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Abstract—The ever growing air traffic demand and highly
connected air transportation networks put considerable pressure
for the sector to optimise air traffic management (ATM) related
performances and develop robust ATM systems. Recent efforts
made in accurate aircraft taxi time prediction have shown
significant advancement in generating more efficient taxi routes
and schedules, benefiting other key airside operations, such as
runway sequencing and gate assignment. However, little study
has been devoted to quantification of uncertainty associated
with taxiing aircraft. Routes and schedules generated based on
deterministic and accurate taxi time prediction for an aircraft
may not be resilient under uncertainties due to factors such
as varying weather conditions, operational scenarios and pilot
behaviours, impairing system-wide performance as taxi delays
can propagate throughout the network. Therefore, the primary
aim of this paper is to utilise multi-objective fuzzy rule-based
systems to better quantify such uncertainties based on historic
aircraft taxiing data. Preliminary results reveals that the pro-
posed approach can capture uncertainty in a more informative
way, and hence represents a promising tool to further develop
robust taxi planning to reduce delays due to uncertain taxi times.

I. INTRODUCTION

The continuous growth of air traffic demand on highly

connected air transportation networks makes efficient and

robust air traffic management (ATM) systems a priority in the

air transportation sector. Recently, the research on determin-

istic aircraft taxi time prediction [1]–[3] has shown promis-

ing results which can be utilised for more efficient airport

ground movement planning and related operations such as

runway sequencing and gate assignment. However, as various

factors affect ground movement such as weather conditions,

operational scenarios, airport layouts, runway crossing and

pilot behaviours, routes and schedules generated based on

deterministic and accurate taxi time prediction may not longer

be robust. The situation is further compounded in the context

of the prevailing hub-and-spoke network structure due to

deregulated airline market. In this case, local airport ATM-

related inefficiency may have a system-wide impact because

taxiing delays may be transmitted throughout the network

[4], causing delays and disruptions at both downstream and

upstream airports. As a result, the need for quantification of

uncertainty associated with taxiing aircraft is apparent.

In our previous works, we have shown that an adaptive

Mamdani Fuzzy Rule-based System (FRBS) [1] can be used

for accurate aircraft taxi time prediction while preserving

certain transparency in the rule base. A detailed comparison [2]

between TSK and Mamdani FRBSs with more conventional

statistic regression approaches [3], [5]–[9] has shown the

superiority of using FRBSs for more accurate predictions.

Some of the key aspects of the adaptive Mamdani FRBS are

the following: (1) The FRBS is well suited for modelling

complex non-linear systems due to several rules with nonlinear

membership functions describing the investigated system at the

same time. (2) Different regions of the explanatory variable

space can be described by different rules. (3) Human expertise

can be integrated into the FRBS in a form of rules elicited from

airport practitioners. (4) The meaning of rules in the FRBS can

be interpreted via linguistic terms involved in rules. (5) The

adaptive Mamdani FRBS uses a membership function in the

consequent part which expresses certainty of the prediction

and thus provides a means for uncertainty quantification. It

should be noted that in the previous research [1], [2] the only

objective taken into account is to improve prediction accuracy.

On the one hand, this may sacrifice the transparency of the

rule base, causing problems in convincing airport practitioners

to accept the rule base as they will not be able to validate the

rule base using their domain knowledge. On the other hand,

this may lead to an overall output membership function with

a high certainty over a wide support, merely delivering any

useful information for uncertainty quantification.

In light of this, in this paper, we endeavour to utilise a multi-

objective FRBS based approach to simultaneously improve

prediction accuracy and quantify uncertainty. The philosophy

behind the approach is that uncertainty can be better captured

if certain prediction accuracy is achieved. This philosophy is

implemented in the framework of multi-objective optimisation

so that the parameters of FRBS are tuned to achieve high

prediction accuracy, while at the same time, only moderate

fuzziness is allowed for the input space. The implication of the

second objective is that there should be a dominant rule with a

firing strength close to unity that accounts for the final output,

which is achieved in this paper through FRBS structure simpli-

fication and a specially devised second objective function. The



aim is to preserve input membership functions from too much

overlap and make the overall output membership function

more informative, suitable for uncertainty interpretation.

The remainder of the paper discusses the airport ground

movement problem and the proposed multi-objective FRBS

based approach in Section II. Section III-A describes the

utilised datasets and experimental setup; Preliminary results

are included in Section III-B and conclusions drawn in Section

IV.

