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Abstract

Texture perception is studied here in a physical model of the rat whisker system consisting of a robot

equipped with a biomimetic vibrissal sensor. Investigations of whisker motion in rodents have led to

several explanations for texture discrimination, such as resonance or stick-slips. Meanwhile, electro-

physiological studies of decision making in monkeys have suggested a neural mechanism of evidence

accumulation to threshold for competing percepts, described by a probabilistic model of Bayesian

sequential analysis. For our robot whisker data, we find that variable reaction-time decision making

with sequential analysis performs better than fixed response-time maximum likelihood estimation.

These probabilistic classifiers also utilize whatever available features of the whisker signals aid the

discrimination, giving improved performance over a single-feature strategies such as matching the

peak power spectra of whisker vibrations. These results cast new light on how the various propos-

als for texture discrimination in rodents depend on the whisker contact mechanics and suggest the

possibility of a common account of decision making across mammalian species.



1 Introduction

The last fifteen years has seen major advancement in the understanding of human and animal percep-

tion as statistically optimal inference from noisy and ambiguous sensations. This statistical approach

is based on using Bayes’ rule to calculate the conditional probability distribution over possible per-

cepts given sensory data, knowing aspects of the world such as the likelihood of sensory data for

various percepts and their prior probabilities of occurring [1, 2]. In neuroscience there has been par-

allel progress in understanding perceptual decision making as evidence accumulation for competing

hypotheses. One notable line of experiments considers neuronal activity in parietal cortex as monkeys

make perceptual judgements about the direction of motion for a group of random dots, and finds

individual neurons that noisily ramp-up their firing rates until reaching a threshold when a decision

is made [3, 4]. Theoretically, these processes appear well described by the statistical approach of

sequential analysis [5, 6], which applies Bayes’ rule to accumulate evidence for competing perceptual

hypotheses over time series of sensory data until reaching a preset threshold [7].

This article aims to help develop a paradigm in rodents for testing this Bayesian approach to

perceptual decision making from the dual perspectives of guiding biological experimentation and

testing biological hypotheses in robots with biomimetic sensors. Our particular focus is on texture

discrimination using vibrissae, which is both a well-developed approach for examining decision making

in rats [8, 9, 10, 11, 12, 13, 14, 15, 16] and a task for which state-of-the-art sensors based on rat

whiskers are under continued development [17, 18, 19, 20, 21, 22, 23, 24]. Furthermore, in biological

systems there are several proposals for which features of whisker motion vary according to texture,

for example the resonance hypothesis [16] and the kinetic signature hypothesis [15]. However, it is not

known how these proposals relate to theories of perceptual decision making via evidence accumulation

and how they would function in practice when embodied in a biologically inspired robot.

Our overall hypothesis is that Bayesian sequential analysis can also account for texture discrimi-

nation in rats, and thus offer a common account of decision making in different mammalian species.

The first part of this hypothesis is that the brain makes perceptual decisions by applying Bayesian in-

ference to time series of sensory data over the motion of the whisker contacts, by comparing posterior

probabilities (or functions thereof) with predefined thresholds. The second part of this hypothesis

is that the brain utilizes simplifying assumptions about the sensory data to reduce the complexity

of the neural computation. In particular, the principal assumption underlying sequential analysis is

that the data samples are independently distributed over time and drawn randomly from sampling
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distributions associated with the likelihood functions. In computational neuroscience, it is commonly

assumed that these sampling distributions are Gaussian [5], but we find that this assumption is too

restrictive for a whiskered robot sensing texture. Instead, we assume that both the robot and animal

are able to encode more general probability distributions of sensed data.

These proposals for rodent decision making are investigated in a physical model of the rat whisker

system consisting of a robot equipped with a biomimetic vibrissa sensor. Our particular platform

is a Roomba robot (iRobot, Boston MA) with attached whisker module (Fig. 1), an ideal device

for performing whisker-based experiments on surface texture because the robot can either move

autonomously or be guided [25]. This investigation reveals how biomimetic principles can guide

the development of new technologies and in turn provide a greater understanding of the biological

systems. In particular, we conclude that decision making with variable reaction times based on

Bayesian sequential analysis out-competes existing alternative methods, including both non-Bayesian

and maximum likelihood (fixed-response time) classifiers. A second observation is that probabilistic

perception utilizes whatever aspects of the contact dynamics help discriminate the alternatives, so

that the various proposals for how whisker motion varies according to texture could all give reliable

classification depending upon the contact mechanics of the whisker and surface.

