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Abstract
Mucoadhesive nanostructured systems comprising poloxamer 407 and Carbopol 974P® have already demonstrated good mucoad-

hesion, as well as improved mechanical and rheological properties. Curcumin displays excellent biological activity, mainly in oral

squamous cancer; however, its physicochemical characteristics hinder its application. Therefore, the aim of this study was to

develop nanostructured formulations containing curcumin for oral cancer therapy. The photophysical interactions between

curcumin and the formulations were elucidated by incorporation kinetics and location studies. They revealed that the drug was

quickly incorporated and located in the hydrophobic portion of nanometer-sized polymeric micelles. Moreover, the systems

displayed plastic behavior with rheopexy characteristics at 37 °C, viscoelastic properties and a gelation temperature of 36 °C, which

ensures increased retention after application in the oral cavity. The mucoadhesion results confirmed the previous findings with the

nanostructured systems showing a residence time of 20 min in porcine oral mucosa under flow system conditions. Curcumin was

released after 8 h and could permeate through the porcine oral mucosa. Cytotoxicity testing revealed that the formulations were

selective to cancer cells over healthy cells. Therefore, these systems could improve the physicochemical characteristics of curcumin

by providing improved release and permeation, while selectivity targeting cancer cells.
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Introduction
The development of nanostructured systems containing polox-

amer 407 (P407) and Carbopol 974P® (C974P) have previ-

ously been shown to have rheological and mechanical charac-

teristics beneficial for pharmaceutical and biomedical use [1].

P407 is a non-ionic block copolymer with polypropylene oxide

(PPO) and polyethylene oxide (PEO) segments, which can

display thermoresponsive properties forming nanometer-sized

micelles, hydrogels and lyotropic liquid crystals [2,3]. The

increase of temperature can promote the self-assembly from

unimers to micelles, with large endothermic heat. In this sense,

PPO-groups dehydrate in a hydrophobic core with a surround-

ing hydrated shell. Higher concentrations of P407 are used

(15% to 20%, w/w) as colloidal gelling systems in a cubic hex-

agonal core with ordered structure, which enable the solubiliza-

tion of hydrophilic and hydrophobic drugs [4-9]. Moreover,

C974P is an acrylic-acid derivative, highly cross-linked, hydro-

philic, and displays mucoadhesive properties [1]. In this sense,

an increase in temperature promotes the nanometer-sized

assembly into three-dimensional micelles with a hydrophobic

core of PPO and a hydrophilic shell of PEO that can interact by

hydrogen bonds with the hydrophilic acrylic-acid derivative

polymer. This results in a binary polymeric system with good

viscoelasticity, mucoadhesion, softness and flow properties

[1,10,11]. Therefore, different combinations and the characteri-

zation of their different functionalities have been reported in the

literature [1-3]. These nanostructured systems with mucoadhe-

sive and thermoresponsive properties could provide new prop-

erties, including biocompatibility, improved mechanical charac-

teristics tailored for the specific application, in addition to new

release mechanisms and improved permeability [9,12-14].

The delivery through the mucosa via buccal administration has

shown several advantages as a drug delivery target site. The

ease of accessibility for administration and removal, more

permeable than skin and containing a rich blood flow and

avoidance of first-pass effects, makes this route useful for

systemic or local applications [15]. However, the dynamic

physiological properties of the oral cavity, such as the variable

salivary flow due to different types of stimulation, during masti-

cation, speech and swallowing, could hinder the development of

drug delivery systems for this route [15,16]. In order to avoid

these drawbacks, nanostructured systems with mucoadhesive

polymers, such as acrylic-acid derivatives, have been investigat-

ed due to some important characteristics. They can provide inti-

mate contact between the dosage form and tissue, which could

guarantee high drug flux through the absorbing tissue to subse-

quently increase drug permeation and bioavailability [14,15]. In

addition, the incorporation of thermoresponsive materials, like

P407, could facilitate the administration and preparation of

these formulations [10,17].

Head and neck cancer is the sixth most common malignancy

worldwide and the prognosis is poor, with a five-year survival

of less than 54% and accounting for around 300,000 deaths and

more than 550,000 new cases each year worldwide [18,19].

Oral squamous cell carcinoma (OSCC), the primary cause of

this cancer type, has been associated with many risk factors,

mainly related to excessive intake of alcoholic beverages,

tobacco use, high exposure to UV radiation, immunosuppres-

sion and age. These risk factors are involved in the transformat-

ion of healthy oral mucosal cells (called keratinocytes) to

premalignant dysplastic lesions, which can develop to OSCC.

Although these lesions can develop in different regions of the

oral cavity, including the lip, buccal mucosa, and hard and soft

palate, they are most commonly found on the tongue and floor

of the mouth [18,20-24]. Despite the advances in conventional

methods (chemotherapy, radiotherapy and surgery), the prog-

nosis of OSCC has not improved. In addition, many adverse

effects and complications have been reported with current treat-

ment strategies including, facial disfigurement, loss of speech,

mastication and swallowing and even in the mildest cases oral

mucositis and candidiasis, which drastically reduce the life

quality of the patient [21,25]. Early diagnosis by a dentist or

physician ensures early treatment to avoid metastatic spread

[26-28].

Curcuminoids, derived from curcuma root (Curcuma longa),

have been used for many centuries in Asian countries as a spice

and coloring agent, but also as a medicine [29]. This group of

yellow polyphenols are composed of curcumin (CUR), deme-

toxycurcumin and bis-demetoxycurcumin, which represent

77%, 17% and 3% of the content of the dried extract from

curcuma root, respectively [30,31]. CUR has shown anti-in-

flammatory, antirheumatic and antioxidant activities and it has

been used in hepatic and other chronic diseases including diabe-

tes [32]. Recently, the activity of CUR as an anticancer drug has

been evidenced and shown to act on a variety of molecular

targets that regulate the proliferation and apoptosis, decrease the

expression of NF-κB and increase insulin-like growth factor-

binding protein 5 (IGFBP-5) and cytochrome P450, family 1,

member A1 (CYP1A1) [32-34]. Moreover, CUR can be useful

as adjuvant in cancer treatment, after surgical procedure, or in

combination with chemotherapy [35-41]. Despite its broad ther-

apeutic potential, CUR has limited stability to light and pH, as

well as poor solubility. CUR is also susceptible to degradation

due to the formation of phenylate anions and high production of

CUR radicals, since this polyphenol has demonstrated high

lipophilicity (log P 3.29) and low solubility in aqueous solu-

tions and under alkaline conditions (pH > 7) [30,31,42]. These

physicochemical characteristics hinder the bioavailability and

therapeutic efficacy of this drug. Consequently, there is a need
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Table 1: Anisotropy (r) of formulation containing poloxamer 407 (P407), Carbopol 974P(C974P) and curcumin (CUR) under different conditions of pH
and temperature.

Formulation r

37 °C (pH 5) 37 °C (pH 7) 45 °C (pH 7) 37 °C (pH 10)

P407/C974P/ CUR 0.2104 0.2517 0.2881 0.2863

to associate CUR with carriers to ensure the delivery to the

target site and thereby protect the drug from degradation,

increase the solubility and provide controlled release as well as

permeation, while maintaining biological activity [31,43-45].

To our knowledge, systems containing P407 and C974P have

not been investigated to carry CUR and therefore the aim of this

study was to develop nanostructured systems containing P407,

C974P and CUR to target OSCC. Once developed, we investi-

gated the behavior of the drug in the formulations for their

chemical, rheological, mechanical and mucoadhesive character-

istics. We also measured the in vitro drug release profile,

permeation and the cytotoxic potential of these systems.

Results and Discussion
Interaction studies of curcumin in
mucoadhesive nanostructured systems
As CUR is highly hydrophobic, unstable and susceptible to deg-

radation by light and pH [31], the interaction of CUR formula-

tions was studied by photophysical methods. The aim was to

understand the interaction between this hydrophobic drug with

the hydrophobic core of the three-dimensional structure of

P407-micelles.

Investigation of CUR interaction with the system
In order to improve the understanding of these interactions be-

tween CUR and the formulations, stability assays using photo-

physical studies were performed to provide information about

the interactions of CUR with the polymer blends under differ-

ent conditions, including the cool storage temperature in refrig-

erator (10 °C), administration temperature of the formulation to

the patient (25 °C), body temperature (37 °C) and over body

temperature (45 °C) at pH 7, but also at pH 5 and 10 at 37 °C

[46]. The formulations composed of P407, C974P and CUR

showed pH 5 during the preparation and before the pH adjust-

ment step, due to the acidic properties of the mucoadhesive

polymers [47]. Furthermore, the stability by photophysical

studies of polymer blends containing 0.01% (w/w) P407,

1.6 × 10−4% (w/w) C974P and 1.8 × 10−5 mol/L CUR were

spectroscopically evaluated using an emission slit of 5–10 nm.

The spectra are displayed in Figure 1. The systems showed a

higher emission intensity and larger widths at pH 7, due to the

thermal energy employed for CUR encapsulation during the

rotary evaporation.