II. PROBLEM DESCRIPTION AND METHODOLOGY

A. Problem description

A FRBS for taxi time prediction takes n input variables (ex-

planatory variables) for accurate prediction of taxi times. The

FRBS uses 15 explanatory variables, which were identified

in [3] and are as follows: airport operating mode (single/two

runways in use), type of movement (arrival/departure), total

taxi distance and its logarithmic transformation, distance on

straight segments, total turning angle along the route and its

logarithmic transformation, whether a push-back manoeuvre

was performed and the N and Q number of moving aircraft.

N represents the number of other aircraft taxiing when the

aircraft under consideration starts to taxi. Q represents the

number of other aircraft which stop their taxiing during the

ground movement of the aircraft under consideration. N and

Q are further broken down according to the type of movement

(arrival/departure), resulting in 8 variables in total.

B. Adaptive Mamdani FRBS for accurate prediction

For prediction of taxi times, an adaptive Mamdani FRBS is

used in this work. The Mamdani-type FRBS for the taxi time

prediction is defined as a set of fuzzy if-then rules Ri:

If x1 is H1

i and x2 is H2

i , . . . , and xj is H
j
i , . . . ,

. . . and xn is Hn
i Then yi = Zi,

with values of explanatory variables xj (j = 1, 2, . . . , n) as

inputs and yi as the output of the i-th rule. Each input has

a linguistic value (fuzzy set) H
j
i associated with it. Zi is the

consequent of the i-th rule, and is defined as the fuzzy set Bi.

Fuzzy set H
j
i is defined in (1) as a Gaussian membership

function µ
H

j

i

(xj) for all of the explanatory variables. Fuzzy

set Bi is a bell-shaped membership function µBi
(y) for the

consequents, as defined in (2):

µ
H

j

i

(xj) = exp[−
1

2
· (

xj − c
j
i

σ
j
i

)2], (1)

µBi
(y) =

1

1 + (
y−c

y

i

σ
y

i

)2
. (2)

where c
j
i and σ

j
i are the centre and the spread of the i-

th membership function of the input. Similarly, c
y
i and σ

y
i

denote the centre and spread of i-th membership function of

the output.

With the link between fuzzy set H
j
i and membership

function µ
H

j

i

(xj) and similarly between Bi and µBi
(y), each

rule can be expressed as linguistic terms, e.g.

If taxi distance is long, and aircraft is departing and

. . . , Then taxi time is long.

The defuzzified output ycrisp of the Mamdani FRBS with

r rules for input X can be calculated as follows:

ycrisp =

∑r

i=1
c
y
i · µi(X) ·

∫

y
µBi

(y) dy
∑r

i=1
µi(X) ·

∫

y
µBi

(y) dy
, (3)

where µi(X) represents the degree of certainty for a data

sample associated with the i-th rule and is defined in (4).

µi(X) = µH1

i
(x1) ·µH2

i
(x2) · . . . ·µH

j

i

(xj) · . . . ·µHn
i
(xn) (4)

The overall implied fuzzy set B̂ which represents the output

membership function is defined in (5):

µ
B̂
(y) = µ

B̂1

(y)⊕ µ
B̂2

(y)⊕ . . .⊕ µ
B̂i
(y), i = 1, 2, . . . , r,

(5)

where the probabilistic OR operator is used for ⊕ operation.

This way, by employing the adaptive Mamdani FRBS, we

can obtain not only accurate predictions for the taxi time,

but also the membership function which conveys uncertainty

information.

The parameter vector θ = (cji , σ
j
i , c

y
i , σ

y
i ) defines the

Mamdani FRBS and determines its prediction capability of

the output ycrisp. The initial values of θ are derived in this

study by applying a clustering algorithm [10]. Furthermore, θ

is fine-tuned with a back-error propagation (BEP) algorithm

[11] in order to improve the accuracy of prediction. For details

of the BEP algorithm, readers are referred to [11].

C. Multi-objective Mamdani FRBS for uncertainty quantifica-

tion

The fine-tuned initial values of θ can be further tuned with

respect to two conflicting objectives, i.e. FRBS prediction

accuracy and interpretability. The first objective f1 focuses

on prediction accuracy and is defined in (6) as a root mean

square error of the predicted values ycrispm and real values

yrealm for m = 1, 2, . . . ,M data samples. There are different

measures that can be used to express interpretability of FRBS.