Some partial results have been published in two conference papers, on feature-based classifiers [25]

and a preliminary version of the probabilistic analysis [26] based on a similar method to the maximum

likelihood classifier discussed here (but referred to as ‘naive’ Bayes).

Figure 1 about here (1.5 column)
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2 Texture sensing with biomimetic whiskers

Touch sensors inspired by mammalian vibrissae have been in development since the 1980s (see [17]).

Recently, biomimetic whisker sensors have been engineered to have shape and material properties

similar to those of rat whiskers, while scaled to larger sizes appropriate for autonomous robots [21, 27].

Another recent innovation is that the whisker deflections are transduced into sensory signals with a

miniature Hall-effect sensor mounted at the base of the artificial whisker shaft [28]. Arrays of these

whiskers have been employed in robots based on the rat whisker system [27, 28] and could serve a

variety of functions on mobile robots [17, 19, 22].

The biomimetic whisker was mounted on the front of the Roomba robot (Fig. 1) at 45 degree

azimuth from the forwards direction of travel with a slight downwards elevation sufficient to make

constant contact with the floor during movement. Outputs from the whisker sensor included two

voltages, x and y, with magnitudes linearly proportional to the tangential component of the two

orthogonal displacement angles of the magnet from its resting position (with the x-component parallel

to the contact surface and the y-component normal to it). As the robot moved, the whiskers were

swept across the floor. The deflections of the whisker were acquired at a rate of 2 kHz and sent to

a computer through the BRAHMS execution framework [29] for analysis in MATLAB (Mathworks,

Natick MA).

Four surfaces were chosen for classification: two carpets of different roughnesses, a tarmac surface

and a vinyl surface (Fig. 1). These surfaces were chosen because they were appropriately generic for

a real world experiment and they provided a range of surface types that were sufficiently similar to

make classification non-trivial. Two primary behavioral conditions were also chosen: where the robot

moved in a stereotyped manner, rotating either anticlockwise only, or clockwise only (four trials of

each motion of sixteen seconds each) and where the robot moved autonomously using its motion

guidance, consisting of externally unpredictable clockwise, anticlockwise and forward motions (four

trials of sixteen seconds1). Data from the four floor surfaces are shown in Fig. 2 for the stereotyped

motion and Fig. 3 for the autonomous motion.

Figures 2 and 3 about here (double column, on single page)

1Trials 13-16 of ref. [25]. Trials 9-12 were rejected because of a systematic change in whisker baseline position

during trial 12, due to the whisker module becoming detached from the robot (see also [26, Fig. 6]).
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3 Probabilistic classification and decision making

To introduce the relation between decision making in neuroscience and inference over sequentially

sampled sensory data, we recall work by Gold and Shadlen on the decision making of two alternative

forced choices [5, 30]. They argued that electrophysiological recordings from LIP association cortex

in awake behaving monkeys [4] match well with hypothesis testing by the sequential probability ratio

test. The log likelihood ratio log LR is central to this interpretation because it indicates whether

alternative H1 or H2 is supported by a sample of sensory data s, as follows from using Bayes rule

p(Hk|s) = p(s|Hk)p(Hk)/p(s) to derive

log PR(s) = log LR(s) + log HR, (1)

log PR(s) = log
p(H1|s)

p(H2|s)
, log LR(s) = log

p(s|H1)

p(s|H2)
, log HR = log

p(H1)

p(H2)
,

where log PR is the log posterior ratio and log HR is the log prior ratio. For a known likelihood

ratio function of the sampling distributions, the decision of whether hypothesis Hk is supported to

a given (log) reliability Θk is determined by threshold-crossing, such that if log PR(s) ≷ Θk then

Hk is supported (corresponding to upwards and downwards threshold crossing, as depicted in [5,

Fig. 2b]). Considering many such independent identically-distributed samples, the log likelihood

ratio becomes a sum of individual terms with the threshold-crossing rule determining when there is

sufficient evidence to make a decision

log LR(s1, . . . , sn) =
n

∑

i=1

log LR(si) ≷ Θk − log HR. (2)

The similarity of this decision process to the observed accumulation of neural activity to threshold

provides strong motivation that the relation between the log likelihood ratio and log posterior ratio

gives a natural way of ‘trading off sensory information, prior probability and expected value to form

a perceptual decision’ [30]. In particular, decision making with the sequential probability ratio test

optimizes the cost of making errors plus the cost per sample time of delaying the decision [7]. Thus

for a given accuracy, it gives the fastest reaction time (see [5, 6]).