Figure 1: Emission spectra of systems containing 0.01% (w/w) P407,
1.6 × 10−4% (w/w) C974P and 1.8 × 10−5 mol/L CUR at 10 °C, 25 °C,
37 °C, 45 °C in pH 7, 37 °C in pH 5 and pH 10, obtained with an
emission slit of 5–10 nm.

Moreover, the emission intensity of the formulations was lower

at pH 10 in comparison to pH 7 at 37 °C. These results could be

explained by new chemical species from pKa that do not appear

in the emission spectra due to the excitation wavelength of

422 nm (CUR maximum absorption).

Anisotropy of fluorescence (r) was also investigated for the

samples with maximum peak spectral emission (Table 1).

Anisotropy is considered a powerful technique to investigate

the molecular dynamics of fluorescent solutes, such as CUR.

During the fluorescence analysis, the molecules are excited by

linearly polarized light, and they absorb and emit the fluores-

cence in a polarized way. If the emission is highly polarized

(approximately or equal to one), the molecules will not rotate

between absorption and emission, which would suggest that

they are associated with macromolecules. Therefore, the emis-

sion of polarization is described as anisotropy [48,49]. Further-

more, this measurement can be used to characterize specific or

nonspecific linking as it is dependent on the fraction of fluores-

cent solute interacting with macromolecules or on the rigidity of

the formed complex [48]. Anisotropy values close to zero are

related to depolarized emission and intense molecule rotation

[49].
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Figure 2: Incorporation kinetic profiles of systems containing poloxamer 407 (P407), Carbopol 974P (C974P) and curcumin (CUR) obtained at 25 °C
and 37 °C.

Furthermore, the temperature changes were more remarkable

than the variation in pH, with the systems investigated at 45 °C

displaying higher anisotropy values in comparison to those

evaluated at 37 °C.

Incorporation kinetics
Incorporation kinetics were evaluated by observing the fluores-

cence emission properties of CUR in order to evaluate if the

spectra obtained from the thermal analysis were influenced by

the end time of the sample preparation. The time required for

CUR incorporation into the polymeric micelles was also deter-

mined. Moreover, this analysis allows for the understanding of

diffusion and interaction of CUR at a micellar interface. The

analyses were carried out in a fluorescence spectrometer with

emission and excitation slits of 5–10 nm at 25 °C, once the

polymeric micelles were formed, to ensure higher specificity of

the results [4]. This evaluation simulates the incorporation of

CUR into polymeric systems by the second method of prepara-

tion, since the binary polymeric system was prepared and then

CUR was incorporated, without pH adjustment at pH 5. On the

other hand, by the first method of preparation, the incorpora-

tion of CUR was performed during the evaporation of ethanol

in the rotary evaporator. Therefore, the incorporation kinetic

profile was carried out at 25 and 37 °C, for simulation of the

temperature of CUR incorporation by the second and the first

preparation method, respectively. Furthermore, the analysis at

37 °C results in the condition where P407 micelles are well-

structured. The profiles and kinetic adjustments of CUR incor-

poration into the polymeric systems is shown in Figure 2.

In general, the effect of temperature did not change the pattern

of CUR incorporation. The emission intensity displayed an

initial peak with further decrease and maintained emission until

the end of the analysis, which hampered the generation of a

kinetic pattern for first or second order in both analyzed temper-

atures. These mechanisms would improve the understanding of

the involved mechanisms of this interaction. Kinetic studies of

CUR and P407 were carried out by Braga [50], and the initial

peak was not observed. Thus, the existence of this initial peak

(pattern I) is suggested to occur due to the reorganization of the

nanostructured system when CUR is quickly incorporated, as

well as the presence of C974P in the micelle structure and

subsequent redistribution of CUR in the micellar interface in

order to ensure the same concentration of the molecule in the

polymeric micelles. Moreover, CUR is incorporated from a

highly concentrated medium (ethanolic stock solution) to a low

concentrated medium (binary polymeric systems), where a

partitioning process take place in a dynamic exchange between

CUR molecules incorporated in the micelle and those dissolved

in the ethanol until the equilibrium is achieved with decrease in

the emission intensity [51]. Two distinct stages (pattern II and

III) after pattern I could be observed due to the stabilization of

these micellar systems, where CUR becomes aggregated with

lower emission intensity.

The temperature was found to influence the velocity of CUR in-

corporation. This micellar system at 25 °C showed fast incorpo-

ration in different locations, at around 1 min, due to the facili-

tated accessibility of CUR in the monomeric aggregates of P407

and C974P. In addition, lower intensity emission peaks could be

observed for these systems at 25 °C, since at lower tempera-

tures PPO groups are hydrated and display weak hydrophobic

interactions [6]. On the other hand, the systems evaluated at

37 °C demonstrated slower incorporation, around 60 min, due
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Figure 3: Fluorescence emission spectra and Ksv determination by Equation 3 of CUR (3.6 × 10−5 mol/L) at 25 °C (A and B) and 37 °C (C and D) for
P407 (0.2%, w/w) and C974P (3.2 × 10−4%, w/w); λexc = 422 nm with a 5–10 nm slit width. The spectral variation of CUR with I− concentration as de-
termined by fluorescence emission at 25 °C (B) and 37 °C (D). The arrows in (A) and (C) indicate the fluorescence suppression direction of CUR with
I− concentration.

to the structuring of the micelles to promote a steric hindrance

as well as higher emission intensity that promotes increased

hydrophobicity of PPO blocks with higher affinity with CUR.

CUR localization by fluorescence quenching
The localization of CUR in the polymeric systems was per-

formed by fluorescence quenching, using iodide as a hydro-

soluble suppressor [2,52-54]. The studies were performed at

25 °C (room and administration temperature) and 37 °C (body

temperature). Using this assay, it is possible to evaluate the

location of CUR in the polymeric system during drug release

and to determine the location of encapsulated drugs. If the drug

is located in an external location, it forms a complex with

iodide, and consequently, the intensity of the spectra decreases

[52]. The fluorescence quenching studies were carried out with

formulations composed of 0.02% (w/w) P407, 3.2 × 10−4%

(w/w) C974P and 3.6 × 10−5 mol/L CUR prepared by solid

dispersion and stored at 25 °C (Figure 3). Considering the high

concentration of water, this analysis was not influenced by the

viscosity of the formulations. Moreover, the system was con-

stantly agitated with a magnetic stir bar.

In the spectra shown in Figure 3, it was evident that formula-

tions evaluated at 37 °C showed a higher spectral intensity in

comparison to studies performed at 25 °C. These results can be

explained by the structure of thermoresponsive systems in

response to an increase in temperature. Moreover, for the

formulations evaluated at 25 °C, a decrease in emission was ob-

served during iodide addition, which demonstrates the higher

accessibility of the hydro-soluble suppressor, and consequently,

higher collisions with CUR [52,54,55]. However, the spectra of

the systems evaluated at 37 °C exhibited overlapping peaks,

which demonstrates that CUR is not accessible to complex with

the hydro-soluble suppressor. This suggests that the CUR is

localized in the micelle core at 37 °C, which results in a slower

release from the nanostructured system.
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Figure 4: SEM micrographs of systems containing 15% (w/w) P407, 0.25% (w/w) C974P: without CUR original magnification ×1500 (A, scale bar =
100 µm) and ×4000 (B, scale bar = 40 µm); containing CUR original magnification ×1800 (C, scale bar = 50 µm) and ×5000 (D, scale bar = 30 µm).

High Stern–Volmer constant (Ksv) values are correlated with

the CUR being externally located, with accessibility for

complexation with iodide. Conversely, low Ksv values

suggest an internal location, and consequently, no accessibility

to the suppressor molecule. The system evaluated at 37 °C

displayed lower Ksv values (Ksv = 1.3403 mol/L), whereas

formulations evaluated at 25 °C showed higher Ksv values

(Ksv = 5.8090 mol/L).

In this context, systems containing C974P displayed spectros-

copic characteristics that favored further studies, as they

presented lower Ksv values, indicating internal location of CUR

in P407-micelles as well as higher anisotropy values. This result

suggested that the viscosity of the microenvironment helped to

obtain stronger interactions. In addition, the system stored at

25 °C also showed interesting results, in that they did not show

any visible sign of CUR precipitates after 15 days of storage

(Figure S1 in Supporting Information File 1), indicating that

CUR was in an internal location.

Morphological analysis by scanning electron
microscopy
The morphological characteristics of the preparations with and

without CUR were evaluated by scanning electron microscopy

(SEM) (Figure 4). Micrographs of formulations containing

P407 and C974P revealed polymeric fragments with heterogen-

eous, but well defined, structures. This was probably due to the

presence and movement of water that was removed due to

the freeze-drying process. Besides, the portion of the micro-

structures or microchannels exhibiting exposed breakage

(Figure 4B) were probably due to the interaction between P407

and C974P.

SEM micrographs of preparation containing CUR showed the

presence of more irregular structures and channels without

defined orientation. These data can be explained by the prepara-

tion method since the samples were frozen at −20 °C, where

restructuring of the polymer can be observed. Moreover, the

negative charge of C974P and CUR hindered the exploration of

the structure at higher magnification due to the interaction of

these components and the microscopic filaments.