An overview of measures can be found in [12]. In this work,

the number of fired rules is used and expressed as the second

objective f2:

min f1 =

√

∑M

m=1
(ycrispm − yrealm )2

M
, (6)

min f2 = M −

M
∑

m=1

[max(µi(Xm))−max2(µi(Xm))], (7)

where Xm is the m-th data sample and max(·), max2(·)
are functions which return the largest value and the second



largest value respectively. If µi(Xm), which is the degree

of certainty of the m-th data sample associated with the i-

th rule, is high, then the i-th rule is highly relevant. Ideally,

µi(Xm) should be high for only one rule, while for other

rules it should be low. In such case, data sample Xm is

predominantly described by only one rule, and FRBS is

interpretable (informative) and may quantify uncertainty more

precisely. The term [max(µi(Xm))−max2(µi(Xm))] in (7)

maximises the difference between the highest µi(Xm) from

i = 1, 2, . . . , r rules and the second highest µi(Xm) and

promotes the maximum difference between the degrees of

certainty. This should be true for all m = 1, 2, . . . ,M data

samples and is calculated as a sum. Finally, the sum is

subtracted from M to convert the objective into a minimisation

one.

For the search, a Population Adaptive Immune Algorithm

(PAIA) [13] and an immune inspired multi-objective fuzzy

modelling (IMOFM) framework [11] are employed. IMOFM

is a evolutionary search algorithm with specialised operators

for FRBS structure simplification to remove the redundancy

both in the initial rules and fuzzy sets which are the results of

Section II-B. The following simplification steps are performed:

1) Removing Unimportant Rules,

2) Merging Similar Rules,

3) Removing Universal Fuzzy Sets

4) Merging Similar Fuzzy Sets.

For detailed description of the steps, readers are referred to

[11].

As rule base parameters θ and its structure are tuned at

the same time, a link between the two is needed for effective

search. Without this link between the parameter and structure

representation, the search process is unaware of vital structural

information which is constantly modified during the evolution

and leads to inefficient search performance. Therefore, a link

consisting of two matrices FISmap and RULE is created.

For every parameter in θ, FISmap stores the corresponding

identification number of each membership function. RULE

indicates which rules are active in the rule base. After simpli-

fication steps, FISmap and RULE are updated in order to

reflect the current status of the rule base.

The function of FISmap and RULE is illustrated in Fig. 1.

As an example, suppose, that fuzzy sets A1

1
and A3

1
are similar

and are combined into a single set Ă1

1
by the merging similar

membership functions step. If there is no link between the

FRBS structure and its parameter coding representation, during

evolution, Ă1

1
in R3 may be changed by mutation into different

fuzzy set, while Ă1

1
in R1 stays the same, creating two different

rules R1 and R3. With the FISmap link, both mutation points

are mutated together, preserving the FRBS structure. Similarly,

information about active rules in RULE, prevents inactive

rules from taking part in crossover and mutation.

III. COMPUTATIONAL RESULTS

A. Data instance and experimental setup

The FRBS framework and optimisation algorithm described

in Section II were applied on a set of ground movements from

Fig. 1. Illustration of FISmap and RULE functionality during the
evolution.

Manchester Airport, UK, which is the third busiest airport in

the UK. The taxiway layout is shown in Fig. 2. The airport has

two runways and is operated in two operating modes: during

busy period, one runway is used for arrivals and the other one

for departures, while in less busy period only one runway is

used for both arrivals and departures.

Fig. 2. A graph representation of the airport surface for Manchester Airport.

The ground movement data used for training and optimisa-

tion of FRBS was gathered from freely-available data on the

website FlightRadar24.com (FR24), with specialised tools de-

scribed in [14]. The dataset contains 1413 ground movements

in total which were recorded during 5–12 November 2013. The

data was randomly divided into 2/3 training and 1/3 checking

data sets. Only training data was used for obtaining the initial

FRBS and the refined FRBS via multi-objective optimisation.

IMOFM was run for 600 generations based on the initial

experiments. Other parameters specific to PAIA are the same

as in [11].



TABLE I
TRADE-OFF FRBSS.