How should this Bayesian approach to decision making be applied to multiple competing alter-

natives? Denoting the training data from the four choices as T1, . . . ,T4 (for rough carpet, smooth

carpet, tarmac and vinyl flooring, respectively), the sampling distributions for single samples s are

P (s|Tk) ≡ P (q(s)|Tk) =
nq(Tk)

∑N

q=1
nq(Tk)

, (3)
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where nq(Tk) is the total number of times that the binned sample value q(s) occurs over the time series

and N is the number of bins. We consider pairs s = (x, y) of sampled voltage data corresponding

to the two-dimensional whisker deflections, which for simplicity are assumed independent so that

P (x, y|Tk) = P (x|Tk)P (y|Tk). The likelihoods associated with these sampling distributions can

then be used to define a probabilistic classifier to discriminate the four choices of textures.

Given some test data to be classified, the log posterior probability that its samples are drawn

from the training data for choice Tk is found from the logarithm of Bayes rule

logP (Tk|s1, . . . , sn) = logP (s1, . . . , sn|Tk) + logP (Tk)− logP (s1, . . . , sn), (4)

where P (Tk) is the prior probability of the data being from texture Tk. Here logP (s1, . . . , sn) is a

normalization term that ensures the posteriors sum to unity, and is found by summing the likelihoods

and priors over all textures

logP (s1, . . . , sn) = log

[

4
∑

k=1

P (s1, . . . , sn|Tk)P (Tk)

]

. (5)

Considering conditionally independent and identically distributed samples for each choice of texture,

an estimator for the log likelihood is a sum of individual terms with

logP (s1, . . . , sn|Tk) =
1

m

n
∑

i=1

logP (si|Tk), (6)

where m > 0 is a normalization (see below). The log posteriors are then found by evaluating Eqs 4-6

over n samples of training data.

Note that in practice we evaluated the log posteriors from the estimated log likelihoods in discrete

steps (here every 20 samples, or 10ms). Mathematically, the likelihood to the right of Eq. 6 should be

normalized by the number of combinations that could give the particular histogram of measurement

values {nq} in Eq. 3, otherwise the small values of the estimated likelihoods could present numerical

floating point issues when calculating the posteriors (Eq. 5). All log likelihoods were thus accumulated

with a normalization factor m = 20 in Eq. 6, equivalent to using the average log likelihood as an

estimator [31].

This study compares and contrasts two types of probabilistic classifier based on the accumulated

log likelihoods (6). Both classifiers assume there is no biasing from prior knowledge of the occurrence

frequency of the textures, so that the prior probabilities P (Tk) = 1/4 are equal.

(i) Maximum likelihood classifier: The first probabilistic classifier considers the number of

samples n as a constant set in advance of the decision making. Then the most probable choice of
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texture Tk to have produced the test data has the largest log posterior probability, corresponding to

the maximal a posteriori estimate

T = argmax
Tk

P (Tk|s1, . . . , sn) = argmax
Tk

[

n
∑

i=1

logP (si|Tk)

]

, (7)

where we have used that both the normalizing term and prior are texture independent and can

be ignored in the argmax operation. The probabilistic classification is then maximum likelihood

estimation over a fixed window of test data.

(ii) Sequential Bayes classifier: By analogy with the sequential probability ratio test, the

decision of when a choice of texture is supported to a given log reliability θk is determined by when

a log posterior crosses its threshold

logP (Tk|s1, . . . , sn) > θk, (8)

which determines the number of samples n used for the classification. We then take the most probable

choice of texture T to have generated the test data as the above maximal a posteriori estimate (Eq. 7).

For two choices, Bayesian sequential analysis (Eq. 8) is formally equivalent to the sequential

probability ratio test (Eq. 2) with Θk = θk/(1−θk), as follows by rearranging the threshold conditions.