Morphological analysis by transmission electron
microscopy
The nanostructured organization of the polymeric systems is ev-

idenced in Figure 5. In the absence of CUR, the micelles

(Figure 5A and 5B) are represented by the white spherical

shapes of approximately 20 nm in diameter. Some authors have

performed transmission electron microscopy (TEM) of P407-

systems and showed smaller micelles (≈10 nm) with higher

homogeneity [56-58].

These differences in the micelle size could be due to the pres-

ence of C974P and interactions between PEO segments of P407

and hydroxyls of C974P.

Moreover, the TEM images of the nanostructured systems con-

taining CUR have been obtained at 37 °C (Figure 5C and 5D).
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Figure 5: TEM images of nanostructured systems at 37 °C demonstrating the individual micellar organization: (A) and (B) represent the nanostruc-
tured systems in the absence of CUR, scale bar equals to 200 and 100 nm, respectively. (C) and (D) represent the nanostructured systems contain-
ing CUR, scale bar equals to 200 and 100 nm, respectively.

Considering that CUR is found in the hydrophobic PPO core, as

demonstrated in the localization studies, it was observed to have

better homogenization of the size and shape of the micelles in

comparison to the systems without the drug. Additionally, the

micelles were larger (≈40 nm), probably due to the interaction

of PPO and CUR. In this sense, the presence of CUR promoted

a better structuring of the system.

Micelle size analysis
The micelle size, polydispersity index (PDI) and D90% of the

nanostructured systems with and without CUR were deter-

mined by dynamic light scattering (DLS) and the results are

displayed in Table 2.

The polymer concentration should be low enough to circum-

vent multiple scattering in DLS measurements [56]. Thus, the

systems were diluted in two different concentrations, 0.3% and

1.5% (w/w), in relationship to the amount of P407 in the formu-

lations. It was observed that the system is quite dynamic. Thus,

the most diluted system (0.3%, w/w) showed a significantly

higher micelle size and PDI (p < 0.05), probably due to the

presence of water, which can enable higher hydration of the

polymeric chains. The presence of CUR significantly reduced

the PDI (p < 0.05) for the system diluted at 0.3% (w/w) P407 at

both temperatures, and at 37 °C for the system diluted at 1.5%

(w/w) P407. Moreover, the presence of CUR did not change the

PDI for the different P407 dilutions (0.3 and 1.5%, w/w) at

37 °C. The presence of CUR decreased the micelle size (D) in

the 0.3% (w/w) P407 dilution at 25 °C, but significantly in-

creased D for all other conditions of (p < 0.05). Thus, the

increase in the P407 concentration results in nanometer-sized

micelles with a lower PDI. In addition, the presence of CUR in-

creases the micelle size and also results in a low PDI. The TEM

results and particle size when diluted to 0.3% (w/w) P407 were
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Table 2: Micelle size (D), polydispersion index (PDI) and micelle size distribution (D10%, D50% and D90%) of the nanostructured systems with and
without CUR, evaluated at 25 °C and 37 °Ca.

System dilution (%, w/w)b Analysis Temperature

25 °C 37 °C

P407/C974P P407/C974P/CUR P407/C974P P407/C974P/CUR

0.3 D (nm) 26.87 ± 5.37 12.83 ± 0.12 14.50 ± 6.32 19.23 ± 0.06

PDI 1.04 ± 0.04 0.39 ± 0.02 0.24 ± 0.02 0.23 ± 0.01

D10% (nm) 21.70 ± 0.00 10.77 ± 0.06 10.97 ± 0.31 15.50 ± 0.17

D50% (nm) 21.87 ± 0.70 11.77 ± 0.06 13.23 ± 0.76 18.17 ± 0.12

D90% (nm) 25.57 ± 3.39 15.47 ± 0.15 18.20 ± 1.21 22.30 ± 0.10

1.5 D (nm) 5.10 ± 0.17 15.90 ± 1.31 13.50 ± 0.35 11.33 ± 0.64

PDI 0.29 ± 0.01 0.17 ± 0.00 0.14 ± 0.02 0.19 ± 0.01

D10% (nm) 3.73 ± 0.15 11.53 ± 1.06 9.83 ± 0.21 8.37 ± 0.42

D50% (nm) 4.57 ± 0.21 14.00 ± 1.28 12.13 ± 0.38 10.20 ± 0.44

D90% (nm) 6.30 ± 0.26 20.20 ± 1.67 17.03 ± 0.47 14.50 ± 0.53

aResults represents the average of at least three replicate analyses. bIn relationship to P407 amount in the formulation.

similar (but not the same) due to water removal during the sam-

ple preparation for TEM analysis [56]. Therefore, the results

showed the nanometer-sized structuring of the systems.

Rheology
The flow properties of binary polymeric systems containing

15% (w/w) P407, 0.25% (w/w) C974P, 0.08% (w/w) CUR were

evaluated at 25 and 37 °C (Figure 6).

The nonlinear behavior to shear stress due to the shear rate

(non-Newtonian), resulting in structural changes, was main-

tained even after the incorporation of CUR in the polymer

blends. Moreover, the addition of CUR in binary polymeric

systems did not lead to a change in flow rheological profiles at

25 °C, whereas a slight decrease of shear stress was observed

for systems evaluated at 37 °C. In this way, CUR did not

change the structuring of the system. Conversely, the increase

in temperature leads to an increase in shear stress due to the

thermoresponsive properties of the preparations.

Low hysteresis areas and different yield values could be ob-

served in a prominent way at 37 °C, in comparison to systems

investigated at 25 °C. Consequently, these systems showed

shear thinning behavior flow, which is considered to be a desir-

able characteristic for pharmaceutical semi-solid formulations

in order to facilitate clinical administration in a uniform way

over the mucous tissue of the buccal cavity. Subsequently, it

can recover the rheological properties that these systems

presented before the shear stress application [10,59,60].

The effect of the presence of CUR and the increase in tempera-

ture were statistically evaluated by the consistency index (K),

flow behavior index (n) and yield value. These indexes were

calculated by the rheological models, Ostwald de Waele,

Casson and Herschel–Bulkley. In order to verify the rheologi-

cal model that could properly fit the K and n value, R or Χ2

were calculated and it was observed that R values were closer to

1, according to Herschel–Bulkley theory (Table 3).

The presence of CUR did not lead to any significant differ-

ences (p = 0.6875) in the consistency index (K) of the prepara-

tions, and the formulations kept the same resistance to deforma-

tion [11], confirming that CUR is located in the core of the

polymeric micelle (as shown by the localization analysis) and

therefore did not alter the interactions between P407 and C974P

in order to change the viscosity. Otherwise, the increase in tem-

perature led to the significant increase of K (p = 0.000210) due

to the thermoresponsive properties of P407 [4].

The formulations with and without CUR showed shear thinning

behavior due to n values lower than 1 (Table 2). The positive

yield values demonstrated that these systems are plastic [9].

Thus, the increase in temperature significantly decreased the n

values (p < 0.05), whereas the presence of CUR had no signifi-

cant influence on the n values (p = 0.138912).

The yield value and hysteresis area results are shown in

Table 2. The yield value demonstrates the ability of the formu-

lations to withstand a significant shear stress without flow, and

then after the weakening of the structure, the ability to start to

flow [61]. Both an increase in temperature and incorporation of

CUR led to significant differences (p < 0.05) in the yield value.

The significant increase in yield value with an increase in tem-

perature and subsequent micelle structuring can be explained by
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Figure 6: Flow rheograms of formulations containing 15% (w/w) P407, 0.25% (w/w) C974P (∆ - green) and 15% (w/w) P407, 0.25% (w/w) C974P and
0.08% (w/w) CUR (◊ - blue). The closed symbols represent up-curve and open symbols represent down-curve. Error bars have been omitted for
clarity, and each rheogram represents the average of at least three replicates with variation coefficient 10%.

Table 3: Consistency index (K), flow behavior index (n), yield value and hysteresis area at 25 and 37 °C for systems containing P407, C974P with
and without CUR.

Rheological properties Temperature (°C) P407/C974P/CUR (%, w/w)

(15/0.25/0) (15/0.25/0.08)

K (Pa·s)n a 25 5.4027 ± 0.2110 6.1910 ± 0.6374

37 15.8867 ± 0.7379 15.4367 ± 0.8164

n (dimensionless)a 25 0.6311 ± 0.0058 0.6094 ± 0.0130

37 0.5371 ± 0.0030 0.5395 ± 0.0068

Yield value (Pa)a 25 7.7960 ± 0.4634 2.2065 ± 0.8565

37 48.6033 ± 3.0647 26.4000 ± 0.5200

Hysteresis area (Pa/s)a,b 25 7036.80 ± 2423.70 14381.16 ± 3607.37

37 −17520.00 ± 8553.99 −26805.00 ± 2725.00

aEach number represents the mean of at least three replicates; bPositive number represents rheopexy and negative numbers represent thixotropy.

the transition from liquid to gel. However, the increase of

CUR led to a significant decrease in the yield value, probably

due to the higher exposure of the hydrophilic portion to water

[62,63].

