
This is a repository copy of Horizontal Gene Transfer for Recombining Graphs.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/155474/

Version: Published Version

Article:

Plump, Detlef orcid.org/0000-0002-1148-822X, Atkinson, Timothy and Stepney, Susan
orcid.org/0000-0003-3146-5401 (2020) Horizontal Gene Transfer for Recombining Graphs.
Genetic programming and evolvable machines. 321–347. ISSN 1389-2576

https://doi.org/10.1007/s10710-020-09378-1

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Vol.:(0123456789)

Genetic Programming and Evolvable Machines

https://doi.org/10.1007/s10710-020-09378-1

1 3

Horizontal gene transfer for recombining graphs

Timothy Atkinson1 · Detlef Plump1 · Susan Stepney1

Received: 14 October 2019 / Revised: 20 December 2019

© The Author(s) 2020

Abstract

We introduce a form of neutral horizontal gene transfer (HGT) to evolving graphs

by graph programming (EGGP). We introduce the � × � evolutionary algorithm

(EA), where � parents each produce � children who compete only with their par-

ents. HGT events then copy the entire active component of one surviving parent

into the inactive component of another parent, exchanging genetic information with-

out reproduction. Experimental results from symbolic regression problems show

that the introduction of the � × � EA and HGT events improve the performance of

EGGP. Comparisons with genetic programming and Cartesian genetic programming

strongly favour our proposed approach. We also investigate the effect of using HGT

events in neuroevolution tasks. We again find that the introduction of HGT improves

the performance of EGGP, demonstrating that HGT is an effective cross-domain

mechanism for recombining graphs.

Keywords Graph-based genetic programming · Neuroevolution · Horizontal gene

transfer

1 Introduction

Recombination of genetic material is commonly viewed as a key component of a

successful genetic programming (GP) system. Koza [21] recommends that most off-

spring be produced by crossover, rather than by asexual reproduction and mutation.

In contrast, Cartesian genetic programming (CGP) [24] traditionally uses the elitist

1 + � evolutionary strategy, where all offspring are produced by asexual reproduction

 * Timothy Atkinson

 tja511@york.ac.uk

 Detlef Plump

 detlef.plump@york.ac.uk

 Susan Stepney

 susan.stepney@york.ac.uk

1 Department of Computer Science, University of York, York, UK

http://orcid.org/0000-0002-5036-3358
http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-020-09378-1&domain=pdf

 Genetic Programming and Evolvable Machines

1 3

and mutation; variation and the ability to leave local optima are a byproduct of neu-

tral drift in the neutral parts of the genome [25].

Evolving graphs by graph programming (EGGP) [1] is a recently introduced

graph-based GP approach that operates directly on graph-structured individuals,

rather through some ‘cartesian’ grid encoding as used in CGP and parallel distrib-

uted genetic programming (PDGP) [29]. Each EGGP individual (graph) has an

‘active’ component that contributes directly to the fitness, and a ‘neutral’ component

that can drift without affecting the fitness. Like CGP, existing work on EGGP has

used only asexual reproduction and mutation. Here we extend EGGP to incorporate

horizontal gene transfer (HGT) ‘events’, introduced in [3], where the genetic infor-

mation of one parent is shared with another. Our system operates using the elitist

‘ � × � ’ EA, such that in each generation there are � parents, which each produce

� children, which compete only with their own parent. This is effectively � paral-

lel 1 + � EAs, with genetic information shared horizontally between elite individu-

als. To avoid disrupting elitism (by modifying the active components of individuals)

or sharing junk (by copying neutral components of individuals), we copy only the

active components of one parent onto the neutral component of another; it may later

be activated through mutation. The work that we present is an extension to the con-

cepts and experiments presented in [3].

EGGP’s individuals, represented as (non-encoded) graphs, are directly modi-

fied through the probabilistic graph programming language P-GP 2 [2]. This direct

approach eases the conception and implementation of graph-based operations. For

example, using edge mutations that consider all possibilities that preserve acyclicty,

rather than only those possibilities that preserve the ordering of some Cartesian grid,

has been shown to offer faster convergence for standard digital circuit benchmark

problems [1]. Additionally, it is possible to incorporate domain specific knowledge,

such as Semantic Neutral Drift [4], where logical equivalence laws are applied

directly to individuals to create neutral drift in their active components.

Here we replace neutral components with new material directly. This is inspired

by Horizontal Gene Transfer (or Lateral Gene Transfer) found in nature. HGT is

the movement of genetic material between individuals without mating, and is dis-

tinct from normal ‘vertical’ movement from parents to offspring [18]. HGT plays

a key role in the spread of anti-microbial resistance in bacteria [13] and evidence

has been found of plant-plant HGT [43] and plant-animal HGT [30]. The mecha-

nism of HGT in transferring a segment of DNA into another individual’s DNA may

have a clear analogy when considering bit-string based Genetic Algorithms such as

the Microbial GA [14], the equivalent analogy is not as obvious when dealing with

graphs. Hence we use the term metaphorically: when we refer to HGT, we mean the

movement of genetic material between individuals without mating. This is the new

mechanism we present in this work.

Our approach is not the first work to recombine and share genetic information

in graph-like programs. PDGP uses subgraph active-active node (SAAN) crosso-

ver [29] to share material within a population of Cartesian grid-based programs. A

number of crossover operators have been used in CGP, including uniform crosso-

ver [23], arithmetic crossover on a vector representation [5], and subgraph crossover

[17]. Empirical comparison [15] shows that these crossover operators do not always

1 3

Genetic Programming and Evolvable Machines

aid performance, and that CGP with mutation only can sometimes be the best per-

forming approach. Current advice [24] is that the ‘standard’ CGP approach remains

to use mutation only. Our recombination features no modification of active com-

ponents and does not produce children; nevertheless HGT events followed by edge

mutations may perform operations very similar to PDGP SAAN crossover [29] and

CGP subgraph crossover [17]. However, our precise mechanism, where active com-

ponents are pasted into neutral components without any limitations to accessibility,

does not obviously translate to PDGP and CGP, which are limited to Cartesian grids.

Further, existing graph-based GP crossover techniques focus on the direct recombi-

nation of active sub-graphs or the recombination of the entire graph representation

whereas our proposed approach offers indirect recombination of genetic material via

the inactive components of the graph representation.

The rest of this work is organised as follows. In Sect. 2 we introduce EGGP with

a new feature: depth control. In Sect. 3 we describe our Horizontal Gene Trans-

fer approach, and the � × � EA. In Sect. 4 we describe experimental settings for

comparing our HGT approach to the existing EGGP approach, and to CGP and GP

on symbolic regression problems. In Sect. 5 we present the results of our symbolic

regression experiments. In Sect. 6 we describe experimental settings for the study of

the HGT approach on neuroevolution problems. In Sect. 7 we present the results of

our neuroevolution experiments. Finally, we conclude in Sect. 8 and describe direc-

tions for future work.

2 Evolving graphs by graph programming (EGGP)

EGGP is a graph-based GP approach where individuals are represented directly as

graphs, rather than through some encoding, and are manipulated through graph pro-

gramming [2]. In this Section, we describe the EGGP approach including details of

its representation, initialisation, mutation operators and a new extension, depth con-

trol. To distinguish between the original EGGP [1] and EGGP with depth control,

we call the former EGGP and the latter EGGP
DC

.

2.1 Representation

In EGGP an individual is a graph. The graph contains indexed input and output

nodes, each corresponding to a particular input or output of a given problem. All

other nodes are function nodes associated with functions from a chosen function set

F. If a node v is associated with function f ∈ F and the arity of f is a
(

f
)

 , then v has

exactly a
(

f
)

 outgoing edges, which indicate the inputs that that function node takes.

These outgoing edges are ordered; each edge is labelled with an integer to indicate

its position in the order. Ordering removes ambiguity when dealing with non-com-

mutative functions such as division and subtraction. Output nodes have exactly one

outgoing edge, indicating that the function computed for that output is given by the

behaviour of the node targeted by this single outgoing edge. Output nodes must have

no incoming edges, as this would induce some undefined recurrent behaviour.

 Genetic Programming and Evolvable Machines

1 3

Here, the graph is restricted to be acyclic; this ensures that the evolved function

is non-recursive. (This constraint could be relaxed to evolve recurrent programs, as

in recurrent CGP [36]). An individual is therefore a DAG, with all output nodes as

roots, and all input nodes as leaves. Input nodes can be both roots and leaves and

other function nodes can also be roots; e.g. if they are targeted by no function nodes

or outputs. Wherever there is no directed path from an output node to some node v, v

and its outgoing edges are said to be ‘neutral’, as it does not contribute to the behav-

iour of the individual. EGGP can undergo ‘neutral drift’ on its ‘neutral’ components

in a similar manner to CGP [25].

