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Predictive Prey Pursuit in a Whiskered Robot
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Abstract. Highly active small mammals need to capture prey rapidly

and with a high success rate if they are to survive. We consider the case

of the Etruscan shrew, which hunts prey including crickets almost as

large as itself, and relies on its whiskers (vibrissae) to complete a kill.

We model this hunting behaviour using a whiskered robot. Shrews strike

rapidly and accurately after gathering very limited sensory information;

we attempt to match this performance by using model-based simultane-

ous discrimination and localisation of a ‘prey’ robot (i.e. by using strong

priors). We report performance that is comparable, given the spatial and

temporal scale differences, to shrew performance in most respects.

1 Introduction

The Etruscan shrew must capture prey, sometimes not much smaller than the

shrew itself (Figure 1), in twilight or dark conditions [1]. To that end, it relies on

large facial whiskers (macrovibrissae) for both identification and localisation [2].

Whisker-triggered attacks on prey are highly spatially selective and may target

an area that has not yet fallen within the whisker sensory field, indicating that

they use a ‘Gestalt-like’ representation of the prey, functionally perceiving the

whole prey despite sensing just part of it [2]. Shrew hunting has been described of

consisting of four phases [3]: (i) pre-hunting, sessile, (ii) search, (iii) contact and

(iv) attack (characterised by rapid head movement towards the prey). Whisker

movements during phase (ii) [3] are similar to those seen in rat, mouse or opossum

during un-motivated exploration [4]—that is, the whiskers are periodically swept

forward and then backward in a movement known as a ‘whisk’. During phase

(iii), whisker movement amplitude decreases whilst whisker protraction set-point

may increase [3]; these results may be related to similar reports in rat [5].

We attempted to model this behaviour using our current whiskered robot,

Shrewbot [7], pictured in Figure 1. Shrewbot cannot move as fast as the Etr-

uscan shrew, so behaviour was slower than that seen in biological experiments
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Fig. 1. (Left) Shrew and its prey, the cricket (reproduced with permission [2], Copyright
(2006) National Academy of Sciences, USA). (Right) Shrewbot and its prey, Preybot.

(by about an order of magnitude). Whilst shrews appear able to rapidly perform

reasonably nuanced discriminations [3], Shrewbot was tasked only with discrim-

inating between Preybot (pictured) and flat or slightly curved vertical walls. We

performed two experiments: Experiment 1 measured discrimination performance

on the bench; Experiment 2 measured localisation performance of a stationary

or moving target in the open field.

Discrimination performance on the bench for this binary task was almost

perfect (perfect where contact was sufficiently robust); this performance was

degraded in the open field, but remained fairly reliable. Localisation performance

in the stationary case was good, with Preybot reliably located to well within a

tenth of its diameter; this performance degraded only a little when the target

was moving. Overall, our results illustrate that shape and surface orientation

information carried across the time series recovered from multiple whiskers can

be integrated and used to identify and locate a target in good time to drive

behavioural responses. Moreover, they constitute a quantitative analysis of a

problem analogous to that faced by the hunting shrew.

2 Models

Shrewbot’s (see Figure 1) electromechanical and control architecture is described

at length elsewhere [6–8]. Briefly, it is based on a holonomic mobile platform

(Robotino R©, festo.com), has a bespoke three d.o.f. neck (elumotion.com), on

the end of which is mounted the head, on which are mounted 18 mobile whiskers.

Each whisker has 1 d.o.f. (rotation around its base, leading to ‘protraction’ or

forward movement of its tip), and is instrumented for deflection in two axes
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(denoted x and y). From the length of this deflection vector we derive a ‘contact

belief’ signal for the wth whisker, bcontact,w = H(gw(||x, y|| − ηw)), where

H(a) =











0, a < 0

1, a > 1

a, otherwise.

(1)

The parameters gw and ηw, which vary with whisker length, are peripheral to

this study and are not reported; they are chosen such that values of bcontact,w of

0 and 1 correspond, approximately and respectively, to ‘certainty of not contact’

and ‘certainty of contact’. We can assume, here, that all software components

are running at the same rate of 20Hz.