Training

Rules f1 f2 3 min 5 min

FRBS A 10 1.97 574.04 88% 95%
FRBS B 5 3.65 0.17 67% 86%
FRBS C 5 2.31 136.81 86% 96%

Checking

FRBS A 10 2.63 259.48 82% 95%
FRBS B 5 3.92 0.35 67% 86%
FRBS C 5 2.68 69.98 82% 95%

B. Results

As described in Section II, firstly, an initial FRBS was

obtained using the clustering and BEP algorithms. The pre-

dicted taxi times by the initial FRBS was checked with the

checking data with f1 = 2.63, f2 = 266.26. For ground

movements, another measures of accuracy of taxi times within

3 and 5 minutes are also used [5]. For the initial FRBS, 81%

of movements were accurate to within 3 mins and 94% were

accurate to within 5 mins.
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Fig. 3. Pareto fronts .

Fig. 3a shows the Pareto front obtained by IMOFM. As can

be seen, there is an apparent trade-off between f1 and f2, i.e.

accuracy and interpretability. This is also supported in Fig.

3b, where a trade-off between accuracy (f1) and the number

of rules (associated with interpretability) can be observed.

Table I summarises the objective function values and 3 and

5 min. accuracy for the selected FRBSs (as indicated in Fig.

3) obtained by IMOFM.

TABLE II
AVERAGE INDICATOR VALUES FOR 15 RUNS OF ALGORITHMS.

IH IGD min f2
IMOFM 1333.5 0.3487 0.2329
IMOFM without RULE 1269.0 0.3516 1.7346

IMOFM without FISmap 1315.9 0.4017 1.0437

For the purpose of comparing Pareto fronts of different

algorithms, performance indicators for multi-objective opti-

misation are used, namely: hypervolume IH , generational

distance IGD and the minimum value of f2. As the initial

solution is generated subject to minimisation of f1, the real

benefit of the proposed IMOFM is in area of objective space

with small f2 (as this is where the initial FRBS structure

has been mostly perturbed). Therefore, the minimum value

of f2 can be employed to reflect the performance of IMOFM.

For IH , larger values are preferred, whereas smaller values of

IGD and f2 are better. Table II summarises average indicator

values for 15 runs of IMOFM with and without the link

between the FRBS parameters and structure, i.e. FISmap

and RULE. With the link, the algorithm obtained better

results for all performance indicators. Statistically significant

results (compared to IMOFM) calculated by t-test at the 5%

significance level are in boldface.

Fig. 4 shows membership functions µB(y) for the conse-

quent, i.e. taxi time, the output membership function µ
B̂

and

the defuzzified output ycrisp for a single data sample using

FRBSs A, B and C. As can be seen, interpretability of the

FRBSs has been improved for FRBSs B and C, compared

to A. FRBSs B and C have less rules and overlap among

membership functions. Furthermore, the output membership

function µ
B̂

for FRBS A provides little information about

uncertainty, as for a large interval of taxi time, the certainty is

relatively high. In contrast, for FRBS B and C, a distinct peak

in µ
B̂

can be seen. This is due to inclusion of f2 in multi-

objective optimisation, which results in only one rule being

fired predominantly. Also, it can be noted that FRBS B, the

defuzzified output is different from those of FRBSs A and C,

as accuracy is low for FRBS B.

IV. CONCLUSION

To the best of our knowledge, this paper represents the first

attempt to utilise a multi-objective FRBS based approach for

accurate prediction of aircraft taxi times and their associated

uncertainty. The results show that by simultaneously simplify-

ing the structure of FRBSs and tuning associated membership

function parameters, we kill two birds with one stone. Firstly,

prediction accuracy of all simplified FRBSs is maintained.

This is to ensure that all FRBSs are credible models. Secondly,

as the structure of the FRBS is simplified, gradually, only

one predominate rule in the simplified FRBS accounts for

one taxiing scenario. The resulting overall output membership

function will have high certainty at the defuzzified value

(i.e. the predicted taxi time) and a support which gives good

quantification of uncertainty.



(a) (b) (c)

(d) (e) (f)

Fig. 4. Membership functions µB(y) for consequent for FRBS A (a), FRBS B (b), FRBS C (c), and the output membership function µ
B̂

for a single data

sample for FRBS A (d), FRBS B (e), FRBS C (f). The vertical line represents the defuzzified output ycrisp.

Building upon this work, we believe, that the proposed ap-

proach could be further utilised in developing robust taxi plans

by proactively incorporate such uncertainty in the routing and

scheduling module. As multiple trade-off FRBSs with varied

capability in prediction accuracy and uncertainty interpretation

are obtained as the result of IMOFM, further investigation

are needed to decide which FRBS should be included in the

routing and scheduling module.
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