The hysteresis area of the formulations was investigated by

RheoWin 4.10.0000 software (Haake®). The formulations

displayed thixotropic behavior at 25 °C, which provides resis-

tance to breakage in addition to higher structural flexibility,
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Figure 7: (A) Elastic modulus, G’ (Pa), (B) viscous modulus, G” (Pa), (C) dynamic viscosity, η’ (Pa), and (D) tan δ of the formulations containing P407
(15%, w/w) and C974P (0.25%, w/w) with and without CUR (0.08%, w/w) evaluated at 25 and 37 °C. Each point represents the average of at least
three replicates with a variation coefficient lower than 10%.

which is due to the lower viscosity after the application of shear

stress [64,65]. Conversely, the formulations exhibited a signifi-

cant decrease (p < 0.05) in the hysteresis area at 37 °C (Tukey).

Thus, both formulations (with and without CUR) demonstrated

rheopetic behavior due to the higher influence of P407 in the

structuring of the system at 37 °C. This behavior is considered

important in order to increase the retention of preparations in

the buccal cavity [59,60]. Moreover, the presence of CUR sig-

nificantly decreased the hysteresis area (p < 0.05) at 37 °C.

These systems displayed rheopexy at 37 °C, which are negative

values. In this sense, the decrease in the hysteresis area means

that the systems showed higher rheopexy areas. The presence of

CUR resulted in an increase in the micelle size and homo-

geneity, as evidenced by TEM and the size analysis. Thus, an

improved organization and higher resistance to the stress and

shear rate applied were observed. This higher resistance to the

flow explains the higher rheopexy of the systems containing

CUR, mainly at 37 °C.

The effects of the presence of CUR and the change in tempera-

ture on the viscoelastic properties (G’, G”, η’ and tan δ) of the

systems was also evaluated (Figure 7).

An increase in frequency for both the elastic and viscous

modulus was observed (Figure 6A and 6B). A decrease in the

dynamic viscosity and loss tangent were observed with increas-

ing frequency (Figure 6C and 6D). The exception is for the loss

tangent of the CUR systems evaluated at 25 °C, which remain

constant at the majority of the frequencies. Moreover, the

increase in temperature led to the increase of G’, G”, η’ and a

decrease in tan δ for formulations with and without CUR. This

behavior has already been previously observed for systems con-

taining P407 and other acrylic acid derivatives [9,11], as well as

polymer blends containing P407 and C974P or PCB [1,10].

Regarding the effect of the presence of CUR at 25 °C, an

increase of G’, G” and η’ and a decrease of tan δ was observed

for most frequencies. Hence, these changes provided better

structuring and elasticity at 25 °C. However, polymer blends

containing CUR investigated at 37 °C displayed lower G’, G”

and η’ with an absence of significant changes for tan δ. These

results could be explained by the difficult micelle structuring of

P407 and jellified three-dimensional chains.

Furthermore, both preparations exhibited viscoelastic behavior,

except for the polymer blends containing P407 and C974P with-

out CUR at 25 °C. In these formulations, the G’ values

exceeded G” and the loss tangent was smaller than 1 for the

viscoelastic preparations. Thus, the viscoelasticity is favorable

to oscillatory movements performed at 25 °C, occurring during

transport and storage of formulations [9].

The gelation temperature, Tsol–gel, of the formulations with and

without CUR was investigated as well. The systems displayed

lower G’ values at low temperatures; however, high G” values

were observed as the temperature was increased. Even with
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Figure 8: Textural properties of the systems containing P407, C974P and CUR, investigated at 25 and 37 °C: (A) hardness, (B) compressibility,
(C) adhesiveness, (D) elasticity and (E) cohesiveness. Each value represents at least three replicates.

the incorporation of CUR, the dynamic viscosity increased

significantly due to the increase in temperature and gelation

temperature [59,66]. The presence of CUR significantly in-

creased (p < 0.05) the gelation temperature of the preparations

from 36.03 ± 0.06 °C in systems without CUR (15/0.25) to

36.94 ± 0.12 °C in systems with CUR (15/0.25/0.08). Conse-

quently, the structuring of the jellified three-dimensional chain

is explained by the difficulty of the externalization of the hydro-

philic portion (i.e., ethylene oxide (EO)) of micelles to interact

with water and initiate the interaction between EO and C974P-

hydroxil [43]. Despite the significant increase in the gelation

temperature of the formulations containing CUR, the Tsol–gel is

considered suitable (between 25 and 37 °C).

Texture profile analysis
The mechanical properties of the preparations with and without

CUR were evaluated by texture profile analysis (TPA). The

information about the physical structure of gels obtained by

TPA are useful for the development of nanostructured mucoad-

hesive systems related to the preparation, packaging, adminis-

tration and structuring from development until the application

and performance evaluation at the application site. In this way,

the formulations should be resistant to the forces applied by the

environment. This is also true for saliva, which can also be

considered as a natural protection in the organism against impu-

rities exposed to the mucosa and can hinder the retention of

such systems and thereby impair the clinical efficacy [65-67].

Hardness, compressibility, adhesiveness, elasticity and cohe-

siveness results for the formulations with or without CUR at 25

and 37 °C are given in Figure 8. In addition, the effects of the

presence of CUR and the increase in temperature were statisti-

cally evaluated for each parameter.

Hardness is an indicator of the ability to remove the formula-

tion from the packaging material and its subsequent spread-

ability on the mucous tissue in a uniform layer to avoid any

discomfort to the patient. Conversely, compressibility expresses

the application of the formulation in the buccal cavity. Low

compressibility and hardness values are desirable in order to
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facilitate the removal of the preparation from the packaging ma-

terial and administration in the buccal cavity and topically

applied over the mucosa [66-68]. However, formulations should

display enough resistance to avoid the product flowing from the

packaging material and application site [10]. Adhesiveness,

considered as the required work necessary to overcome the

attraction forces between the sample surface and the polycar-

bonate probe surface, is a desirable parameter for mucoadhe-

sive preparations aimed at buccal applications. In this sense, a

higher adhesion could implicate higher retention, and conse-

quently, higher clinical efficacy of preparations for buccal drug

[67,68].

The incorporation of CUR significantly decreased (p < 0.05) the

hardness and compressibility, which is a desirable character-

istic to facilitate application of the formulation in the buccal

cavity. This behavior has been observed previously for polymer

blends containing P407 and other acrylic acid derivative with a

similar cross-linking degree as C974P to carry hypericin [69].

In this study, the polymeric micelle relaxation due to the hydro-

phobic drug could explain this behavior and be related to the

low yield values in the flow rheology analysis. On the other

hand, CUR did not significantly (p = 0.06597) influence the

adhesiveness values of different preparations. This phenome-

non has been observed for other polymer blends containing

hydrophobic drugs [7] since the mucoadhesive properties are

obtained by the interaction between the hydrophilic portion of

the polymeric micelles and mucosa [70].

It was also observed that an increase in temperature significant-

ly (p < 0.05) increased hardness, compressibility and adhesive-

ness due to the thermoreversilibity of the material, which favors

the structuring of the systems, as previously observed in the

flow rheology with higher consistency index numbers. These

higher values are desirable for a higher adhesion to the buccal

cavity, leading to longer contact time. These results confirm

that the system is mucoadhesive but also warrant further

mucoadhesion investigations [11,59,71].

The gel ability to flow and return to the initial state is defined as

elasticity [9]. In addition, cohesiveness is related to the restruc-

turation and molecular interactions after subsequent shear stress

during the application of the system [67,72]. The incorporation

of CUR did not significantly influence (p < 0.05) the elasticity

and cohesiveness, which could be explained by the influence by

hydrogen bonds and water mobility in the sample. As elucidat-

ed in location studies, CUR is a hydrophobic molecule that is

located in the core of polymeric micelles and thus it should not

influence this parameter [9]. Regarding the temperature effect

(at 25 and 37 °C), the preparations demonstrated elasticity and

cohesiveness values significantly lower (p < 0.05) at 37 °C.

Syringeability
The work required to expel the formulation from a syringe

(syringeability) at 25 °C was investigated by a texture analyzer.

This test was performed in order to simulate extrusion of the

formulation from the packaging material and during the admin-

istration over a lesion in the buccal cavity [59]. The effect of

CUR incorporation in this system was evaluated, and despite

the fact that the formulation containing CUR displayed a lower

syringeability (32.6383 ± 2.1814 N·mm), it was not significant-

ly lower (p > 0.05) than the syringeability of preparations with-

out CUR (34.0390 ± 1.3390 N·mm). Thus, CUR incorporation

did not influence the syringeability of the formulations and the

results indicated the ability to administer the system [59].

Mucoadhesive properties
In vitro evaluation of mucoadhesive strength by
detachment force
The mucoadhesive characteristics of preparations with and

without CUR were evaluated by detachment force using a

partially hydrated mucin disc as substrate [59,70]. According to

this method, it is possible to obtain a graph with the force re-

quired to separate two surfaces with time and the maximum re-

quired force to separate the formulation from the mucin disc

(mucoadhesive force). In addition, the adhesion work values

were calculated.