An example EGGP individual is given in Fig. 1. There is a single output node, o
1
 ,

and two input nodes, i
1
 and i

2
 . neutral nodes and their outgoing edges are coloured

grey and dashed respectively; this is a visual aid only. Edge ordering starts at 0; the

two outgoing edges of the active SUB node indicate that this node computes the

function i
1
− i

2
 , rather than i

2
− i

1
.

2.2 Initialisation

To generate an individual in EGGP, we begin by creating a graph with i input nodes

corresponding to the i inputs associated with a given problem. The parameter n

describes the fixed number of function nodes in each individual solution. To gener-

ate these n nodes, we repeatedly pick some function f from the function set F and

create a new node v
x
 associated with that function. We then insert edges connecting

v
x
 to any existing node (chosen uniformly at random) until v

x
 ’s outdegree matches

the function’s arity a
(

f
)

 . We repeat this process until there are n function nodes.

When using depth control, the inserted edges may only target nodes that would not

lead to the individual exceeding the specified maximum depth. Finally, we insert o

output nodes corresponding to the o outputs associated with a given problem; each

is then connected at random to any other (non output) node in the individual. This

approach to initialisation guarantees the generation of an acyclic individual, and in

the case of depth control, that generated individuals do not exceed the maximum

depth.

Fig. 1 An example EGGP

individual. The single out-

put computes the function

o
1
= e

(i
1
−i

2
) ×

((

i
1
− i

2

)

+ e
(i

1
−i

2
)
)

1 3

Genetic Programming and Evolvable Machines

2.3 Mutation

2.3.1 Node mutation

Node mutation is performed by picking uniformly at random a function node to

mutate, and changing that node’s associated function to some other function cho-

sen at random. Then two fix-up operations are performed.

Firstly, the outdegree (number of outgoing edges) of the mutated node is cor-

rected to match the new function’s arity. If the node’s outdegree is greater than

the new function’s arity, edges are chosen uniformly at random and deleted until

the outdegree and arity match. If the node’s outdegree is less than the new func-

tion’s arity, edges are inserted targeting valid nodes chosen uniformly at ran-

dom. A valid node is a node that preserves acyclicity and maximum depth (see

Sect. 2.4). For the original form of EGGP, preserving a maximum depth is not a

consideration when choosing a node to target.

Secondly, we reorder the node’s outgoing edges. We remove all ordering infor-

mation from the node’s outgoing edges, and assign a new valid random ordering.

This process avoids bias in non-commutative functions; for example a node com-

puting x + y can be mutated to compute x − y or y − x.

2.3.2 Edge mutation

Edge mutation is performed by picking uniformly at random an edge to mutate.

We then identify all valid targets for that edge (those nodes which preserve acy-

clicity and maximum depth, excluding the edge’s existing target), and redirect

the edge to target one of these nodes chosen uniformly at random. In the original

form of EGGP, preserving a maximum depth is not a consideration when choos-

ing a node to target.

2.3.3 Mutation rate

The mutation rate of an individual is m
r
 . Certain mutations may prevent other

mutations. For example, mutating one edge to target some node may then prevent

other mutations of that node’s outdoing edges with respect to preserving acyclic-

ity. Therefore, iterating through the individual and considering each node or edge

in turn for mutation may introduce bias. So our point mutations first choose a ran-

dom point to mutate, and then mutate it.

We calculate the number of node or edge mutations to apply based on bino-

mial distributions. For an individual with vf function nodes and e edges, with

mutation rate m
r
 , we sample a number of node mutations mv ∈ B

(

vf , mr

)

 and edge

mutations m
e
∈ B

(

e, m
r

)

 , where B
(

n, p
)

 indicates a binomial distribution with n

trials and p probability of success. We then place all m
v
+ m

e
 mutations in a list,

and shuffle the list, applying mutations in a random order. While this approach

 Genetic Programming and Evolvable Machines

1 3

is likely to have some biases, it guarantees reproducible probabilistic behaviour.

The overall expected number of mutations is mr

(

vf + e
)

.

2.4 Depth control

Here we introduce the notion of depth control to EGGP. This prevents mutations

that would cause a child to exceed a given maximum depth D. We annotate indi-

viduals with information regarding the depth associated with each node. The ‘depth

up’ u (or ‘depth down’ d) of a node is the length of the longest path from that node

to a root (or leaf) node. We label each node v with the values
(

u, d
)

 . An exception is

made for output nodes, which have u = −1 as their outgoing edges are not consid-

ered part of the ‘depth’ of the individual.

Once an individual has been annotated, we can identify pairs of nodes that, if an

edge were inserted between them, would cause the individual to exceed the maxi-

mum depth D. If we wish to insert an outgoing edge for node v
1
 , then we eliminate

any other node v
2
 as a viable candidate on the following criteria: If the depth up

value of v
1
 is u

1
 , and the depth down value of v

2
 is d

2
 , then it is impossible to insert

an edge and preserve the maximum depth D if u
1
+ d

2
+ 1 > d : we have a path of

length u
1
 from v

1
 to a root node, and a path of length d

2
 from v

2
 to a leaf node,

hence the overall path from a root to a leaf would be u
1
+ d

2
+ 1 , which exceeds D.

If u
1
+ d

2
+ 1 ≤ d , inserting an edge from v

1
 to v

2
 would preserve D.

We use this strategy in both edge mutation and node mutation. In edge mutation,

we use annotations to identify invalid targets for the mutating edge. In node muta-

tion, we use annotations to identify invalid targets for new edges to be inserted for

the mutating node. We give an example of depth preserving edge mutation in Fig. 2;

an edge of an individual is mutated, but all possible targets that would break acyclic-

ity or a maximum depth D = 4 are ignored.

3 Horizontal gene transfer in EGGP

In this Section we describe the introduction of Horizontal Gene Transfer events

(HGT) to EGGP . HGT events involve the transfer of active material from a donor to

the neutral region of a recipient (Sect. 3.1). To accommodate the need for multiple

surviving individuals, we introduce the � × � EA (Sect. 3.2) as an alternative to the

1 + � algorithm previously used in EGGP.

3.1 Active‑neutral transfer

HGT involves the movement of genetic material between individuals of a popu-

lation without reproduction. Given a population P, we choose a donor and recip-

ient individual. We copy the entire active component of the donor (excluding

output nodes); we remove sufficient neutral material at random from the recipi-

ent to fit this active component within the fixed representation size. The cop-

ied active component is inserted into the recipient’s neutral component, where it

1 3

Genetic Programming and Evolvable Machines

Fig. 2 An example of edge mutation preserving acyclicity and depth. Some annotations from step (1) are

omitted for visual clarity

 Genetic Programming and Evolvable Machines

1 3

remains neutral until it is activated by some mutation. This type of HGT, which

we refer to as ‘Active-Neutral Transfer’, is guaranteed to preserve the fitness of

both the donor and recipient, preventing it from disrupting the elitism of the EA.

The intention is to promote the production of higher quality offspring by the

recipient, by activating its received genetic material through mutation. This pro-

cess is mutually beneficial; the donor has a mechanism for propagating its genes,

while the recipient stands to improve the survivability of its own offspring.

Once material has been transferred, there are a number of possible conse-

quences: the neutral donor material can drift, or become active, through muta-

tion. In this way it is possible for processes such as SAAN crossover in PDGP

[29] or block based crossover in CGP [17] to arise out of Active-Neutral transfer

followed by mutation.

Our strategy for choosing a donor and recipient is as follows. A recipient

is first chosen based on a uniform distribution over the population P, exclud-

ing the best performing member. We refer to this ‘best performing member’ as

the ‘leader’, which we exclude from receiving genetic material so that it can

undergo neutral drift without any disruption. Throughout the evolutionary pro-

cess, it is likely that the leader will change several times, meaning that the entire

population is likely to receive genetic material at some point. Once a recipient is

chosen, a donor is selected from the population excluding the recipient based on

a roulette wheel. The donor may be the leader, allowing the leader to propagate

its own genes to other members of the population. The use of a roulette wheel

means that any individual can donate material, but the better performing indi-

viduals are more likely to do so.

We give an example of Active-Neutral transfer in Fig. 3. The entire active

component of a gene donor is copied into the neutral material of the recipient

while maintaining the overall representation size.

3.2 The � × � EA

We cannot use Active-Neutral transfer with the 1 + � algorithm except for

sharing genetic material between the offspring; this is likely to be ineffective

as direct offspring have much material in common. We therefore introduce the

� × � EA, a special case of the � + � algorithm. In each generation of the � × �

EA, there are � parents. Each of the � parents generates � offspring, and compete

for survival only with their own offspring. Without HGT, this effectively creates

multiple parallel 1 + � algorithms.