Fig. 2. Models and optimisation. (Left) Single frame from one trial shows Shrewbot
bringing its whiskers forward to make as many contacts with Preybot as possible.
Seven contacting whiskers are highlighted, as is Preybot. Two models are fitted to the
contact data; Preybot (P, middle) and a vertical wall (W, right). Final model scores
are penalised for surface location and orientation.

Owing to the morphology of Shrewbot, and the size of Preybot (300mm di-

ameter), Shrewbot cannot sense more than a small part of the surface of Preybot

at any one time. The model-based (or, ‘Gestalt-like’) approach to prey identifi-

cation, suggested by the biology, provides both identity and position estimates

simultaneously, despite this paucity of data (see Figure 2). Two models were fit-

ted to the whisker data at each sample: one a model of a flat vertical wall (W),

the other a model of Preybot (P, a 150mm radius hemisphere atop a cylindrical

base of 100mm height). The cost for each model (JW and JP , respectively) has

two components: the first penalises contact locations that lay distant from the

model surface; the second penalises whisker deflections that are in a different
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direction to that expected given the local surface orientation at the contact lo-

cation [9]. A time series called ‘prey belief’ is constructed from these cost values,

bP = JW/(JW + JP) ∈ [0, 1]. An estimate of Preybot’s location (centre) rela-

tive to Shrewbot is also provided by the discriminator. The discriminator was

hand-crafted according to the known geometry, using a linear model of whisker

bending, and has only two free parameters (L, the number of samples over which

to aggregate inputs, and w, the relative weighting of the second component of

the cost function). Our only attempt to tune these was to manually and coarsely

adjust w to optimise discrimination performance on the data from Experiment

1 (L was set, arbitrarily, to 5, for a 0.25s aggregation window).

An overhead camera was used to locate the robots with relatively low noise

and no integral error. These data are combined with the relative Preybot loca-

tion estimate provided by the discriminator to give two estimates of Preybot’s

location (centre) in the 2D world-space defined in our experimental arena. These

estimates, due to Shrewbot and to ‘ground truth’, are denoted ŝP and sP , respec-

tively. A velocity estimate is derived from each location estimate; these estimates

are denoted, respectively, v̂P and vP . ŝP is boxcar-filtered (one second, causal)

and combined with v̂P assuming a constant prey velocity such that both ŝP

and v̂P are smoothed but not lagged. sP and vP are not smoothed (and are not

available to the robot, being used for analysis only).

When otherwise un-motivated, Shrewbot exhibits ‘explore’ behaviour, whereby

it moves stochastically in a generally forward direction executing a whisk (forward-

backward sweep of the whiskers) towards the end of each move. If it contacts

something, it investigates it briefly, before moving back to explore behaviour.

The details of this behaviour model, the AttenSel model described by [8], are

peripheral to the current study. In the configuration used for Experiment 2,

when bP rises above some threshold, b⋆
P
, behaviour switches to ‘track’, whereby

Shrewbot moves so as to bring Preybot into the whisker field on one or other

side of the head such that many whiskers can be brought to bear on it (an exam-

ple is shown in Figure 2). Since the location of Preybot in the whisker array is

controlled (first-order positional control), Shrewbot effectively follows (‘tracks’)

Preybot as it moves during this behaviour. Tracking behaviour continues to be

exhibited until either bP falls below b⋆
P
/2, or a fixed time (arbitrarily set to 4

seconds, for this report) has elapsed since tracking began—this tracking period

allows the kinematic estimates to stabilise. In the former case, the trial is labelled

a ‘refusal’ (R); in the latter case, the trial is labelled a ‘strike’ (S). In (S) trials,
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a final behaviour is exhibited, denoted ‘strike’ (see below), and a two-second

pause denoted ‘hold’ follows immediately after the strike. All trials analysed in

Experiment 2 ended as either (R) or (S); a small number of trials were not anal-

ysed since no interaction between the robots occurred—these discards are noted,

below. An example of this sequence of behaviours is provided below (Figure 5).