The incorporation of CUR in mucoadhesive thermoresponsive

systems led to a significant increase (p < 0.05) for both

the mucoadhesive force from 0.2109 ± 0.0054 N without

CUR to 0.2175 ± 0.0016 N with CUR and increase in the adhe-

sion work from 0.6890 ± 0.0377 N·mm without CUR to

0.7667 ± 0.0475 N·mm with it incorporated. However, these

results were not observed for adhesiveness, which could

provide evidence of adhesion. This parameter evaluates the

interaction between the formulation and polycarbonate probe,

where this lower specificity explains this result. Conversely, the

detachment force method relates the interaction of C974P-

hydroxyls and the mucin chain. This is provided by the nano-

structuring of polymer blends at body temperature, and hence, a

P407 micelle structure with a hydrophobic nucleus and hydro-

philic shell, which interacts with a mucoadhesive polymer in

the external portion of polymeric micelles [10]. Moreover, these

results are clinically relevant since the formulations containing

CUR would display a longer residence time than the systems in

the absence of this drug. Hence, the formulation should demon-

strate the intimate contact with the oral mucosa, for prolonged

periods, which could provide the concentration of the drug

close to the cancer lesions with higher bioavailability [73].

The calculation of mucoadhesive force and adhesion work has

already been discussed by other authors [70] since mucoadhe-
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Figure 9: (A) Cumulative retention profile of a polymeric system containing poloxamer 407, Carbopol 974P® and curcumin retained in a mucous layer
versus time. (B) Oral porcine mucosa after the end of the test.

sive force is the most commonly used parameter to describe

mucoadhesion. However, adhesion work seems to be influ-

enced by the elasticity and plasticity of the investigated

systems. It is suggested in the literature as the most suitable

term for the evaluation of the detachment force since it can

better detect the differences in mucoadhesive ability [74], as

was observed for the formulations with and without CUR.

Moreover, the work calculation (if converted to units of Joule)

reflects the necessary energy to separate two surfaces. Thus, the

significant increase of adhesion work correlates with higher

interaction between the mucin surface and the preparations con-

taining CUR.

Ex vivo mucoadhesive properties by falling liquid
Besides the detachment force, the determination of the mucoad-

hesive properties of nanostructured systems could also be

explored by liquid falling experiments [30,74,75]. This method

is related to the ability of systems stay adhered to surface

mucosa with the falling liquid (PBS buffer) at 4 mL/min during

20 min. Higher flow resistance evidences strong adhesive inter-

actions between preparations and mucosa. The amount of

adhered gel is calculated in an indirect method. Thus the formu-

lation eluted with buffer in a beaker containing Tween 80 and

the drug in the formulation was quantified by chromatographic

methods. Consequently, it was evaluated only for the CUR

systems. The retention of the systems without CUR have

already been evaluated by a similar method, where the formula-

tions were marked with FITC-dextran and the retention was in-

vestigated by fluorescence microscopy [70]. The cumulative

formulation percentage adhered versus time is displayed in

Figure 9.

The time buffer elution effect as a function of time over the

sample was statistically investigated and it was verified to sig-

nificantly decrease (p < 0.05) the gel retention with time.

Besides, the high variability observed is due to the irregulari-

ties of the mucosa surface. Thus, the formulation has already

been eluted completely after 5 min. Even if the methodology

used to evaluate the retention of the formulations without CUR

was different [70], it is possible to compare the results, since the

PBS flow rate used was the same (4 mL/min). In this sense, the

tests carried out by Bassi da Silva and collaborators [70]

demonstrated that the systems were eluted completely after

5 mL elution, which corresponds to 1 min 15 s. In this sense,

the systems containing CUR demonstrated improved retention

in comparison with the systems without CUR. This result

agrees with the mechanical and rheological characteristics ob-

served. One of the replicate images is showed in Figure 9B.

In vitro drug release profile
During the development of drug delivery systems for buccal ap-

plication, in vitro drug release is highly important and is consid-

ered a prerequisite for absorption as it contributes to the rate

and extension of drug bioavailability in the body [76]. More-

over, these investigations can distinguish between different

systems containing the same drug, the same formulations after

aging, and process changes during the preparation process

[17,72].

CUR release profiles were obtained by the continuous monitor-

ing of drug release over time. The key factors which could

affect CUR release are release media volume, temperature and

agitation or flow and cellulose acetate membrane [77]. Thus, in

vitro drug release of CUR from the mucoadhesive nanostruc-

tured systems was carried out with controlled temperature and

agitation in order to simulate conditions in the buccal cavity

without regard to other physiological aspects (pH, salt concen-

tration, enzymes and mouth movements during swallowing and
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Figure 10: Release profile of CUR from a mucoadhesive nanostructured system containing 15% (w/w) P407, 0.25% (w/w) C974P and 0.08% (w/w)
CUR.

speaking). These initial tests are important to verify if the drug

could be released from the drug delivery system and how the

applied technology influences the availability of the drug.

Another aspect to be considered for the in vitro drug release

analysis is the choice of release medium. For hydrophobic

drugs, sometimes it is necessary to add surfactants that can

provide the sink condition. In this study, Tween 80 was used as

a surfactant, as previously used in other in vitro CUR drug

release investigations [30,78]. Tween 80 can interfere with the

structure and rheological properties of the peripheral area of the

gel. However, this situation is similar to in vivo conditions,

where other substances with surfactant properties can be present

in buccal environment [59,79].

The complete release of CUR (100%) occurred after approxi-

mately 8 h (Figure 10), making it suitable for buccal applica-

tions. The general equation (Equation 7) described for poly-

meric systems [80] was used to evaluate the release mechanism

of CUR. Here, the release exponent (n), which determines if the

drug release mechanism is Fickian (Case I) or non-Fickian

(transport Case II, anomalous or super case II) revealed an n

value of 0.6517. The nanostructured systems displayed anom-

alous release kinetics, hence, the polymeric chains were slowly

reorganized, whereas CUR diffused by time-dependent anom-

alous effects. The solvent diffusion velocity displayed similar

relaxation of the polymeric chains [77].

Ex vivo permeation of curcumin in porcine oral
mucosa
Permeation studies are considered fundamental to determine the

viability of oral mucosa as a targeting site for drug delivery

[81,82]. These studies can be performed ex vivo, in vitro or in

vivo and are dependent of the drug physicochemical character-

istics and its behavior when incorporated in drug delivery

systems and biological target tissue. The buccal cavity presents

significant differences in permeability due to the composition

and thickening of the mucosa [81,82].

Different animal species display varying thickness and kera-

tinization patterns with porcine oral mucosa the most common-

ly employed for ex vivo testing due to the physiological similar-

ities with human tissue, ethical considerations and low cost [81-

83].

Permeation assay using a Franz cell is a quantitative technique

where the amount of drug in the receptor medium is measured

according to its physicochemical characteristics, for example,

by chromatography or spectrophotometry. Thus, the perme-

ation kinetic profile and the amount of retained drug in the

mucosa can be measured. Considering the local application, it is

advantageous for the drug to slowly permeate the mucosa with-

out reaching blood vessels and systemic circulation [8].

The cumulative permeation percentage was calculated after

each time point in porcine oral mucosa. However, even after

24 hours no drug in the receptor compartment was detected

suggesting that the amount of CUR was below the detection

limit for the chromatographic method used.

The retention of CUR in porcine oral mucosa was 6.99 ± 0.49%

(or 47.67 ± 3.33 µg/cm3), which demonstrates that the drug was

retained in the mucosa but did not reach the blood flow. These

results were influenced by the absence of the water in the donor

acceptor. This condition promoted the relation with permeation

by the PAS technique. These results were favorable for local

application over the initial stages (Stage 0 – carcinoma in situ,

Stage I – less than 2 cm tumor and Stage II – more than 2 and

less than 4 cm tumor) after surgical procedure. Additionally,

localized and initial tumors enable the choice of less aggressive
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Figure 11: Optical absorption spectra obtained from PAS with (A) CUR and polymeric systems with and without CUR, (B) permeation of CUR through
mucosa and (C) area of behavior of permeation of absorption band in 427 nm in mucosa.

treatments, such as the administration of nanostructured CUR

[26,27]. According to Sannomiya and Furukawa [84], the

surgical procedure is indicated for buccal squamous cells in

initial stages, achieving tissue without tumor margin. For more

advanced tumors, the use of chemotherapy and radiotherapy

adjuvants is recommended [84].

Photoacoustic spectroscopy is useful in the investigation of

permeation and distribution of substances in biological tissues

in vitro, ex vivo and in vivo. This technique is based on the de-

termination of optical spectral absorption by a photoacoustic

signal created by the interaction of matter with radiation of a

known wavelength [7,85]. Besides, the relatively low cost, non-

destructible manner, and ability to detect low amounts of sam-

ple are interesting for investigation of opaque samples [7].

Moreover, this is a qualitative technique that determines if a

drug can permeate or not and, if so, the depth of tissue that can

be permeated. The permeation of CUR from polymer blends

containing P407 and C974P® were performed in porcine

mucosa by photoacoustic spectroscopy and the photoacoustic

spectra of the formulations, tissues and permeation of CUR are

shown in Figure 11.

The optical absorption spectra of CUR and formulations are

presented in Figure 11A. A Gaussian adjustment was per-

formed in order to decompose the spectra into its components.