In each generation we perform a single Active-Neutral transfer operation with

probability pHGT . We then follow the procedure set out in Sect. 3.1 by select-

ing a gene recipient from the � parents (ignoring the best performing parent,

the ‘leader’) and selecting a donor from the remaining � − 1 parents by roulette

selection. We note that the � × � EA clearly resembles search algorithms intro-

duced in other work, such as CLONALG [7] and aiNet [6], albeit without the

additional immune-system inspired concepts.

1 3

Genetic Programming and Evolvable Machines

Fig. 3 An example of Active-Neutral transfer. The active material of a donor is copied into the neutral

material of a recipient. Neither individuals’ semantics is changed by this process. Grey nodes and dashed

edges indicate the neutral material of individuals; they do not indicate any actual information stored on

the individual. The donor’s function nodes are shown as squares for clarity

 Genetic Programming and Evolvable Machines

1 3

4 Symbolic regression experiments

Here we detail our experimental settings for benchmarking our HGT approach,

EGGP
HGT

 , on various symbolic regression problems. We compare EGGP
HGT

 to:

standard EGGP; the depth control variant EGGP
DC

 ; the depth control variant

using the � × � algorithm (and no HGT), EGGP�×� . These experiments allow us

to test the following null hypotheses:

– H
1
 : there are no statistical differences when using the depth control variant

EGGP
DC

 in comparison to standard EGGP.

– H
2
 : there are no statistical differences when using the � × � algorithm for

EGGP in comparison to the 1 + � algorithm, with both approaches using depth

control.

– H
3
 : there are no statistical differences when using the HGT approach for

EGGP in comparison to using the � × � algorithm without HGT, with both

approaches using depth control.

– H
4
 : there are no statistical differences when using the HGT approach for

EGGP in comparison to standard EGGP.

We test these null hypotheses for each benchmark problem. From these tests,

we build an image of how the various features contribute to the performance of

EGGP
HGT

 , and clarify whether the added HGT feature is truly improving perfor-

mance by isolating it from the other new features.

We also compare our HGT approach to two other approaches from the literature.

We compare to tree-based Genetic Programming (GP) [21] for a general measure of

how our proposed approach compares to standard GP techniques. We also compare

to CGP [24] as this is the most closely related graph-based GP technique to our

work. These experiments allow us to test the following null hypotheses:

– H
5
 : there are no statistical differences when using EGGP

HGT
 in comparison to

GP.

– H
6
 : there are no statistical differences when using EGGP

HGT
 in comparison to

CGP.

Again, we test each of these null hypotheses for each benchmark problem. H
5
 and

H
6
 allow us to measure the progress made by introducing HGT to EGGP in com-

parison to other approaches in literature.

4.1 Benchmark problems

We benchmark the approaches on 21 synthetic symbolic regression problems

[27]. That work justifies the exclusion of Grammatical Evolution (GE) [28], as it

finds that GP generally outperforms GE on these problems. For all 21 problems,

see [27]; one example is:

1 3

Genetic Programming and Evolvable Machines

These benchmarks were introduced in response to various criticisms of the GP com-

munity for ‘arbitrarily’ chosen benchmark problems, and the reasoning for their

design is set out in detail in [27]. We view these problems as good measures of

performance of a GP system. Of the 21 problems, 9 take 2 inputs, 1 takes 3 inputs, 8

take 5 inputs, 1 takes 6 inputs and 3 take 10 inputs. Each function’s input variables

are randomly sampled from the interval [−5, 5].

We use 1000 training samples, 10,000 validation samples and 40, 000 test sam-

ples. The training data is used to guide the different approaches, while every solu-

tion explored is evaluated on the validation data. The globally best performing indi-

vidual (with respect to the validation data) is returned at the end of a run, and then

evaluated on the test data to produce a test performance measure.

The function set for these problems is that of [27]:

Each approach has access to the 18 constants −0.9, −0.8, ..., −0.1, 0.1, 0.2, ..., 0.9.

In GP these are constants, whereas in the EGGP variants and CGP, they are further

input nodes.

4.2 Experimental settings

We evaluate all individuals using the Mean Square Error (MSE) fitness function.

We measure statistics taken over 100 independent runs of each approach on each

dataset.

For all EGGP variants, we use a fixed 100 nodes and a mutation rate m
r
= 0.03 .

For EGGP and EGGP
DC

 we use the 1 + � EA with � = 4 ; for EGGP�×� and

EGGP
HGT

 we use � = 3 and � = 1 . This induces a ‘minimal’ version of the � × �

algorithm with � = 3 being the minimal value we could choose for � such that HGT

occurs not only from the ‘leading’ thread, but also between threads, and � = 1 being

the minimal value for � . For EGGP
DC

 , EGGP�×� and EGGP
HGT

 we set a maximum

depth of D = 10 , and limit the maximum size to 50 active nodes. The maximum

active size is ensured by removing and replacing any generated individual that

exceeds the maximum size; it is necessary to prevent errors in the HGT approach

where, for example, the size of the donor’s active component exceeds that of the

recipient’s neutral component (causing the overall number of nodes to grow when

copying the entire active component over). In practice, this condition is used in very

few instances, as depth control constrains the size. The rate pHGT is 0.5.

For CGP, we use the experimental parameters in [24, Ch.3], [39], at which values

CGP outperforms GP on symbolic regression problems. We use 100 fixed nodes,

and a mutation rate of 0.03. We use the 1 + � EA with � = 4 . We do not use any

of the published CGP crossover operators, as their usefulness, particularly on sym-

bolic regression problems, remains disputed [15], and [24, 37] recommend the 1 + �

(1)F7

(

x1, x2

)

=

(

x1 − 3
)4

+

(

x2 − 3
)2

+

(

x2 − 3
)

(

x2 − 2
)4

+ 10

(2){+,−,×,÷, e
x, ln (x), sin (x), tanh (x),

√

x}

 Genetic Programming and Evolvable Machines

1 3

approach. We also use no form of depth control with CGP, as the approach is known

to have inherent anti-bloat biases [34].

For GP, we use the experimental parameters in [27] with a minor adjustment. The

population size is 500, with 1 elite individual surviving in each generation. Sub-

tree crossover is used with a probability of 0.9, and when it is not used, the ‘depth

steady’ subtree replacement mutation operator is used, which, when replacing a

subtree of depth d generates a new subtree of depth between 0 and d [27]. Tourna-

ment selection is used to select reproducing individuals, with a tournament size of 4,

and the maximum depth allowed of any individual is 10. Unusually for GP, we add

each new individual to the population one-by-one, discarding one of the children

produced by each crossover operator. This allows us to immediately replace invalid

individuals with respect to the maximum depth, guaranteeing that every individual

in a new population is valid and should be evaluated. To initialize the population,

we use the ramped half-and-half technique [21], with a minimum depth of 1 and a

maximum depth of 5.

For all experiments, the maximum number of evaluations allowed is 24 950 , a

value taken from [27] (50 generations with a population size of 500 and 1 elite indi-

vidual that does not require re-evaluating). In GP this is achieved by allowing the

search to run for 50 generations. In EGGP and CGP, we use the optimisation from

[24, Ch.2], where individuals are evaluated only when their active components are

mutated; there is no fixed number of mutations, and the search continues until the

total number of evaluations is performed. There is no analogous optimisation for

GP, as GP individuals contain no neutral material. This optimisation makes a large

difference to the depth of search; for example, in CGP running on F
1
 , the median

number of generations is 12 385 , but if all individuals are evaluated (rather than only

those with active region mutations), the number of generations would be capped at

6237 (assuming elite individuals are never re-evaluated).

4.3 Implementation

Our implementation of the EGGP variants described here is based upon the publicly

available core EGGP implementation.1 EGGP mutation operators and depth annota-

tion are prototyped as P-GP 2 programs [2], then re-implemented in more efficient C

code for the actual experiments. HGT events are implemented as P-GP 2 programs.

Our CGP experiments are based on the publicly available CGP library [37] with

modifications made to accommodate the ‘active evaluations only’ optimisation and

the use of validation and training sets. Our GP experiments are based on the DEAP

evolutionary computation framework [9] with modifications made to accommodate

our crossover strategy, mutation operator, and use of validation and training sets.

1 https ://githu b.com/UoYCS -plasm a/EGGP.

https://github.com/UoYCS-plasma/EGGP

1 3

Genetic Programming and Evolvable Machines

5 Results

Our experimental results are given in Table 1. Results for benchmarks F13–17, 19,

20 (omitted here) show very little variety in performance; the results of [27] sug-

gests these are poor benchmark problems in that the functions are almost invariant

on their inputs. While F1–3 also exhibit relatively invariant responses, approaches

here and in [27] produce a variety of performances that compel their inclusion.