For given thresholds, it thus gives the fastest decision times [7]. For more than two choices, there

exist more complicated sequential probability ratio methods that are asymptotically optimal [32], in

that they give the fastest decisions as the number of samples approaches infinity. In this study, we are

concerned with decision making over finite sample numbers on data that may invalidate optimality

assumptions such as sample independence. Therefore, for simplicity, we confine our treatment to the

fixed duration (maximum likelihood) and probability threshold crossing (sequential analysis) decision

rules, and examine their comparative performance on naturally-generated whisker sensor data.
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4 Probabilistic texture discrimination

An initial visual inspection indicates that the data looks like noisy time series with means and

variances that vary from texture to texture. All data show dead-zones and jumps where the whisker

has either became static (e.g. lost contact with the surface) or contacted an irregularity. For the

rotating robot motion, there are systematic differences between clockwise and anti-clockwise motion

(first and last four trials in Fig. 2) because of the angle of the whisker to the robot body. Meanwhile,

the autonomous motion consists of random transitions between these two states, interspersed with a

third state of forwards motion. All of these effects present challenges for classifying the textural data,

but ones that must be overcome if the classifier is to function robustly for an animal or autonomous

robot in a natural environment.

4.1 Training and sampling distributions

The initial 8 seconds of each trial was used for training data, leaving the final 8 seconds of each trial

for later validation of the classification algorithms. The data were then pooled under four choices

of robot motion: (a) stereotyped anticlockwise motion trials 1-4; (b) stereotyped clockwise motion

trials 5-8; (c) either stereotyped motion trials 1-8; and (d) autonomous motion trials 1-4.

The sampling distributions associated with the texture likelihoods of the measured x- and y-

sensor voltages were found for the four textures under these four robot motions (Fig. 4). These

probabilities were calculated from binning the range of sensor voltages into 10mV intervals and

totaling the number of values in each bin. These totals represented the empirical frequencies of the

samples, which when normalized by the sample numbers gave the probability distributions of the

sensor values.

The sampling x-distributions (Figs 4a,c,e,g) looked approximately Gaussian, whereas the y-

distributions (Figs 4b,d,f,h) were often non-Gaussian with a range of differences across the textures.

The y-distributions also tended to be wider than the x-distributions, apparently due to greater ver-

tical motion of the whisker as it bumped along surface features compared with its horizontal motion

relative to the robot.

In practice, it was necessary to smooth the sampling distributions to correct for bias in the

training data. Without this smoothing, the few samples in the tails of the distributions led to errors

in estimating the probabilities, which diminished the performance of the classifier. All sampled
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probabilities were thus convolved with a Gaussian smoother of width σ = 100mV (10 intervals),

which improved classification performance while smoothing on a relatively small scale compared to

the overall spread of data.

Figure 4 about here (single column)

4.2 Maximum likelihood classification

Given data from an unknown texture, the sampling distributions plotted in Fig. 4 were first used to

construct a texture classifier based on maximum likelihood estimation over fixed temporal window

duration [26, 33]. For validation, the data were separated into discrete segments over which the

texture was determined. The classifier then identified the maximum of the log likelihood values

accumulated over these sampling windows (Eq. 7) as described in Sec. 3.

The proportion of correct classifications, or hits, was calculated for each of the four textures

(Figs 5a-d; top row) under the four types of robot motion considered here, namely stereotyped clock-

wise, anticlockwise and either rotating motion, or autonomous motion under the robot’s guidance

system. In a previous study [26], using both x- and y-sensor voltage data was found to give the best

classification (with no consistency for classification using only single x- or y-sensor data); hence, the

present study considered only classification using both sensor directions. Then a feature common

across all types of motion and all textures was that the reliability of the classification depended

on the window duration, so that as more evidence was used the decision became better. Roughly

speaking, the reliability improved greatly as the window duration increased up to about 50-100ms

of data, and then modest gains occurred thereafter.

Comparing the hit rates for the individual stereotyped rotating motions (Figs 5a,b), the maximum

likelihood classifier performed accurately over both anticlockwise or clockwise rotating motion. Mean

hit rates were 91% and 85% for a 200ms window. Furthermore, when the classifier was agnostic to

the direction of rotation (Fig. 5c), it still performed at similar accuracy, achieving a mean hit rate of

89% over a 200ms window. Thus, by combining the likelihoods for the clockwise and anticlockwise

motion, the classifier was able to perform well on either type of motion, even though the individual

likelihoods were very different (c.f. Figs 4b and d). This ability to generalize by combining likelihood

information was a key aspect of all probabilistic classifiers.