It can be observed that the drug exhibits an intense band that

varies from 250 to 700 nm, with peaks around 250, 315, 427,

515 and 659 nm. The main absorption band of CUR is located

at 427 nm and is due to the aromatic rings of hydroxyl groups

and ether [86]. The polymer blend 15/0.25 demonstrated a large

band that varies from 250 to 350 nm, with peaks at 250 to

295 nm. On the other hand, the blend 15/0.25/0.08 displays

variation from 250 to 500 nm with peaks at 250, 295, 315, 359

and 427 nm. In this sense, the detection of these characteristic

bands in the mucosa is indicative of the presence of the drug.

Regarding the photoacoustic spectra of porcine oral mucosa

(Figure 11B), all samples displayed a band at 415 nm related to

the blood vessels. Figure 9C exhibits that CUR from formula-

tions could permeate the mucosa. Moreover, the thermal

diffusion length (µs) was 31 µm on both sides of the oral

mucosa. Thus, CUR permeated the total sample thickness

(818 µm).

In this sense, the results of the PAS and Franz cell technique are

complementary, since PAS can elucidate if the drug could

permeate and the former is able to quantify the concentration of

drug that went through the receptor vessel and was retained in

the mucosa.

Drug and formulation cytotoxicity
The cytotoxicity potential of the drug and formulations with and

without CUR were investigated on squamous carcinoma cells

(FaDu and Cal27) and normal oral immortalized keratinocytes

(FNB6). The three cell lines were exposed to a wide range of

drug concentrations (0, 2.5, 5, 10, 20, 40, 80, 120 and 240 µM)

for 24 h. Moreover, another range of drug concentrations (2000,

1500, 1000, 500, 300, 100, 20, 10 µM) was utilized for the

formulations. After this period, cell viability was indirectly de-

termined by MTT metabolic assay (Figure 12).

The viability of Cal27 was significantly decreased (p < 0.05) by

the presence of the formulations, regardless of the presence of

CUR. This cytotoxic effect was not observed in the FaDu and

FNB6 cells. The cytotoxic effect of the formulations could be

explained by the presence of P407, a known surfactant. The in-

corporation of CUR into nanostructured systems caused a sig-
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Figure 12: Cytotoxicity of formulations: (A) cell survival curves of drug and formulations, (B) IC50 comparisons of drug and formulations for two SCC
(FaDu and Cal27) and one normal oral (FNB6) cell lines. Each IC50 value and percent cell survival represent average ± SEM (n = 3). CUR dispersed
in DMSO aqueous solution exhibited cytotoxicity on all three cell types with average IC50 of 24.90 ± 2.30, 7.205 ± 1.831, 15.916 ± 3.440 µM, for
FaDu, Cal27 and FNB6, respectively. The possible DMSO interference on methodology was investigated (Supporting Information File 1, Figure S2).

nificant (p < 0.05) increase in the IC50 values for both FaDu

and FNB6 compared to Cal27.

This behavior indicated that CUR could be released and

permeate before it could kill the cells. Moreover, the presence

of CUR significantly decreased the IC50 due to its cytotoxicity

properties [87]. The formulations were diluted in order to main-

tain the viability of the cells. Therefore, CUR is released into

the medium that has a large amount of organic molecules and

low water activity to disperse the drug. However, each cell line

was cultivated in a different type of medium, DMEM, RPMI

and Green’s medium for Cal27, FaDu and FNB6, respectively.

These different media could explain the results. The Cal27

viability was quite similar when treated with the drug and with

the formulations, thus the same drug concentration is likely

available. The slow drug release, ex vivo retention of CUR in

the mucosa and the cytotoxic results suggest that these formula-

tions would not be effective in primary therapy. However, it

could be very useful after surgical procedure in order to kill the

remaining cells.

Conclusion
The physicochemical, mechanical, pharmaceutical and biologi-

cal properties of mucoadhesive nanostructured systems contain-

ing CUR were explored in this study. The photophysical inter-

actions, CUR incorporation kinetics and the location of drug in

the micelles were elucidated. The pharmaceutical aspects, in-

cluding rheology, mechanical properties, CUR release and

permeation using two complementary methods were also inves-

tigated. Moreover, the biological characterization involved in-

vestigation of the cytotoxicity in tumor and healthy cell lines.

The formulations prepared from solid dispersions stored at

25 °C containing P407, C974P and CUR displayed viscoelastic

properties, plastic behavior with rheopexy at body temperature

(which provides better retention), and increased mucoadhesive

force due to the presence of CUR. CUR tends to be located in

the core of the micelles; consequently, the drug displayed slow

and complete release after 8 h but did not permeate the porcine

oral mucosa. The cytotoxicity studies revealed the increase in

the cytotoxic effects for some tumor cell lines (Cal 27) when in-

corporated into the formulation but decreased cytotoxic effects
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in healthy cells. Therefore, the nanostructured system demon-

strated promising results due to the selectivity towards cancer

cells in a monolayer cell culture in addition to exhibiting excel-

lent physicochemical properties. Hence, further activity studies

should be performed in tissue-engineered and in vivo models in

order to test the performance of these systems in a more com-

plex environment.

Experimental
Materials
Curcumin (>98% purity), poloxamer 407 and mucin from

porcine stomach type II were purchased from Sigma-Aldrich

(St. Louis, MO, USA). Carbopol 974P® was kindly donated by

Lubrizol (São Paulo, SP, Brazil). Curcumin C3 complex® was

received from Sabinsa® (West Windsor, USA) and triethanol-

amine, used as a neutralizing agent, was purchased from Galena

(Campinas, SP, Brazil). Potassium iodide was purchased from

Biotec (São Paulo, SP, Brazil), sodium chloride was purchased

from Nuclear (Diadema, SP, Brazil) and polyssorbate 80

(Tween 80®) came from Synth® (Diadema, SP, Brazil).

Dulbecco’s Modified Eagle’s Medium high glucose (DMEM),

fetal bovine serum (FBS), ʟ-glutamine, penicillin, streptomycin

and trypsin were purchased from Sigma-Aldrich (St. Louis,

MO, USA).

Preparation of formulations
C974P (0.25%, w/w) was dispersed in purified water using a

mechanical stirrer until complete dispersion. P407 (15%, w/w)

was added to this mixture and the preparation was stored at

4 °C to ensure the complete wetting of the compounds. After

12 h, the formulations were stirred to provide the complete mix-

ture of the two polymers. The final preparation was neutralized

with triethanolamine, centrifuged at 3000 rpm to remove air

bubbles, and stored at 4 °C for at least 24 h before further anal-

ysis [1,10,11]. Regarding the nanostructured systems contain-

ing curcumin, 15% (w/w) P407 was dispersed in ethanol and

0.08% (w/w) curcumin was added to the mixture and homoge-

nized until complete mixture. The ethanol was eliminated using

a rotary evaporator at 60 °C. When a thin film was obtained, the

preparation was stored in a desiccator for 24 h. Afterwards, the

thin film was added to the dispersion containing a mucoadhe-

sive polymer (C974P), which was previously prepared. The

system was stirred and finally the pH was adjusted to 7.0 using

triethanolamine.

The nanostructured system containing CUR was also prepared

by a second method (direct addition of CUR after preparation of

binary polymeric system). Firstly, 0.25% of C974P was added

to purified water and agitated until complete dispersion. Subse-

quently, 15% P407 was added to this mixture and stored in the

refrigerator for 12 h. Afterwards, the mixture was agitated,

CUR (0.08%, w/w) was added and the system pH was adjusted

to 7 with triethanolamine.

Interaction studies of curcumin in
mucoadhesive nanostructured systems
Interaction evaluation by photophysical studies
The interaction between CUR and the polymer blend was evalu-

ated by fluorescence spectrophotometry, where the formula-

tions were diluted in water and the final concentration of the

components were 1.8 × 10−5 mol/L curcumin, 0.01% (w/w)

P407 and 0.0001675% (w/w) C974P. The behavior of the

formulations was monitored regarding the increase of tempera-

ture and pH changes in the fluorescence emission spectra and

anisotropy values obtained by the fluorescence spectropho-

tometer (Varian Agilent Technologies®). The anisotropy (r)

was automatically calculated by the software Eclipse ADL

Program Selector, according to the Equation 1:

(1)

where IVH and IVV represent the intensity measured by the exci-

tation of the vertically aligned polarizer and the horizontally

aligned polarizer, respectively. G is the instrumental correction

factor of the ratio of the sensitivities for vertically and horizon-

tally polarized light [48,88,89].

The excitation wavelength was 422 nm with emission wave-

length 440 to 700 nm and the emission slit was set to 5–10 nm.

All the systems were evaluated at 10 (below the critical micellar

temperature), 25, 37 and 45 °C (above the critical micellar tem-

perature) at pH 7. In addition, the systems containing P407 and

CUR were evaluated at pH 7 and 10 at a temperature of 37 °C.

At the same time, the binary polymeric systems were moni-

tored in pH 5, 7 and 10 at 37 °C. All the measurements were

performed after thermal equilibrium was achieved [46,90,91].

Studies of curcumin incorporation kinetics
In order to simulate the mechanism of incorporation of

curcumin and the required time for the drug to reach the core of

the polymeric micelles, the incorporation kinetic profile was de-

termined using the CUR addition sequence based on the second

method of preparation. In a quartz cuvette, 22 µL of CUR stock

solution (4.8 × 10−3 mol/L) was added to the P407 and C974P

polymeric dispersion without pH adjustment, totaling 3 mL.