Similarly, while F4 and F21 do not show a variety of performances, the functions

themselves produce a variety of responses on different inputs, again compelling their

inclusion.

Table 1 lists the median fitness (MF) and inter-quartile range in fitness (IQR)

of each approach on each dataset over 100 runs. Overall, the lowest MF score is

achieved by EGGP
HGT

 in 10 cases, EGGP
DC

 in 2 cases and GP in 2 cases. There are

no cases where EGGP, EGGP�×� or CGP achieve the lowest MF score.

To test for statistical significance we use the two-tailed Mann–Whitney U test

[22], which (essentially) tests the null hypothesis that two distributions have the

same medians (this non-parametric analogue of the t-test does not assume normally

distributed data). We use a significance threshold of 0.05 and perform a Bonferroni

correction for each hypothesis giving a corrected significance threshold of � =
0.05

14
 .

Where we get a statistically significant result (p < 𝛼), we also calculate the effect

size, using the non-parametric Vargha–Delaney A Test [38]. A ≥ 0.71 corresponds to

a large effect size. These results of these statistical tests for all hypotheses are given

in Table 2.

5.1 Building EGGP
HGT

∶H1,H2,H3,H4

The introduction of depth control (H
1
) appears to have relatively little effect and is

sometimes detrimental. In 12 of our benchmark problems, we observe no significant

difference when introducing the feature. On 2 problems, standard EGGP achieves a

statistically significant lower (better) median fitness than EGGP
DC

 , but never with

large effect. These results indicate that depth control is not necessarily a helpful fea-

ture for EGGP, but never causes EGGP to outperform EGGP
DC

 with large effect,

and in many cases makes no significant difference to performance. This implies that

the performance of EGGP
HGT

 (discussed later) cannot be explained by its new depth

control feature alone. We suggest that these results may be due to neutral material

contributing to active nodes’ ‘depth up’ values, preventing the active component

from undergoing certain mutations even if these mutations would produce an active

component of a valid depth. There may be circumstances where this restriction of

the landscape hinders the performance of EGGP
DC

.

Comparing EGGP�×� and EGGP
DC

 (H
2
) we find that the introduction of the � × �

algorithm yields a statistically significant lower median fitness and a large effect size

on 12 of the 14 problems. On 1 problem (F4) there is no significant difference, and

on 1 problem (F21) EGGP
DC

 achieves a statistically significant lower median fit-

ness, but without large effect. Overall, our study of H
2
 provides substantial evidence

G

e
n

e
tic P

ro
g

ram
m

in
g

 an
d

 Evo
lvab

le
 M

ach
in

e
s

1
 3

Table 1 Results from Symbolic Regression benchmarks as described in Sect. 4

MF indicates the Median Fitness over observed runs; the lowest (best) MF result across all algorithms is highlighted in bold. IQR indicates the Inter-quartile range in fit-

ness

EGGP EGGP
DC

EGGP�×� EGGP
HGT

GP CGP

F MF IQR MF IQR MF IQR MF IQR MF IQR MF IQR

F1 4.45E−3 7.35E−3 6.26E−3 6.45E−3 3.59E−3 1.39E−3 2.47E−3 1.79E−3 5.77E−3 3.40E−3 6.74E−3 4.30E−3

F2 8.17E6 6.05E6 1.41E7 9.95E6 8.06E6 5.02E6 5.94E6 3.06E6 1.28E7 7.86E6 1.73E7 2.54E6

F3 1.18E−2 7.34E−3 1.48E−2 4.27E−3 9.92E−3 3.82E−3 7.22E−3 4.00E−3 1.04E−2 3.56E−3 1.48E−2 4.39E−3

F4 2.58E13 1.05E9 2.58E13 3.57E8 2.58E13 7.51E10 2.58E13 1.96E9 3.55E13 8.35E13 2.58E13 2.35E9

F5 3.96E0 3.56E0 4.48E0 4.30E0 2.30E0 2.61E0 6.90E−1 2.08E0 5.13E0 3.81E0 7.17E0 1.47E0

F6 1.69E1 2.24E1 2.11E1 3.99E1 7.23E0 1.18E1 4.46E0 6.24E0 2.61E0 6.86E0 9.28E0 2.03E1

F7 3.06E2 7.40E2 4.16E2 6.76E2 2.20E2 1.53E2 1.51E2 9.62E1 4.20E2 3.50E2 5.76E2 4.39E2

F8 3.91E−2 7.43E−2 1.03E−1 1.13E−1 2.85E−2 2.00E−2 2.19E−2 1.21E−2 1.09E−1 4.99E−2 4.49E−2 9.59E−2

F9 7.09E2 5.40E3 2.59E3 1.36E4 1.81E2 3.68E2 1.57E2 3.53E2 1.46E2 3.04E1 1.71E2 1.11E3

F10 1.52E−1 2.05E−1 2.36E−1 2.22E−1 1.07E−1 8.30E−2 7.69E−2 5.75E−E−2 3.22E−1 5.62E−2 1.66E−1 1.42E−1

F11 3.93E1 7.26E1 4.53E1 6.33E1 2.43E1 1.37E1 1.59E1 1.20E1 3.88E1 3.37E1 4.96E1 4.73E1

F12 1.21E3 5.25E2 1.22E3 5.20E2 6.95E2 1.19E2 6.83E2 1.44E2 1.25E3 5.02E1 7.08E2 5.19E2

F18 4.07E4 9.27E3 4.08E4 3.91E4 4.40E3 3.86E4 3.69E−1 2.07E4 4.13E4 3.54E2 1.20E2 4.10E4

F21 1.07E0 6.16E−4 1.07E0 1.38E−5 1.07E0 7.74E−4 1.07E0 6.88E−4 1.07E0 4.90E−4 1.07E0 1.53E−5

1 3

Genetic Programming and Evolvable Machines

that the � × � algorithm aids the performance of EGGP, and should potentially be

adopted generally.

The differences between EGGP
HGT

 and EGGP�×� (H3
) are more subtle than the

comparison of H
2
 , but there is a prevalent trend. The introduction of HGT yields a

statistically significant lower median fitness in 10 problems, 3 of which occur with

large effect, and no significant differences on the other 4. These results suggest that

HGT is, generally, a beneficial feature capable of yielding major differences in per-

formance. We observe no instances where HGT leads to a significant decrease in

performance.

Overall, the results from studying our hypotheses H
1
 , H

2
 and H

3
 allow us

to explain the success of EGGP
HGT

 in comparison to GP and CGP (discussed in

Sect. 5.2) as a composition of the core EGGP approach, the use of the � × � EA

and the introduction of Active-Neutral HGT events. Each of our 3 new features has

been added to our overall approach in isolation, allowing us to isolate the benefi-

cial properties of � × � and HGT events. The role of depth control remains unclear

from our investigations; it appears to be an unhelpful feature alone but may interact

with the HGT process with respect to maintaining smaller individuals. An extended

investigation into the role of depth control in our designed approach is desirable in

the future.

H
4
 compares our final proposed approach EGGP

HGT
 to our original EGGP

approach. The proposed approach achieves a statistically significant lower

median fitness in 12 of the 14 problems; 11 of which occur with large effect. On

the 2 remaining problems, we observe no significant differences. Therefore the

Table 2 Statistical tests for hypotheses H
1
–H

6

The p value is from the two-tailed Mann–Whitney U test . The corrected threshold for statistical sig-

nificance is � =
0.05

14
 . Where p < 𝛼 , the effect size from the Vargha–Delaney A test is shown; large effect