In (S) trials, Shrewbot completes the ‘prey capture’ by ‘striking’ at the ‘strike

point’ on Preybot, a behaviour that executes in TS = 0.8s. The strike point,

denoted ψ, lies 120mm rearward of Preybot’s centre, and is marked with a white

disc in figures and videos. Preybot is radially symmetric, so that ψ can only be

identified uniquely if Preybot reveals its orientation by moving. If Preybot is

stationary, ψ may lie anywhere around a circle 120mm from Preybot’s centre,

and the point on this circle nearest to Shrewbot is targeted instead. One possible

approach to integration would be to switch between these two behaviours based

on the estimated Preybot speed; to avoid a discontinuity in behaviour, we chose

instead to target a weighted average of these two estimates of the strike point,

as follows. If Preybot is estimated to be moving (|v̂P | ≥ 80mm/s), Shrewbot

uses its estimates of Preybot’s location and velocity at time t to generate an

estimate of ψ(t+TS), denoted ψ̂1(t+TS). If Preybot is estimated to be stationary

(|v̂P | = 0mm/s), Shrewbot estimates ψ(t + TS) to be 120mm along a line from

ŝP(t+TS) towards the tip of Shrewbot’s snout at time t; this estimate is denoted

ψ̂0(t+TS). When the estimated speed is between these limits, a weighted estimate

ψ̂ = ψ̂0 + |v̂P |/80(ψ̂1 − ψ̂0) is used. Shrewbot then executes the ‘strike’, which

places the tip of its snout (its ‘micro-foveal zone’, [8]) at ψ̂(t+TS) at time t+TS .

That is, this behaviour is predictive: the target reached is the expected location

of the strike point at the end of the strike period. Thus, a successful strike

(rendezvous-ing the tip of the snout and the strike point at the end of the strike

period) is the culmination of successful identification, localisation, and velocity

estimation. In the stationary case, of course, Shrewbot does not generally target

the white disc at the end of the strike since ψ cannot be uniquely located.

Whilst expressing explore behaviour, movements of the head and transient

protractions of the whiskers more-or-less alternate, so that the robot can be

described as exhibiting ‘periodic whisking’ whilst exploring the world. During

track behaviour, the whiskers undergo constant drive excitation, so that they

are held strongly protracted. Working against this, transient negative feedback

from bcontact,w suppresses the drive to the corresponding whisker, according to

the model described by [10]. As previously reported [11], the play-off between
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this excitation and suppression often leads to rapid ‘palpation’ of the surface

by contacting whiskers. This mix of excitatory and inhibitory influences may

be a useful model of rat behaviour [12], and may act to maximize the num-

ber of contacts that occur whilst normalizing the depth of those contacts. The

whisker movement that results during tracking has reduced amplitude and more

protracted average angle, these being the main features described by [3] and [5].

3 Results

Fig. 3. Experimental set-up. (Top left) Experiment 1, experimenter presents a stimulus
to an immobilised Shrewbot. (Top right) Experiment 2, Shrewbot approaches a sta-
tionary and helpless Preybot. (Bottom) Series of frames from overhead camera during
(S) trial on a moving target. Frame times are t=0 (trial begin), 6.7s (contact), 10.7s
(begin strike), 11.5s (complete strike) and 13.5s (trial end).

Experiment 1: Discrimination

Experiment 1 was both a test of discrimination performance and our method-

ology to choose the discrimination threshold b⋆
P
. We placed the robot on the

bench and disabled the wheels, but allowed it to move its neck and whiskers

freely, as if exploring. The experimenter presented one or other stimulus to the
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Fig. 4. Discrimination summary. Distribution of bP for (left) all 140 whisks in which
contact occurred and (right) only those 78 whisks in which robust or multiple con-
tacts occurred. Data for trials where prey was absent/present are shown using un-
shaded/shaded bars. Discrimination threshold b

⋆

P = 0.4 is shown as solid lines.

robot (W or P, see Figure 3). These presentations were intended to be vary-

ing but were not tightly controlled: on each whisk in the recorded dataset, the

stimulus interacted with neither, one, or both whisker fields; the stimulus was

stationary during some interactions and moving during others. The discrimina-

tor was active during this experiment, but its output was not used to change the

behaviour of the robot, which continued to whisk, as if exploring, throughout.