The final concentration was 3.6 × 10−5 mol/L CUR, 0.02%

(w/w) P407 and 0.0032% (w/w) C974P. The kinetic profile was

evaluated at 25 °C and 37 °C, over 125 min by monitoring the

fluorescence emission spectra, where the excitation wavelength

was 422 nm and the emission slit was set to 5–10 nm [92].
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Localization of curcumin in nanostructured systems
The relative location of curcumin in the polymer blends con-

taining P407, C974P and CUR prepared by solid dispersion

stored at 25 °C and 5 °C was performed using iodide (I−) as a

hydrophilic suppressor. Firstly, 133 µL of gel containing

CUR and purified water were added to a 100 mL volumetric

flask. Subsequently, increasing aliquots of KI (1 mol/L) were

added in a solution containing polymeric micelles of CUR

(3.6 × 10−5 mol/L), 0.02% (w/w) P407, and 0.0032% (w/w)

C974P. The spectral emission profile from 440 to 700 nm was

monitored after each iodide addition using an excitation wave-

length of 422 nm and in most cases the emission slit was set to

5–10 nm. The Stern–Volmer (Ksv) constant was obtained at 25

and 37 °C by Equation 2:

(2)

where the emission values in the presence and absence of a

suppressor are represented by F0 and F, respectively, and the

concentration of iodide in the solution is given by [I−]

[91,93,94]. The dilution effect promoted by the addition of each

hydrophilic suppressor aliquot was corrected for each spectral

emission profile.

Morphological analysis by scanning electron
microscopy
The morphological characteristics of formulations in the pres-

ence and absence of curcumin were evaluated by an electron

scanning microscope (Quanta FEI, Thermo®, Oregon, USA).

Approximately 2 g of the formulation was freeze-dried and a

sample of material was placed on double-sided tape, and the

sample was coated with colloidal gold under argon atmosphere.

Morphological analysis by transmittance electron
microscopy
The morphology of the formulations was also determined using

a JOEL JEM 1400 transmission electron microscope (Peabody,

MA, USA). 0.2 mL of the nanostructured material was diluted

in a 10 mL volumetric flask and placed on a formvar/Carbon

200 mesh, copper grid (Ted Tella, Redding, CA, USA). This set

was negatively stained with 2% (w/v) uranyl acetate solution

for observation [57,95,96]. The samples were prepared at 37 °C.

Micelle size analysis
The hydrodynamic diameter (D), polydispersity index (PDI)

and size distribution of 10%, 50% and 90% (D10%, D50% and

D90%) of micelles of the nanostructured systems was carried

out by dynamic light scattering (DLS) analysis using a

NanoPlus Particle Size Analyzer (Particulate Systems,

Norcross, GA, USA). The formulation samples were diluted 50

and 10 times to provide P407 concentrations of 0.3% and 1.5%

(w/w), respectively. The measurements were performed at

25 °C and 37 °C with at least three replicates.

Rheometry
The rheological analysis of the formulations was determined

using a controlled stress rheometer (MARSII, Haake Thermo

Fisher Scientific Inc., Newington, Germany) at 25 °C and

37 ± 0.1 °C with a geometry employing a parallel steel cone-

plate (35 mm diameter, separated by a fixed distance of

0.052 mm, where the cone angle is 2°), as shown in Figure 13.

The samples were carefully placed in the device, and it was

allowed to equilibrate for at least 1 min before analysis to

ensure the minimized shearing of the sample.

Continuous shear flow rheology
In flow mode, the downward and upward curves were obtained

over shear rates from 0 to 2000 s−1, increasing over a period of

150 s, retained at the high limit during 10 s, and then decreas-

ing over a period of 150 s. The flow properties were deter-

mined from at least five replicates and the upward flow curves

were modelled using the power-law fluid (or the Ostwald–de

Waele) relationship (Equation 3) [28,31,47]:

(3)

where τ is shear stress (Pa), K is the consistency index [(Pa·s)n],

γ̇ is shear rate (s−1), and n is the flow behavior index (dimen-

sionless).

The yield stress was evaluated by the rheological models of

Casson (Equation 4) and Herschel–Bulkley (Equation 5) [97]:

(4)

(5)

where τo is yield stress (Pa) and ηp is the Casson plastic

viscosity. Moreover, the hysteresis area was calculated by the

software RheoWin 4.10.0000 (Haake®).

Oscillatory rheology
In oscillatory mode, the linear viscoelastic region (LVR) was

determined for each binary polymeric system. Subsequently, the

frequency sweep analysis was performed from 0.1 to 10.0 Hz at

25 and 37 °C. The viscoelastic properties of the preparations,

storage modulus (G’), loss modulus (G”), dynamic viscosity
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Figure 13: Schematic presentation of the rheological analysis setup utilized for continuous shear (flow) and oscillatory rheometry analysis of the
formulations.

(η’) and the loss tangent (tan δ) were calculated using the soft-

ware RheoWin 4.10.0000 (Haake®). The analyses were per-

formed at least in five replicate samples [27,28,98,99].

Sol–gel transition temperature
In oscillatory mode with a controlled temperature ramp, the

sol–gel transition temperature (Tsol–gel) of the formulations was

investigated as well. The LVR of each system was performed at

5 °C and 60 °C. Afterwards, over a range of 5–60 °C, the tem-

perature sweep analysis was performed at a defined frequency

(1.0 Hz) with a heating rate of 10 °C/min with controlled stress.

The viscoelastic properties, G’, G”, η’ and tan δ were calcu-

lated using the software RheoWin 4.10.0000 (Haake®) with at

least five replicate samples in each case. Tsol–gel is defined as

the temperature at which G’ was halfway between the values

for solution and gel and was calculated for all preparations

where η’ increased with the significant increase of temperature

[47,49-51].

Texture profile analysis
The texture profile analysis (TPA) of preparations with and

without CUR was carried out using a texture profile analyzer

TA-XTplus (Stable Micro Systems®, Surrey, UK) at 25 and

37 °C, in TPA mode, for at least three replicates [59]. A 13 g

formulation was compressed at a depth of 15 mm, two times, by

an analytical probe of polycarbonate (10 mm diameter) at a

speed of 2 mm/s and with 15 s between the first and the begin-

ning of the second compression. The resultant force versus dis-

tance plot provided the texture parameters, hardness, compress-

ibility, adhesiveness, elasticity and cohesiveness [59].

Mucoadhesive properties
In vitro evaluation of mucoadhesive strength by
detachment force
The mucoadhesive properties of the formulations (with and

without CUR) were investigated using a texture analyser (TA-

XTplus, Stable Micro Systems®) in tension mode at 37 °C,

repeated at least three times. Firstly, the mucin disc was pre-

pared by the compression of crude mucin, hydrated in mucin

solution 5% (w/w) for 30 s and fixed in the TPA probe. The

excess liquid was gently removed with absorbent paper. The

samples were placed behind the analytical probe, which was

lowered until both surfaces were in contact. Subsequently, a

force of 0.1 N was applied for 30 s in order to ensure the inti-

mate contact between the mucin disc and sample. Afterwards,

the probe was raised at speed of 1.0 mm/s and the force re-

quired to detach the mucin disc from the formulations was de-

termined from the plot of force versus time.

Ex vivo analysis of mucoadhesive properties by
falling liquid method
The mucoadhesive properties of the formulations were also in-

vestigated by an ex vivo methodology using porcine oral

mucosa on a flow through method. Porcine oral mucosa was

taken from the cheek of young, white and freshly slaughtered

pigs from a slaughterhouse authorized for human consumption
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Figure 14: Schematic presentation of the setup utilized for ex vivo liquid falling mucoadhesion tests.

by the Brazilian Agriculture Ministry. After the oral mucosa

was excised with scissors and a surgical scalpel, the samples

were stored at −18 °C in a PBS solution and defrosted at room

temperature on the experimental day (48 hours after the oral

mucosa preparation) [30].

Inside a temperature-controlled chamber (37 °C), the oral

mucosa samples were placed on the test channel behind a

syringe-pump system, where phosphate sodium buffer was

dropped over the mucosal samples (flow of 4 mL/min)

(Figure 14). 100 µL of the formulation was placed over the oral

mucosa and kept warm, in order to allow the adhesion between

the mucosa and formulation. After 5 min, PBS was flowed over

the set for 20 min. The samples of the elution liquid were

collected after 1, 2, 5, 10, 15 and 20 min, with 1% (v/v)

Tween 80 to allow the complete dispersion of CUR. The sam-

ples were diluted with methanol (1:2) and analyzed by the

HPLC method. 20 µL of the sample was injected into a

Shimadzu LC CBM 20 system (Tokyo, Japan) equipped with a

UV–vis detector (SPD 20 A) and manual injector (7725i). A

C18 reversed phase column (5 µm × 4.6 mm × 250 mm, Luna

PFP, Phenomenex®, Torrance, USA) was used as a stationary

phase and the mobile phase was acetonitrile and acetic acid

solution (1.5%, v/v) in a gradient elution. The flow was

adjusted to 1.0 mL/min and the peak area was detected at 425

nm. The amount of formulation removed from the surface of the

substrate was calculated and deducted from the total, providing

the retention data. The analysis was performed in triplicate

using new oral mucosa for each experimental essay [10,52,53].