For the autonomous motion (Fig. 5d), the hit rates on two of the four textures (smooth carpet

and tarmac) were comparable with the accuracy achieved for stereotyped motion. However, the hit
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rates on the two other textures (rough carpet and vinyl) were degraded to about around 60%, which

brought the overall mean hit rate on autonomous motion down to 77% for a 200ms window. Even

so, given the considerable complexity of the autonomous motion, consisting of random anticlock-

wise, clockwise and forward motions, the maximum likelihood classifier demonstrated that it can

successfully generalize over these motions by combining the probability distributions.

Figures 5 and 6 about here (double column on same page)

4.3 Sequential Bayes classification

A probabilistic classifier based on Bayesian sequential analysis was then considered. Log posterior

probabilities for each of the four textures were evaluated over an increasing duration of test data,

with the class given by the maximal value at the time of passing a preset (log) probability threshold

(Eq. 8). For validation, the sequential Bayes classifier ran until it made a decision (example shown in

Fig. 7), after which the posterior probabilities were reset to their flat prior values of one-quarter and

the sequential classification began again. Note that this process is reminiscent of the time course of

neuronal activity recorded from the parietal cortex of monkeys during a decision making task (e.g. [5,

Fig. 5c]).

The hit rates were calculated for each of the four textures under the four types of robot motion

(Figs 6a-d; top row) for probability thresholds ranging from 0.5–0.99999999. Similarly to maximum

likelihood classification, the accuracy improved with increasing the decision parameter, which here

was the probability threshold (whereas maximum likelihood classification varied the decision time

directly). For each texture, the decision times had a distribution depending upon the chosen prob-

ability threshold (examples in Fig. 8), from which we plotted the mean decision time against the

mean hit rate parameterized with the same probability threshold (Figs 6e-h; bottom row). Unlike the

maximum likelihood classifier, these timing distributions also depended upon the test texture. For

example, vinyl was relatively easy to discriminate and had quick decisions (Fig. 8d), whereas smooth

carpet was more difficult and took longer (Fig. 8b). Note that these reaction time distributions are

not unlike those found in humans and animals (e.g. [6, Fig. 1a]).

The most striking aspect of the hit rates for the sequential Bayes classifier was that they were

substantially better than those for the maximum likelihood classifier (c.f. Figs 5,6). In particular,

mean hit rates over all textures were 6–16% greater than the maximum likelihood method for mean
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decision times close to 200ms. This is consistent because the sequential Bayes classifier chooses the

appropriate data duration to classify over (increasing or reducing the sample number with ambiguity

or clarity), whereas the maximum likelihood classifier is restricted to a fixed duration.

The overall accuracy of the sequential Bayes classifier was generally as good as could be reasonably

expected on noisy data with artifacts such as jumps and dead-zones. For less than 200ms of data,

the average hit rates over all textures were well above 90%, which is considerably better than other

classification methods applied to texture data from artificial vibrissa, as discussed later. The classifier

was also able to generalize over robot motions by combining likelihood information. For mean decision

times ∼200ms, there was an overall 95% reliability over both anticlockwise and clockwise rotations.

Meanwhile, on autonomous motion the sequential Bayes classifier had a 93% mean hit rate (compared

with 77% for the maximum likelihood classifier).

Figure 7 about here (single column)

Figure 8 about here (single column)
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5 Comparison with non-probabilistic texture discrimination

Previous studies of texture classification with artificial whisker sensors have utilized the frequency

spectrum of the whisker signals [23, 24, 25, 34, 35, 36]. The main idea is that contacts with various

textured surfaces will cause whiskers to vibrate at distinct frequencies and amplitudes that are

characteristic of the contacted surfaces. Here we consider two methods of classifying the surfaces from

their power spectra that have been applied previously to whisker data from mobile robots: spectral

template matching [24, 25] and spectral pattern recognition with a neural network [23, 34, 36].