245 whisks were collected, over 11 executions. From these, 140 whisks with some

stimulus contact were identified (89/51 of these were W/P). A value of bP was

taken from each whisk at the point of maximum whisker protraction. We chose

a discrimination threshold of b⋆
P
= 0.4, by eye, to classify each stimulus into W

or P; classification performance is summarised in Figure 4. 3 errors were made

over the 140 whisks (all 3 cases were W being identified as P, i.e. false positive

prey identification). Including only those whisks where
∑

w bcontact,w ≥ 1.0 (that

is, firm contact on a single whisker or some contact on at least two whiskers),

78 whisks were included (58/20 were W/P) and no errors were made.

Experiment 2: Localisation

Experiment 2 was a test of discrimination, localisation, and velocity estimation,

simultaneously. Shrewbot was positioned facing ‘North’ (along the +ve y-axis)

and allowed to explore freely. In the first part of the experiment, Preybot was

stationary somewhere ahead of Shrewbot (see Figure 3). Three locations were

used, each for about one third of trials. In the second part, Preybot was moving

on a trajectory that passed ahead of Shrewbot. Two classes of trajectory were

used in about half of the trials each, one coming from each side of Shrewbot.
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Fig. 5. Localisation example ethogram (moving target); each panel is against time
within trial. (Panel 1, top) Prey belief, bP . (2) Selected behaviour: (E)xplore, (T)rack,
(S)trike, (H)old. (3/4) Whisker angles on the right/left (Preybot was tracked in the
right hand side whisker array in this example). (5) Estimated prey speed (thick grey,
unavailable when prey belief is zero) and Shrewbot snout movement speed (thin black).

Each individual trajectory had (roughly) constant velocity, and a speed of around

100mm/s. In those trials in which Shrewbot came into contact with Preybot,

behaviour proceeded as described above, resulting either in a refusal (R) or a

strike (S). Results from an example trial (moving target, (S) trial) are presented

in Figure 5; results from all trials in Experiment 2 are summarised in Figure 6.

Example overhead videos of trials are available: V1 (goo.gl/6Tq0S, stationary

target) and V2 (goo.gl/QCSwR, moving target, same trial as Figure 5 and lower

part of Figure 3). 42 trials were recorded with Preybot stationary, of which

2 were discarded since the two robots did not interact. Of the remainder, 13

were refusals (R) and 27 were strikes (S), a false negative rate of about 1 in 3.

The standard deviation (root mean square error) of Shrewbot’s estimates were
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Fig. 6. Localisation summary. Two rows of three plots show results for station-
ary/moving target (upper/lower). The scatterplots present Shrewbot’s estimates of
Preybot location (•, left-hand column), velocity and strike point (+ and ×, middle col-
umn), each transformed into a coordinate system centred on Preybot (Preybot extents
shown as solid circle). When Preybot is moving, its orientation is known; when it is
not, it is assumed to be pointing ‘North’ (Shrewbot approaches roughly from ‘South’).
For each estimate, its true value (⊙), measured mean (◦) and measured s.d. (dashed
circle) is shown. The time series plots (to the right) display the error in Shrewbot’s
estimate of Preybot location (mean across trials), against time before strike.

21mm (23mm) for position, 30mm/s (30mm/s) for velocity, and 44mm (49mm)

for strike point. 28 trials were recorded with Preybot moving; 2 were discarded

since no interaction had occurred. The remainder comprised 7 refusals (R) and

19 strikes (S), a false negative rate of about 1 in 4. Standard deviation (root

mean square error) of Shrewbot’s estimates were 35mm (38mm) for position,

37mm/s (37mm/s) for velocity, and 38mm (42mm) for strike point.