Syringeability determination
The formulation resistance to compression inside a syringe was

determined by the syringeability work. The investigations were

performed in a texture analyzer (TA-XTplus) in compression

mode [100]. In order to avoid the entrapment of air, the formu-

lations were carefully packed in 1 mL plastic syringes at

30 mm. Each syringe was vertically fixed in the texture meter

and pressed at 2.0 mm·s−1, to a depth of 30 mm, until initial

contact with the syringe plunger was made. The analysis was

performed at 25 °C with at least three replicates [47,55]. During

the compression of the plunger, a graph of force versus dis-

tance was derived and the work demonstrates the resistance of

the compression of syringe content.

In vitro drug release
The kinetics of the release of curcumin from the binary poly-

meric system was carried out using double-wall glass beaker

with water bath temperature control at 37 ± 0.5 °C. 1.0 g poly-

meric system was placed on the bottom of the vessel at 37 °C to

ensure the complete gelation of the formulation. Subsequently,

16 mL of the release media (Tween 80 aqueous solution; 1%,

v/v) was carefully added in the recipient to obtain sink condi-

tions and kept under constant agitation (Figure 15) [11,56,101].

500 µL aliquots of samples were collected and replaced with

the same volume of fresh medium at fixed time intervals, 0.5 h,

1 h, 2 h, 3 h, 4 h, 6 h, 8 h and 24 h. These samples were diluted

with methanol (1:2), filtered with PTFE membranes and quanti-

fied by the HPLC method, as previously described [30]. The

release profiles were calculated by plotting the amount released

versus time. These release profiles were fitted with the

Korsmeyer–Peppas equation (Equation 6), which describes the

drug release from matrix polymeric systems [102]:

(6)

where F represents the fraction of the drug released, t is the

time released, k is the combined kinetic constant of structural

and geometric characteristics of the apparatus and n is the

release exponent, which reveals the drug release mechanism.

Ex vivo analysis of curcumin permeation in
oral mucosa
Mucosa permeation by Franz cells
The permeation was investigated using porcine oral mucosa ob-

tained as previously described in the section on ex vivo analy-

sis of mucoadhesive properties by falling liquid method. Firstly,
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Figure 15: Schematic presentation of the modified Franz’s cell used for the in vitro curcumin release measurements from the nanostructured system.

the tissues were defrosted at room temperature, then cut and

placed between the donor and receptor compartment of the

Franz cell. The receptor media, composed of 1% (v/v)

Tween 80 in PBS buffer (pH 7.4), which provided the

solublization of CUR, was placed in the receptor compartment.

This system was maintained at 37 °C at constant stirring. 1 mL

of the formulation was placed homogeneously over the mucosa

in the donor compartment. The temperature of the formulation

was maintained at 37 °C by thermal exchange between the

tissue and the formulation and also the temperature control pro-

vided by the equipment [103,104]. Afterwards, 500 µL of the

receptor medium was collected and replaced by fresh medium

to ensure sink condition at 0.5 h, 1 h, 2 h, 3 h, 4 h, 6 h, 8 h and

24 h. The samples were diluted in methanol (1:2), filtered in

PTFE and quantified by the HPLC method. At least three repli-

cates were performed [56,61].

For the retention of CUR in the tissue, the porcine mucosa was

taken from the recipient. The tissue was cut into small pieces

and placed in a 5 mL volumetric flask with methanol and soni-

cated for 15 min. Subsequently, the 5 mL volumetric flask was

completed, filtered with PTFE and quantified using the HPLC

method. The analysis was performed for at least three samples.

Mucosal permeation by photoacoustic spectroscopy
The permeation of curcumin from the mucoadhesive thermore-

sponsive systems, performed in porcine oral mucosa, was inves-

tigated by photoacoustic spectroscopy. The oral mucosa was

taken from porcine cheek as described previously. Firstly, 30 µg

of the formulation was homogeneously placed over a 1 cm3 sur-

face of the oral mucosa. After 30 min, the sample was evalu-

ated by photoacoustic spectroscopy. This essay was performed

on home-built experimental equipment composed of a 1000 W

Xenon arc lamp (Oriel, model 68820) as the light source with a

nominal power of 800 W. The light was diffracted when

passing through the 3.16 mm input and output slits of the mono-

chromator (Oriel, model 77250) and then modulated at 13 Hz

with a mechanical chopper (Stanford Research Systems, model

SR 540) and then focused on the sample. Band-pass filters were

used to eliminate higher order diffraction. The sample was

placed inside the photoacoustic cell and sealed with a trans-

parent quartz window (diameter of 8 mm and thickness of

2 mm). The photoacoustic signal generated by pressure changes

resulting from the periodic heating of the sample was collected

by a capacitive microphone (Brüel and Klaer, model 2669). A

lock-in amplifier by EG&G Instruments, model 5110, was used.

The thermal diffusion length (µs) was used to calculate the

depth of tissue that contributed to the photoacoustic signal:

(7)

where D is the sample thermal diffusivity (cm−2·s−1) and f is the

light modulation frequency (Hz). Considering the thermal diffu-

sivity of mucosa equal to skin, due to the similarity overall in

terms of molecule distribution and histological architecture

[105], D = 4.1 × 10−4 cm2·s−1 [106,107] and f =13 Hz. Conse-

quently, µs was 31 µm for oral mucosa and the total sample

thickness was constant around 818 µm.

The photoacoustic signal was interpreted from the band absorp-

tion spectra, since the final photoacoustic signal is proportional

to the sample absorption coefficient [107]. All spectra were

normalized with a sample of carbon black in order to correct the

source emission intensity in each wavelength [108].
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Moreover, the spectra of at least three porcine oral mucosa were

obtained by placing the tissue inside the photoacoustic cell and

illuminating the side to be measured; then the tissue was turned

upside down to illuminate the opposite side [56,60].

Cell culture
The cell lines FaDu (LGC Promochem, Middlesex, UK), origi-

nally isolated from a hypopharyngeal tumor and Cal27 (ATCC,

Manassas, VA, USA, CRL-2095) from tongue squamous cell

carcinoma (ECACC, Health Protection Agency Culture Collec-

tions, Salisbury, UK) were used in this study. FaDu cells were

cultured in RPMI-1640, whereas Cal27 was cultured in

Dulbecco’s modified Eagle’s (DMEM) medium high glucose.

Both media were supplemented with 10% (v/v) fetal bovine

serum (FBS), 2 mM ʟ-glutamine, 100 UI/mL penicillin and

100 µg/mL streptomycin. The immortalized cell line FNB6 (a

kind gift from Professor Keith Hunter), originally isolated from

normal oral keratinocytes, were cultured in adenine enriched

medium; DMEM and Ham’s F12 medium in a 3:1 (v/v) supple-

mented with 10% (v/v) FBS, 0.1 mM cholera toxin, 10 ng/mL

epidermal growing factor, 0.4 µg/mL hydrocortisone, 0.18 mM

adenine, 5 mg/mL transferrin, 2 mM ʟ-glutamine, 0.2 mM

triiodothyronine, 0.625 mg/mL amphotericin B, 100 UI/mL

penicillin and 100 µg/mL streptomycin. All cells were incubat-

ed at 37 °C in a 5% CO2 humidified atmosphere and sub-culti-

vated using trypsin-EDTA when 80% confluence was reached.

Cytotoxicity and biological activity evaluation
The in vitro cytotoxicity of preparations with and without CUR,

as well as the drug alone, were carried out on FNB6, Cal27 and

FaDu cells using an MTT assay as previously described [85].

Briefly, 2 × 105 cells were seeded in each well of a 96-well

plate before addition of the formulations with and without CUR

with increased polymeric content (2000, 1500, 1000, 500, 300,

100, 20, 10 µM CUR) and free CUR (240,120, 80, 40, 20, 10, 5

and 2.5 µM). After 24 h, the media with CUR and/or the formu-

lations was aspirated, the cells were washed three times with

PBS and more 200 µL media was added to each well and the

cells were incubated for a further 24 h. Monolayer cultures were

incubated for 1 h at 37 °C with 0.5 mg/mL MTT solution, after

which the solution removed and acidified isopropanol was

added to remove the blue formazan crystals. The optical densi-

ty was measured at 570 nm with a 630 nm reference correction.

Statistical analysis
The effect of CUR presence and temperature in micelle size

analysis, consistency index (K), flow index (n), yield value,

hysteresis area and texture profile analysis parameters (hard-

ness, compressibility, adhesiveness, elasticity and cohesiveness)

were statistically compared using two-way ANOVA. On the

other hand, the effect of the presence of CUR on the mucoadhe-

sive strength, softness and syringeability were statistically eval-

uated by one-way ANOVA. Moreover, the effect of the drug

and formulation on cell viability was evaluated by two-way

ANOVA. Student t-test was used to determine the influence of

temperature on dynamic viscosity of the formulations. All the

cases of ANOVA post hoc comparison of individual groups

were carried out using Tukey. For all cases, p < 0.05 was

accepted as significant [23,28,31].
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