sizes (A > 0.71) are shown in bold. Where 𝛼 ≤ p < 0.005 , p is listed as ≥ �

H
1

H
2

H
3

H
4

H
5

H
6

F p A p A p A p A p A p A

F1 0.08 – < 𝛼 0.76 < 𝛼 0.71 < 𝛼 0.76 < 𝛼 0.92 < 𝛼 0.91

F2 < 𝛼 0.70 < 𝛼 0.76 < 𝛼 0.68 < 𝛼 0.71 < 𝛼 0.87 < 𝛼 0.95

F3 < 𝛼 0.68 < 𝛼 0.82 < 𝛼 0.70 < 𝛼 0.72 < 𝛼 0.75 < 𝛼 0.91

F4 0.98 – 0.33 – 0.08 – 0.52 – < 𝛼 0.68 0.89 –

F5 0.06 – < 𝛼 0.76 < 𝛼 0.70 < 𝛼 0.84 < 𝛼 0.86 < 𝛼 0.99

F6 0.26 – < 𝛼 0.78 < 𝛼 0.63 < 𝛼 0.84 0.37 – < 𝛼 0.63

F7 0.12 – < 𝛼 0.74 < 𝛼 0.71 < 𝛼 0.76 < 𝛼 0.93 < 𝛼 0.94

F8 ≥ � – < 𝛼 0.75 < 𝛼 0.62 < 𝛼 0.77 < 𝛼 0.95 < 𝛼 0.79

F9 0.02 – < 𝛼 0.78 0.77 – < 𝛼 0.69 0.23 – 0.17 –

F10 0.01 – < 𝛼 0.74 < 𝛼 0.65 < 𝛼 0.76 < 𝛼 0.99 < 𝛼 0.81

F11 0.57 – < 𝛼 0.76 < 𝛼 0.73 < 𝛼 0.85 < 𝛼 0.90 < 𝛼 0.89

F12 0.85 – < 𝛼 0.76 0.12 – < 𝛼 0.81 < 𝛼 0.89 0.15 –

F18 0.84 – < 𝛼 0.71 < 𝛼 0.68 < 𝛼 0.85 < 𝛼 0.91 < 𝛼 0.62

F21 ≥ � – < 𝛼 0.66 0.11 – 0.57 – 0.32 – < 𝛼 0.62

 Genetic Programming and Evolvable Machines

1 3

combination of our 3 features—depth control, � × � and horizontal gene transfer—

lead to a marked improvement over standard EGGP for the studied problems.

5.2 EGGP
HGT

 versus GP and CGP: H
4
 , H

6

EGGP
HGT

 achieves a statistically significant lower median fitness in comparison to

GP (H
5
) on 11 problems, 10 of which show a large effect. On the other 3 problems,

we observe no statistical differences. On a clear majority of the studied problems,

EGGP
HGT

 significantly outperforms a standard GP system, and is never outper-

formed by that GP system.

EGGP
HGT

 achieves a statistically significant lower median fitness in comparison

to CGP (H
6
) on 11 problems, 9 of which show a large effect. On 3 of the other

4 problems, there is no significant difference, and on only one problem (F21) is

there a statistical difference favouring CGP, but without large effect. Hence we have

EGGP
HGT

 significantly outperforming CGP under similar conditions on a majority

of benchmark problems, and only outperformed on one problem.

Collectively, these results place EGGP
HGT

 favourably in comparison to the lit-

erature. Although our experiments are not exhaustive—they are not the product of

full parameter sweeps, but rather are testing approaches under standard conditions—

they demonstrate that EGGP with Horizontal Gene Transfer is a viable and competi-

tive approach for symbolic regression problems.

6 Neuroevolution experiments

Here we evaluate the HGT mechanism for a very different class of graphs: artificial

neural networks (ANNs). With small modifications, our EGGP system and our HGT

mechanism together form a neuroevolution system.

There are a number of significant differences between the types of graphs we are

studying in this section and those of the previous symbolic regression experiments.

The graphs seen in the previous experiments have a large number of nodes (100) and

are relatively sparse (1–2 edges per node). In comparison the graphs in these neuro-

evolution experiments have fewer nodes (10) but are much more dense (10 edges per

node). In Sect. 6.1 we explain the Pole Balancing Benchmark problems. In Sect. 6.2

we describe our representation of neural networks and genetic operators. In Sect. 6.3

we describe our experimental configuration.

6.1 Pole balancing benchmarks

Pole balancing problems have a long and extensive history of use as benchmarking

problems for neural network training. The form of problem we use here is described

in detail in [40]. The main concept of a pole balancing problem is that there exists

a cart upon which N poles are attached. The cart is restricted to moving left or right

along a single dimension of a 2-dimensional plane, and its movements, alongside

gravity, affect the angles of the poles with respect to the vertical. If any of the poles

1 3

Genetic Programming and Evolvable Machines

fall outside a certain angle from the vertical, or if the cart moves beyond a certain

distance from its starting point, the simulation is considered a failure. The neural

network being evaluated controls the cart by applying horizontal forces to it. This

enables the network to accelerate the cart to the left or the right, thereby balancing

the poles and keeping the cart within a given distance from its starting points. The

equations of motion governing the dynamics of the N-pole pole balancing problem

are as follows (Fig. 4):

The displacement of the cart from the origin, 0, is x; we denote the cart’s velocity

and acceleration by ẋ and ẍ , respectively. The acceleration of the cart is given by

where F̃
i
 is the effective force associated with the ith pole, given by

and m̃
i
 is the effective mass associated with the ith pole, given by

where i = 1,… , N.

Once the cart’s acceleration, ẍ , has been calculated, it is possible to calculate the

angular acceleration of the ith pole. We denote the angle of each pole by �
i
 , meas-

ured in radians, with 0 being vertical. Then 𝜃̇
i
 is the angular velocity of the ith pole;

𝜃̈
i
 is the angular acceleration of the ith pole, given by

In our experiments we consider 2-pole problems, so N = 2 . Variables used in

these equations are listed in Table 3. Constants used in these equations are listed in

Table 4 In general, we take constant values from [12].

The initial configuration and simulation of the system is taken from [12]. This

is done to maximise the strength of our comparisons with other approaches from

(3)ẍ =
F − 𝜇

c
sign (ẋ) +

∑N

i=1
F̃

i

M +
∑N

i=1
m̃

i

(4)F̃i = mili𝜃̇
2

i
sin 𝜃i +

3

4
mi cos 𝜃i

(

𝜇pi𝜃̇i

mili
+ g sin 𝜃i

)

(5)m̃
i
= m

i

(

1 −

3

4
cos

2
𝜃

i

)

(6)𝜃̈i =
−3

4li

(

ẍ cos 𝜃i + g sin 𝜃i +

𝜇pi𝜃̇i

mili

)

Fig. 4 Pole balancing simula-

tions. Figure taken from [20]

 Genetic Programming and Evolvable Machines

1 3

the literature; a number of techniques are evaluated on these tasks in [12]. The

initial state of the system is

The cart starts in the centre of the track, with the longer pole p
1
 four degrees from

vertical, and the shorter pole p
2
 inline with the vertical. The limits, beyond which a

simulation ends, are that displacement x is bounded to the range [−2.4, 2.4] m, and

that the pole angles, �
1
 and �

2
 , are both bounded to the ranges [

−36�

180
,

36�

180
] radians, that

is, they must stay within 36 degrees from the vertical. The system is simulated using

the 4th order Runge–Kutta approximation and a time-step of 0.1 s. The neural net-

work is updated every 2 time steps, and its output is scaled to the range [−10, 10] N,

which is then used as the force F applied to the cart. A solution is considered suc-

cessful if it is able to keep both poles upright, and the cart within the bounds of the

track, for 100,000 simulated time-steps. Otherwise, the fitness assigned to a network

is equal to 100,000 minus the number of time steps the network was able to keep the

poles upright and the cart within the track. We are therefore minimising the fitness

value, and the evolutionary run successfully terminates once we find a network with

a fitness of 0.

In our experiments, we study 2 problems; Markovian and non-Markovian. In

the Markovian case, the network is presented with the full state of the system,

with 6 input variables made up of the position and velocity of the cart and the

(7)x = 0, ẋ = 0, 𝜃1 =

4𝜋

180
, 𝜃̇1 = 0, 𝜃2 = 0, 𝜃̇2 = 0

Table 3 Variables used in pole

balancing experiments
Symbol Units Description

x m Horizontal displacement of the cart from 0

ẋ m s−1 Velocity of the cart

ẍ m s−2 Acceleration of the cart

�
i

rad Angle of the ith pole from vertical

𝜃̇
i

rad s−1 Angular velocity of the ith pole

𝜃̈
i

rad s−2 Angular acceleration of the ith pole

F N The force applied to the cart by the controller

Table 4 Constants used in pole

balancing experiments

These values are taken from [12] (who do not provide units for the

friction constants, see [8])

Symbol Value Description

�pi �
p1

= �
p2

= 2 × 10
−6 Friction between the ith

pole and the cart

M 1.0 kg Mass of the cart

m
i

m
1
= 0.1 kg, m

2
= 0.01 kg Mass of the ith pole

l
i

l
1
= 0.5 m, l

2
= 0.05 m Length of the ith pole

g −9.81 m s−2 Acceleration due to gravity

1 3

Genetic Programming and Evolvable Machines

angles and angular velocities of both poles. In the non-Markovian case, the net-

work is presented with only the position of the cart and the angles of both poles.

The latter problem is generally believed to be more difficult as it requires the

network to internally account for the velocities of the cart and the poles based on

observations. We rescale these values to present to the neural network, by divid-

ing x by 1.2, ẋ by 1.5, each �
i
 by

36�

180
 and each 𝜃̇

i
 by

115�

180
.