4 Discussion

Shrewbot discriminated reliably between vertical walls and Preybot on the bench,

and was fairly successful (65-75% success rate) at locking on to Preybot in the

arena also. We did not formally test discrimination in the arena, but in informal

testing false positives during interactions with walls were rare (data not pre-

sented). In (S) trials (successful strikes), localisation accuracy was much finer
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than the size of Preybot itself. Across both conditions (stationary and moving

target) and all three measures (position, velocity, future location of strike point)

error can be summarised as being ∼30mm or ∼30mm/s, the diameter of Preybot

being 300mm. Altogether, our results illustrate how shape and surface orienta-

tion information carried across the time series recovered from multiple whiskers

can be used to identify the what and where of a stimulus in good time to drive

behavioural responses, at least for this case of only two discriminanda. Videos

V3 (goo.gl/HNoIn) and V4 (goo.gl/ppdCg) are high-definition examples of (S)

trials at 100mm/s and 150mm/s, respectively (a few trials were conducted at

150mm/s but are not reported, here).

The temporal features of shrew hunting, as reported by [3], include periodic

whisking near 14Hz during search, and an average time between contact and

attack of 180ms. Shrewbot whisks at ∼1.5Hz during search; whilst we allowed 4s

between contact and attack, graphing kinematic estimates against time (Figures

5 and 6) suggests that 1.5s of data is probably adequate to stabilise them. Thus,

Shrewbot operates around ten times less quickly than the shrew. Changes in

direction during attack phase are detected by shrews and drive changes in attack

trajectory with a latency as short as 30ms [3]. Shrewbot currently retracts its

whiskers during rapid movements (to protect them from damage) so that it

cannot detect prey robot acceleration during this time; thus, this aspect of the

response was not reproduced, here. At the Shrewbot timescale, around 300ms

would be available to detect a change in prey velocity and react accordingly;

given the whisking rate during tracking of around 7Hz, this is enough time

for around two additional ‘samples’, so that reacting at this speed should be

achievable. Shrews will make accurate attacks on stationary crickets [2], so that

motion seems not to play a role in identification or orientation. In our paradigm,

we used motion direction as a proxy for other features of the discriminandum

that might reveal its orientation, but this is not a requirement of the approach.

In other recent work [8], we are exploring the hypothesis that much of the

behaviour of small mammalian tactile specialists can be understood as foveation,

the fovea in this case being the region around the mouth [15]. This hypothesis

can be summarised by the statement that foveation is action for these mam-

mals, since the primary actuators (teeth, tongue) are co-located with the pri-

mary sense organs (teeth, lips, tongue, nostrils, microvibrissae). Accordingly, the

current behavioural model shares the architecture of oculomotor foveation con-

trol models—see Figure 7. Lower-level realisations of these oculomotor models
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Fig. 7. Model. (Left) Essential organisation of contemporary (e.g. [13, 14]) models of
oculomotor control. Selection takes place in loops through Superior Colliculus (SC),
Cortex, Thalamus and Basal Ganglia (Cx/Th/BG). (Right) Current model shares this
architecture but does not represent selection dynamics—rather, hysteresis is used to se-
lect between exploratory-like and hunting-like behaviours. Shown are (Discrim)ination,
(Att)ention and (Sel)ection. Both panels represent Sensory periphery (S), Motor pe-
riphery (M), and Pattern Generation (PG).

achieve control through integration between attention, selection and—thus—

identification and assessment of salience [16]. Available data are consistent with

an analogous model of tactile foveation [17, 18], which we are developing in other

work. Here, we have presented a high-level (functional) model of these integrative

processes, with simple hysteretical behaviour selection.

This work represents a first model of hunting behaviour in the Etruscan

shrew. Fleshing out the model to more closely mimic the biology will involve

several lines of enquiry which may be of interest to biologists and roboticists

alike. One such is to move towards a lower-level description of behavioural se-

lection and implementation, combining electrophysiological data (e.g. [17, 18])

with increasingly rich behavioural data (e.g. [3, 4]) from small mammals, and

taking advantage of ongoing interest in models of oculomotor control [19]. This

may quickly uncover to what degree snout movements of small tactile mammals

are akin, in nature and/or substrate, to saccadic movements in visual mammals,

perhaps offering a robust and accessible comparative model to sit alongside the

oculomotor system. This work also represents a report of a complete ‘whiskered

mobile robot system’, in the sense of a system that can discriminate different

classes of object, and select appropriate behaviour to exhibit towards them.
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