry,

characteristic of cubic rather than uniaxial anisotropy. The

question remains how to resolve the apparent contradiction

with the experimental data of Vallejo-Fernandez et al. [17] and

its requirement of a magnetization scaling exponent consistent

with uniaxial symmetry.

To resolve this discrepancy, we now investigate the temper-

ature dependence of the anisotropy constant to calculate the
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FIG. 3. Simulated temperature dependence of the energy barrier

and scaling of the effective anisotropy. (a) The cross-sectional energy

surface along the minimum energy path at different temperatures.

The total anisotropy energy increases due to spin fluctuations, but

the free-energy barrier decreases with temperature. (b) The scaling

of the effective energy barrier with sublattice magnetization length

nAF fitted using EB(nAF ) = E0nl
AF. l is calculated to be 3.92, ±0.14

suggesting a scaling similar to uniaxial anisotropy l = 3.

scaling exponent. The energy surfaces and minimum energy

path were calculated for temperatures between 0 K and 350 K

as shown in Fig. 3(a). The absolute free energy increases with

temperature due to spin fluctuations but the free-energy barrier

between neighboring ground-state minima, i.e., the magnetic

anisotropy, decreases. In Fig. 3(b), we plot the power-law

dependence of the effective energy barrier as a function

of the magnetization and find an unusual exponent of l =

3.92,±0.14. The exponent is closer to a uniaxial exponent

of l = 3, matching the experimental observations but deviates

from this ideal value due to the complex symmetry of the

anisotropy energy surface. We also note that the specific scal-

ing exponent is dependent on the strength of the anisotropy,

and for weaker anisotropy tends towardan exponent of l = 3,

which may be seen in similar noncollinear magnets such as

PtMn3. We conclude that the magnetic anisotropy of L12-

IrMn3 possesses a close to uniaxial temperature dependence in

direct contradiction with the usual Callen-Callen power laws

and cubic nature of the crystal [11].
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Finally, another problem in calculating the anisotropy

comes from the experimentally determined values of the

anisotropy constant; we consider the basis of the experiments

[17,18], where the attempt frequency f0 is a critical parameter

in calculating the effective anisotropy. Having determined

the precise energy barrier at an elevated temperature, we are

now able to compute the attempt frequency using atomistic

spin dynamics. We simulate the dynamic behavior using the

stochastic Landau-Lifshitz-Gilbert (sLLG) equation [24,27]

∂Si

∂t
= −

γ

1 + λ2
[Si × Beff + λSi × (Si × Beff )], (5)

where λ is the Gilbert damping constant and |γ | is the

gyromagnetic ratio. The effective field Beff is calculated

as the derivative of the spin Hamiltonian with respect to

the local spin moment plus a random thermal field (Beff =

−μS
−1∂H /∂Si + Bi

th), where Bi
th = Ŵ(t )

√

2λkBT
γμS�t

and Ŵ is

a 3D random Gaussian distribution. The sLLG equation is

integrated using a second-order predictor corrector Heun

scheme [24].

We determined the attempt frequency by calculating the

transition rate just below the blocking temperature of the

antiferromagnet. Due to the giant anisotropy of IrMn3 and

limited time accessible by simulations, we simulate a small

sample (1.5 nm)3 which has a blocking temperature of TB =

101.5K for a timescale of 0.1 ns. To precisely calculate the en-

ergy barrier for this system at 100 K, we use the same method

as above to calculate the energy surface. The time-dependent

dynamics of the magnetization for a single sublattice is shown

in Fig. 4.

As the temperature is just below the blocking tempera-

ture, the IrMn switches between stable states giving a time-

dependent form similar to telegraph noise. Over a total sim-

ulation time of 100 ns, the total number of transitions was

calculated and divided by the total simulation time. The

frequency of the transitions is dependent on the magnitude of

the damping constant, which is typically in the range 0.01 to 1

for materials with large spin-orbit coupling. The simulation

was repeated for damping constants within this range to

determine the variation in the attempt frequency, giving f0

values between 0.1 and 4 × 1012 Hz, shown in Fig. 4. The

simulated values are of the same order as the experimentally

determined value [19] and provide reasonable bounds for the

attempt frequency for noncollinear antiferromagnets.

IV. DISCUSSION

Applying constrained minimization and spin dynamics

simulations, we have determined the symmetry and effective

temperature-dependent anisotropy and relaxation dynamics of

IrMn3, one of the most technologically important noncollinear

AF materials. We find that the anisotropy energy surface is

unusually complex and find a scaling exponent of the effective

magnetic anisotropy that is fundamentally different from the

expectations of Callen-Callen theory despite the presence of

cubic crystal symmetry and localized uniaxial anisotropy at

atomic Mn sites. Metastable spin structures are shown to

lower the overall energy barrier to a tenth of that estimated

from simple geometrical approximations. Spin dynamics cal-

culations reveal an exceptionally high attempt frequency in

(a)

(b)

FIG. 4. Time-dependent magnetization of IrMn3 at 100 K simu-

lated using atomistic spin dynamics and dependence of the switching

frequency on the damping constant. (a) The magnetization of IrMn

was simulated for 100 ns for a damping constant of 0.1, where

only the first 1 ns is shown for clarity. The sublattice magnetiza-

tion flips superparamagnetically between different coherent ground-

state orientations. At this temperature, the sublattice ordering is

approximately 90% since the system is simulated far from the Néel

temperature. (b) Dependence of the attempt frequency for reasonable

values of the damping constant from 0.01–1 shows a range for the

attempt frequency between f0 = 0.1 − 4 THz

IrMn3 of between f0 = 0.1 and 4 × 1012 s−1; a value three

orders of magnitude larger than the typical value chosen for

ferromagnets of 109 s−1. Considering a specific value for the

damping constant of λ ≈ 0.1 gives a comparable value of

the attempt frequency with respect to the measured exper-

imental value [19] of 2.4 THz. We have therefore resolved

the outstanding discrepancy between theory and experiments

calculating a value for the anisotropy energy within 10% of

the experimental value.

From the structure of the zero Kelvin energy surface we

conclude that the magnetic anisotropy of L12- IrMn3 pos-

sesses a unique symmetry not seen for ferromagnets, yet con-

sistent with the expected relationship to the crystal symmetry

by rotation of the ground-state spin structure. We find that

the scaling of the anisotropy is similarly unusual with an

exponent of 3.92, which is closer to uniaxial magnetization

scaling of the anisotropy despite the near-cubic symmetry.

The resolution of this apparent contradiction (and the asso-

ciated experimental measurements) is as follows. Although

the anisotropy is shown to have cubiclike symmetry, the

scaling arises from the spin fluctuations which reflect the local

uniaxial environment of individual spins. This is an intriguing

and unusual separation of the fundamental origin of the MAE

and the temperature dependence of the anisotropy.
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Although we have focused on IrMn3 we expect that other

noncollinear antiferromagnets such as MnPt and MnFe will

exhibit similarly complex temperature-dependent magnetic

anisotropy. This is likely to be strongly affected by compo-

sition and ordering which will disrupt the local anisotropy

energy surface at different atomic sites. Our results have

important consequences for applications of antiferromagnets

in determining their thermal stability and dynamic properties

and provide an established methodology for determining the

effective magnetic anisotropy at elevated temperatures. This

is particularly important for emerging applications in neuro-

morphic computing and AF spintronics where the long-term

stability of the antiferromagnet is critical to device operation.

Further investigation may yield different classes of antiferro-

magnets with unusual temperature-dependent properties.
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