6.2 Representation and genetic operators

The graphs we study in our neurevolution are similar in behaviour to the graphs

conventionally used with EGGP, but there are 2 significant differences. Firstly,

their edges are also labelled with weights, which here are represented as inte-

gers and converted to rationals by dividing by 1000. Secondly, their edges may

be recurrent, as indicated by an additional binary component of their labels,

and may therefore target any (non-output) node in the graph. A recurrent edge

accesses a node’s previously computed value, thereby allowing our graphs to be

stateful and have memory.

Our topological operators are the same as those used in [3] with minor modi-

fications. We use edge mutation, which may produce recurrent edges with prob-

ability p
rec

 . When a recurrent edge is produced, it may target any (non-output)

node in the graph. When a non-recurrent edge is produced, the problem of

respecting acyclicity is constrained to the subgraph induced by non-recurrent

edges. We fix our nodes’ functions to be the bi-sigmoidal activation function

and therefore do not require function mutations. We do, however, require a new

mutation operator to modify weights. This is implemented with a single-rule P-GP 2

program that matches an edge uniformly at random and rewrites its weight to a uni-

formly chosen value from the specified weight range. We can therefore distinguish

between mutation rates; edge redirections may be applied according to a binomial

distribution with edge mutation rate m
re

 , and weight mutations may be applied

according to a binomial distribution with weight mutation rate m
rw

.

For HGT to be viable we require that the number of active function nodes in

solutions be at most half the total function nodes. If we initialise our relatively

dense neural networks with recurrent connections using the previous approach

(Sect. 2), it may take exceptionally long to find a starting point that satisfies this

constraint. We therefore modify that initialisation procedure for these experi-

ments. With probability p
rec

 , recurrent edges are added immediately after nodes

are added, rather than after all nodes are added. This design decision ensures

relatively small generated individuals, making our implementation more viable,

but also prevents cycles from existing in the initial graphs. Cycles can be intro-

duced throughout the evolutionary process via mutation.

(8)bisig (x) =
1 − e

−x

1 + e
−x

 Genetic Programming and Evolvable Machines

1 3

6.3 Experimental settings

We deliberately choose representation parameters that cause the graphs we study

here to be topologically distinct from the graphs we have studied for symbolic

regression in Sect. 4. By doing this, we further verify HGT as a cross-domain

technique that is applicable in a variety of scenarios.

We use a fixed representation size of 10 nodes, with a maximum permitted

number of active nodes of 5. Hence, in terms of the number of function nodes,

the graphs we study here are much smaller than the 100-function node graphs we

studied earlier. Each function node has an arity of 10, that is, there are 10 con-

nections per neuron. Therefore the graphs we study here are significantly more

dense, with respect to the number of edges, than the graphs we studied earlier

where each function node had 1 or 2 outgoing edges. We are learning potentially

cyclic graphs with recurrent edges, and set the probability of recurrent edges,

p
rec

= 0.1 . In contrast, the graphs studied earlier were acyclic. Finally, our edges

are associated with weights, with a weight range of [−2.0, 2.0] . In contrast, the

edges we studied earlier did not feature edge weights. Overall, the graphs we

study in these experiments are distinct from those studied in Sect. 4 in that they

are much smaller, much more dense, may contain recurrent edges and cycles, and

have edge weights.

In all experiments we again use the � × � EA with � = 3 and � = 1 . Whenever we

generate an individual that exceeds the permitted size of 5, we discard it and imme-

diately generate a new one. We set the edge mutation rate m
re
= 0.05 , and the weight

mutation rate m
rw

= 0.1 . We find that very occasional runs take a long time to ter-

minate due to local optima. This is likely because of the small representation size

that we have deliberately opted for, which allows for very little inactive material. To

make our experiments computationally tractable while still having every evolution-

ary run terminate, we therefore introduce a restarting procedure; if an evolutionary

run has not seen improvement in 1000 generations, its population is randomised.

We study 2 variants of EGGP:

1. EGGP
HGT

 is the � × � EA with HGT as described and pHGT = 1.

2. EGGP�×� is simply the � × � EA without HGT. This variant is used as a control

for HGT.

We run each algorithm on each problem 200 times. These experiments allow us

to test the null hypotheses that there are no statistical differences when using the

HGT mechanism in comparison to the � × � EA alone. We carry out statistical

tests to test for significant differences introduced by the HGT mechanism on the

studied problems. If our statistical tests reject the null hypothesis, and we see

lower Median Evaluations (MEs) required for each problem when using HGT,

then we can infer that the HGT mechanism is indeed improving performance for

these neuroevolution tasks. We note that it is common in literature to also report

the processing time required to solve each task [12]; we do not report these values

as we are using these problems as a proxy for measuring the efficiency of search.

1 3

Genetic Programming and Evolvable Machines

7 Neuroevolution results

The results from our neuroevolution experiments are given in Table 5. For each

problem and algorithm, we list the MEs and IQRs in evaluations. To test for statis-

tical significance we use the two-tailed Mann–Whitney U test [22], which (essen-

tially) tests the null hypothesis that two distributions have the same medians. We

use a significance threshold of 0.05 and perform a Bonferroni procedure for each

hypothesis giving a corrected significance threshold of � =
0.05

2
 . Where we get a sta-

tistically significant result (p < 𝛼), we also calculate the effect size, using the non-

parametric Vargha–Delaney A Test [38]. A ≥ 0.71 corresponds to a large effect size.

As we can see in Table 5, on both problems we record lower MEs for EGGP
HGT

in comparison to EGGP�×� . Our Mann–Whitney U test reveals both results to be

statistically significant (p <
0.05

2
), although without large effect. We give box-plots

of the results of both problems in Fig. 5, highlighting the degree to which HGT

improves the efficiency of search. Taking into account the MEs and statistical sig-

nificance, we can infer that HGT is indeed improving performance for these neuro-

evolution tasks. However, that we observe no large effect suggests that the change

in MEs as a result of HGT is not large. This lack of large effect is in line with our

statistical tests comparing EGGP
HGT

 and EGGP�×� in Sect. 5.

Empirical comparison with other neuroevolutions on these problems is a diffi-

cult task. When these problems have been studied in the literature, they have not

been standardised in many respects. For example, some implementations use Euler

integration [19, 35], whereas others use Runge-Kutta integration [12, 31]. In some

cases the longer pole starts at 1 degree from vertical [31, 35] and in others it starts

at 4 degrees from vertical [12]. Some publications use ‘bang-bang’ force (where the

network outputs ±10 N) [19], whereas others have networks output continuous force

[12, 35] as we have done. These distinctions, in combination with a general lack of

publicly available implementations and that even standardising these conditions may

unfairly bias against certain approaches and chosen parameters, make a conventional

statistical comparison difficult. For a more detailed discussion of problems in draw-

ing comparisons between methods on these tasks, see [33, Chapter 11].

However, the intention of our experiments is not to propose a state-of-the-art neu-

roevolution technique. Instead, we are investigating whether HGT works for graphs

very different from those studied for symbolic regression. With this in mind, we list

in Table 6 the MEs used by EGGP
HGT

 in comparison to results reported in literature.

Table 5 Results from pole

balancing benchmarks for

EGGP
HGT

 and EGGP�×�

The p value is from the two-tailed Mann–Whitney U test. The effect

size A from the Vargha–Delaney A test is shown

EGGP
HGT

EGGP�×�

Problem ME IQR ME IQR p A

Markovian 812 848 1194 1478 10
−4 0.61

Non-Markovian 6230 8928 10577 17074 10
−6 0.63

 Genetic Programming and Evolvable Machines

1 3

Fig. 5 Box-plots with data overlayed for both neuroevolution problems. We give results for EGGP
HGT

(HGT) and EGGP�×� (No HGT), a Markovian, b non-Markovian. Overlayed data is jittered for visual

clarity

Table 6 MEs reported from

various literature

Where a result is given, the publication it is taken from is referenced.

A number of results are taken from comparative experiments in [12],

in which case we also provide a reference for the approach after the

reference to [12]. Results are ordered by MEs on Markovian pole

balancing

Mean Evaluations

Technique Markovian Non-Markovian

CNE [12, 41] 22,100 76,906

SANE [12, 26] 12,600 262,700

RPG [12, 42] 4981 5649

ESP [11, 12] 3800 7374

NEAT [31] 3600 20,918

NEVa [32] 2177 –

EGGP
HGT

1175 8891

CGPANN [35] 1111 –

CoSyNE [12] 954 1249

CMA-ES [12, 16] 895 3521

1 3

Genetic Programming and Evolvable Machines

While not a direct empirical comparison, this does give some notion of how the pro-

posed algorithm compares. To this effect, results in [12] are helpful in that they have

standardised comparisons over a number of approaches. In Table 6 we can see that

EGGP
HGT

 does quite well on Markovian pole balancing, outperforming a number of

techniques and performing similarly to CGPANN [35], which used much larger rep-

resentation and had the longer pole starting at 1 degree from the vertical. However,

the non-Markovian results are less impressive, with EGGP
HGT

 being outperformed

by all but three techniques from the literature. We do take some reassurance from

the fact that, on both problems, EGGP
HGT

 outperforms the popular neuroevolution

technique, ‘Neuroevolution of Augmenting Topologies’ (NEAT) [31].

The cause of the disparity between the two studied problems in comparison with

the literature may be a result of our chosen parameters. We chose a recurrent edge

rate of p
rec

= 0.1 , and it is generally believed that solutions to the non-Markovian

problem are more dependent of memory than solutions to the Markovian problem.

Therefore increasing p
rec

 and thereby increasing the amount of memory usage in

the network may improve performance. Additionally, the non-Markovian problem

is generally viewed as harder, and we may have hampered our search process by

choosing such small, dense graphs. This may have reduced the evolvability of the

system and the effect of this may be more prevalent on the harder problem, par-

ticularly if it has more local optima. Clearly, additional experiments with respect to

parameterisation are required to establish the cause of this and improve EGGP
HGT

 ’s

performance on the non-Markovian task.

8 Conclusions and future work

In this work we have introduced a new and effective form of neutral HGT in the

EGGP approach. Our approach utilises Active-Neutral transfer to copy the active

components of one elite parent into the neutral material of another. Experimental

results show that both HGT and the introduction of the � × � EA lead to improve-

ments in performance on benchmark symbolic regression problems. Comparing

the final approach, EGGP
HGT

 , to GP and CGP yields highly favourable results on a

majority of problems.

We have also carried out neuroevolution experiments with HGT. Empirical com-

parisons on double pole balancing problems reveal that, for both Markovian and

non-Markovian tasks, HGT improves the efficiency of search. This result is particu-

larly interesting for two reasons. Firstly, we have evidence of positive effect of HGT

for both symbolic regression and neuroevolution problems suggesting that this tech-

nique may function as a cross-domain recombination operator. Secondly, we delib-

erately chose to evolve very small, dense, graphs in our neuroevolution experiments

to make the differences with our symbolic regression benchmarks more stark. That

HGT remained beneficial reinforces the idea that it is useful.

These results have implications for broader research in EAs and GP. The reuse

and recombination of genetic material is generally assumed to be a useful fea-

ture of an evolutionary system (e.g. GP crossover [21]), but our Active-Neutral

HGT events achieve reuse without altering the active components of individuals.

 Genetic Programming and Evolvable Machines

1 3

Hence our approach contributes evidence to the notion that neutral drift aids

evolutionary search [10]. Active-Neutral HGT events move beyond neutrality

through mutation; we are effectively biasing the neutral components of individ-

uals towards areas of the landscape we know to be ‘good’ with respect to the

fitness function. While this is empirically beneficial here, it remains unknown

whether this neutral biasing is helpful outside of the EGGP approach. Our favour-

able comparisons with GP and CGP support this direction of thought; GP offers

recombination without neutral drift, whereas (vanilla) CGP offers neutral drift

without recombination.

Our work here opens up a number of avenues for further research. It is desir-

able to investigate the influence of population parameters � , � and the HGT rate

pHGT the performance of the described approach. Here, we have chosen small

values of � and � and relatively high values of pHGT ; it is therefore interesting

to consider whether larger values of � and � help or hinder the HGT process,

and whether it is necessary to introduce multiple HGT events in a single genera-

tion when using larger populations. A possible way to investigate this could be

through a graph equivalent of the Microbial Genetic Algorithm [14] as this could

work as a minimal extension that supports the use of a larger population. Addi-

tionally, an investigation isolating depth control from HGT would help clarify

whether HGT is more useful when individuals are smaller or larger.

There are two variants of HGT that should be investigated further. The first is

a ‘partial’ HGT mechanism, where only a small subgraph of the active compo-

nent of the donor is copied into the recipient. With such a mechanism, it would

even be possible to take fragments of genetic material from several donors during

a HGT event, thereby increasing the variance in the recipients received genetic

material. However, empirical comparisons would certainly be necessary to clarify

whether this is a preferable approach, and it is not yet clear how such a mech-

anism should be parameterised. Open questions are how should a subgraph be

selected? how large should a subgraph be? how many subgraphs should be copied

into the recipient, and how many donors should they come from?

Another interesting variant of HGT is ‘headless chicken’ HGT where the donor

is substituted with a randomly generated individual. In this case, we would be

replacing neutral material with randomly generated material. An empirical com-

parison between this variant and standard HGT could reveal any side effects

caused by the HGT mechanism; if the headless chicken mechanism is effective,

then we may have to reconsider our explanations for the effectiveness of HGT.

However, we doubt that the headless chicken mechanism would compete with or

outperform HGT, particularly in the symbolic regression problems, as we already

have a large degree of neutral material in the genotype which undergoes neutral

drift thereby achieving a similar randomising effect.

Acknowledgements T. Atkinson is supported by a Doctoral Training Grant from the Engineering and

Physical Sciences Research Council (EPSRC) (Grant No. 1789003) in the UK.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,

which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long

as you give appropriate credit to the original author(s) and the source, provide a link to the Creative

1 3

Genetic Programming and Evolvable Machines

Commons licence, and indicate if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line

to the material. If material is not included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-

sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/

licenses/by/4.0/.

References

 1. T. Atkinson, D. Plump, S. Stepney, Evolving graphs by graph programming. In: Proceedings of

European Conference on Genetic Programming, EuroGP 2018, LNCS, vol. 10781 (Springer, 2018),

pp. 35–51

 2. T. Atkinson, D. Plump, S. Stepney, Probabilistic graph programs for randomised and evolutionary

algorithms. In: Proceedings of International Conference on Graph Transformation, ICGT 2018,

LNCS, vol. 10887 (Springer, 2018), pp. 63–78

 3. T. Atkinson, D. Plump, S. Stepney, Evolving graphs with horizontal gene transfer. In: Proceedings

of Genetic and Evolutionary Computation Conference, GECCO 2019 (ACM, 2019), pp. 968–976.

https ://doi.org/10.1145/33217 07.33217 88

 4. T. Atkinson, D. Plump, S. Stepney, Evolving graphs with semantic neutral drift. Nat. Comput.

(2019). arXiv :1810.10453 . (to appear)

 5. J. Clegg, J.A. Walker, J.F. Miller, A new crossover technique for cartesian genetic programming. In:

Proceedings of 9th Annual Conference on Genetic and Evolutionary Computation, GECCO 2007

(ACM, 2007), pp. 1580–1587

 6. L.N. De Castro, J. Timmis, An artificial immune network for multimodal function optimization.

In: Proceedings of 2002 Congress on Evolutionary Computation. CEC’02, vol. 1 (IEEE, 2002), pp.

699–704

 7. L.N. De Castro, F.J. Von Zuben, Learning and optimization using the clonal selection principle.

IEEE Trans. Evolut. Comput. 6(3), 239–251 (2002)

 8. R.V. Florian, Correct equations for the dynamics of the cart-pole system (2005). https ://coneu ral.

org/flori an/paper s/05_cart_pole.pdf

 9. F.A. Fortin, F.M.D. Rainville, M.A. Gardner, M. Parizeau, C. Gagné, Deap: evolutionary algorithms

made easy. J. Mach. Learn. Res. 13(Jul), 2171–2175 (2012)

 10. E. Galván-López, R. Poli, A. Kattan, M. O’Neill, A. Brabazon, Neutrality in evolutionary algo-

rithms... What do we know? Evol. Syst. 2(3), 145–163 (2011)

 11. F. Gomez, R. Miikkulainen, Incremental evolution of complex general behavior. Adapt. Behav. 5(3–

4), 317–342 (1997). https ://doi.org/10.1177/10597 12397 00500 305

 12. F. Gomez, J. Schmidhuber, R. Miikkulainen, Accelerated neural evolution through cooperatively

coevolved synapses. J. Mach. Learn. Res. 9(May), 937–965 (2008)

 13. C. Gyles, P. Boerlin, Horizontally transferred genetic elements and their role in pathogenesis of bac-

terial disease. Vet. Pathol. 51(2), 328–340 (2014)

 14. I. Harvey, The microbial genetic algorithm. In: European Conference on Artificial Life, ECAL

2009, LNCS, vol. 5778 (Springer, 2009), pp. 126–133

 15. J. Husa, R. Kalkreuth, A comparative study on crossover in cartesian genetic programming. In:

Proceedings of European Conference on Genetic Programming, EuroGP 2018, LNCS, vol. 10781

(Springer, 2018), pp. 203–219

 16. C. Igel, Neuroevolution for reinforcement learning using evolution strategies. In: IEEE Congress on

Evolutionary Computation, CEC 2003, vol. 4 (IEEE, 2003), pp. 2588–2595. https ://doi.org/10.1109/

CEC.2003.12994 14

 17. R. Kalkreuth, G. Rudolph, A. Droschinsky, A new subgraph crossover for cartesian genetic pro-

gramming. In: Proceedings of European Conference on Genetic Programming, EuroGP 2017,

LNCS, vol. 10196 (Springer, 2017), pp. 294–310

 18. P.J. Keeling, J.D. Palmer, Horizontal gene transfer in eukaryotic evolution. Nat. Rev. Genet. 9(8),

605 (2008)

 19. M.M. Khan, G.M. Khan, J.F. Miller, Efficient representation of recurrent neural networks for marko-

vian/non-markovian non-linear control problems. In: Proceedings of 10th International Conference

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3321707.3321788
http://arxiv.org/abs/1810.10453
https://coneural.org/florian/papers/05_cart_pole.pdf
https://coneural.org/florian/papers/05_cart_pole.pdf
https://doi.org/10.1177/105971239700500305
https://doi.org/10.1109/CEC.2003.1299414
https://doi.org/10.1109/CEC.2003.1299414

 Genetic Programming and Evolvable Machines

1 3

on Intelligent Systems Design and Applications, (ISDA 2010), pp. 615–620. https ://doi.org/10.1109/

ISDA.2010.56871 97

 20. J. Koutnik, F. Gomez, J. Schmidhuber, Evolving neural networks in compressed weight space. In:

Proceedings of Genetic and Evolutionary Computation Conference, GECCO 2010 (ACM, 2010),

pp. 619–626. https ://doi.org/10.1145/18304 83.18305 96

 21. J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selec-

tion, vol. 1 (MIT Press, Cambridge, 1992)

 22. H.B. Mann, D.R. Whitney, On a test of whether one of two random variables is stochastically larger

than the other. Ann. Math. Stat. 18(1), 50–60 (1947)

 23. J.F. Miller, An empirical study of the efficiency of learning boolean functions using a cartesian

genetic programming approach. In: Proceedings of 1st Annual Conference on Genetic and Evolu-

tionary Computation, GECCO ’99, vol. 2 (Morgan Kaufmann Publishers Inc., 1999), pp. 1135–1142

 24. J.F. Miller, Cartesian genetic programming. In: Cartesian Genetic Programming (Springer, 2011),

pp. 17–34

 25. J.F. Miller, S.L. Smith, Redundancy and computational efficiency in cartesian genetic programming.

IEEE Trans. Evol. Comput. 10(2), 167–174 (2006)

 26. D.E. Moriarty, Symbiotic Evolution of Neural Networks in Sequential Decision Tasks. Ph.D. thesis,

University of Texas at Austin USA (1997)

 27. M. Nicolau, A. Agapitos, M. O’Neill, A. Brabazon, Guidelines for defining benchmark problems

in genetic programming. In: 2015 IEEE Congress on Evolutionary Computation, CEC (2015), pp.

1152–1159

 28. M. O’Neill, C. Ryan, Grammatical evolution. IEEE Trans. Evolut. Comput. 5(4), 349–358 (2001)

 29. R. Poli, Evolution of graph-like programs with parallel distributed genetic programming. In: Pro-

cedings of International Conference on Genetic Algorithms, ICGA (Morgan Kaufmann, 1997), pp.

346–353

 30. J.A. Schwartz, N.E. Curtis, S.K. Pierce, Fish labeling reveals a horizontally transferred algal

(vaucheria litorea) nuclear gene on a sea slug (elysia chlorotica) chromosome. Biol. Bull. 227(3),

300–312 (2014)

 31. K.O. Stanley, Efficient Evolution of Neural Networks Through Complexification. Ph.D. thesis, The

University of Texas at Austin (2004). http://nn.cs.utexa s.edu/?stanl ey:phd20 04

 32. Y. Tsoy, V. Spitsyn, Using genetic algorithm with adaptive mutation mechanism for neural net-

works design and training. In: Proceedings of 9th Russian-Korean International Symposium on Sci-

ence and Technology, KORUS 2005 (IEEE, 2005), pp. 709–714. https ://doi.org/10.1109/KORUS

.2005.15078 82

 33. A. Turner, Evolving Artificial Neural Networks Using Cartesian Genetic Programming. Ph.D. the-

sis, University of York (2015). http://ethes es.white rose.ac.uk/12035 /1/thesi s.pdf

 34. A. Turner, J. Miller, Cartesian genetic programming: why no bloat? In: Proceedings of Euro-

pean Conference on Genetic Programming, EuroGP 2014, LNCS, vol. 8599 (Springer, 2014), pp.

222–233

 35. A.J. Turner, J.F. Miller, Cartesian genetic programming encoded artificial neural networks: a com-

parison using three benchmarks. In: Proceedings of Genetic and Evolutionary Computation Confer-

ence, GECCO 2013 (ACM, 2013), pp. 1005–1012. https ://doi.org/10.1145/24633 72.24634 84

 36. A.J Turner, J.F. Miller, Recurrent cartesian genetic programming. In: Proceedings of International

Conference on Parallel Problem Solving from Nature, PPSN 2014, LNCS, vol. 8672 (Springer,

2014), pp. 476–486

 37. A.J. Turner, J.F. Miller, Introducing a cross platform open source cartesian genetic programming

library. Genet. Program. Evolv. Mach. 16(1), 83–91 (2015)

 38. A. Vargha, H.D. Delaney, A critique and improvement of the CL common language effect size sta-

tistics of McGraw and Wong. J. Educ. Behav. Stat. 25(2), 101–132 (2000)

 39. J.A. Walker, J.F. Miller, The automatic acquisition, evolution and reuse of modules in cartesian

genetic programming. IEEE Trans. Evolut. Comput. 12(4), 397–417 (2008)

 40. A.P. Wieland, Evolving controls for unstable systems. In: Connectionist Models (Elsevier, 1991),

pp. 91–102

 41. A.P. Wieland, Evolving neural network controllers for unstable systems. In: Seattle International

Joint Conference on Neural Networks, IJCNN 91, vol. 2 (IEEE, 1991), pp. 667–673. https ://doi.

org/10.1109/IJCNN .1991.15541 6

https://doi.org/10.1109/ISDA.2010.5687197
https://doi.org/10.1109/ISDA.2010.5687197
https://doi.org/10.1145/1830483.1830596
http://nn.cs.utexas.edu/?stanley:phd2004
https://doi.org/10.1109/KORUS.2005.1507882
https://doi.org/10.1109/KORUS.2005.1507882
http://etheses.whiterose.ac.uk/12035/1/thesis.pdf
https://doi.org/10.1145/2463372.2463484
https://doi.org/10.1109/IJCNN.1991.155416
https://doi.org/10.1109/IJCNN.1991.155416

1 3

Genetic Programming and Evolvable Machines

 42. D. Wierstra, A. Foerster, J. Peters, J. Schmidhuber, Solving deep memory POMDPs with recur-

rent policy gradients. In: Proceedings of Artificial Neural Networks, ICANN 2007, LNCS, vol. 4668

(Springer, 2007), pp. 697–706. https ://doi.org/10.1007/978-3-540-74690 -4_71

 43. S. Yoshida, S. Maruyama, H. Nozaki, K. Shirasu, Horizontal gene transfer by the parasitic plant

striga hermonthica. Science 328(5982), 1128–1128 (2010)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1007/978-3-540-74690-4_71

	Horizontal gene transfer for recombining graphs
	Abstract
	1 Introduction
	2 Evolving graphs by graph programming (EGGP)
	2.1 Representation
	2.2 Initialisation
	2.3 Mutation
	2.3.1 Node mutation
	2.3.2 Edge mutation
	2.3.3 Mutation rate

	2.4 Depth control

	3 Horizontal gene transfer in EGGP
	3.1 Active-neutral transfer
	3.2 The EA

	4 Symbolic regression experiments
	4.1 Benchmark problems
	4.2 Experimental settings
	4.3 Implementation

	5 Results
	5.1 Building
	5.2 versus GP and CGP:  ,

	6 Neuroevolution experiments
	6.1 Pole balancing benchmarks
	6.2 Representation and genetic operators
	6.3 Experimental settings

	7 Neuroevolution results
	8 Conclusions and future work
	Acknowledgements
	References