Tables 1-4 about here (two per column, over two columns)

5.1 Spectral template classification

Similarly to Sec. 4.1, training data were taken from the initial 8 seconds of each trial and validation

data from the final 8 seconds, with the selection of training and validation data identical for all

classifiers considered in this article. The data were separated into 400ms (800 sample) segments,

giving 20 training and 20 validation sets from each of the 12 trials for each of the 4 textures. (Note

that this uses at least twice the data of the probabilistic classifiers, but not favoring the spectral

methods with less data led to an overly poor resolution of the power spectrum.) These 400ms

segments were then transformed to frequency space by numerical calculation of the discrete fast

fourier transform using the Cooley-Tukey algorithm. The power spectrum was then found from the

square of the absolute value of the fourier transform value at each frequency (Fig. 9).

Templates for texture classification were constructed from the mean power spectra over these

textures in the training data (Fig. 9). These power spectra peaked in the 30-40Hz range with

amplitude characteristic of the texture. Classification was then achieved by calculating the total

root-mean-square error from these mean power spectrum templates for each of the four textures,

with the least error specifying the chosen class [24, 25]. Discriminators included that tarmac and

rough carpet had large surface features (Fig. 1), which led to significant low frequency power for a

whisker tip moving at a few cm/sec over cm-scale features. Another discriminator was the amplitude

of the resonant peak near 30Hz, which showed a clear dependence on surface type (Fig. 9), such as

from the friction of the whisker tip against the surface.

Results of the spectral template method on validation data were of moderate accuracy, with mean

hit rates around 50-70% (Table 3). These hit rates were about 20-40% poorer than the maximum
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likelihood classifier and 30-50% poorer than the sequential Bayes classifier.

Figure 9 about here (single column)

5.2 Spectral pattern recognition with neural networks

Another method for classifying texture data from their frequency spectra is to employ pattern recog-

nition techniques via multi-layer neural networks [23, 34, 36]. For proper comparison with the other

classifiers, we used the same training and validation data sets employed elsewhere in this article (with

400ms segments of whisker data sampled at 2 kHz, again favoring these methods over the probabilis-

tic classifiers). The power spectrum was determined similarly to the spectral template method in the

previous section. However, to reduce the number of inputs to the neural network only the spectrum

up to 120Hz was considered, since the power above this region is close to zero (Fig. 9)

It is well known that feed-forward neural networks can recognize patterns, for which they are

commonly termed multi-layer perceptrons (MLPs). Here we used an MLP with 120 inputs, 20

neurons in the hidden layer and 4 output neurons (one for each texture). Each neuron in the hidden

and output layers had a log-sigmoid transfer functions that generated outputs between zero and one.

The hidden network weights were learnt using backpropogation and overall optimization achieved

via scaled conjugate gradient descent with cost function the root mean square error on the network

output. The classification of new test data was then given by the highest output on the MLP outputs,

and the hit rates equal to the proportion of correct classification to the overall number of test trials.

In the following results, the network was trained 10 times and only used if it converged to a reliable

classifier (all hit rates greater than 25%).

Results of the neural network classifier on validation data were of good accuracy, with mean hit

rates on all types of motion around 70–80% (Table 4; mean result over 10 training sessions). These

hit rates were considerably higher than the spectral template matching method from the previous

section. The better performance of the neural network method compared with template matching

is not surprising in hindsight, because MLPs are capable of capturing quite complicated relations

between data. This does come at a significant expense in computational cost, with the template

matching method taking only a fraction of a second to train and the neural network method taking

many tens of seconds (on a standard 2GHz PC with 4Gb of RAM).

In comparison with the maximum likelihood and sequential Bayes classifiers, the neural network

classifier was about 7-17% and 14-24% less accurate respectively.
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6 Discussion

Figure 10 about here (single column)

We have shown that a sequential Bayes classifier related to leading proposals for perception in

animals out-performs existing alternative accounts of texture discrimination in our physical model

of the rat whisker system. In Bayesian sequential analysis, the evidence for competing hypotheses

(here percepts of texture) was accumulated over time until reaching a preset threshold when a

decision was made. We found that alternative, non-probabilistic classification methods considered

previously [25, 24, 34] were generally around 20-50% poorer in accuracy than sequential analysis,

while a probabilistic method based on (fixed-response time) maximum likelihood estimation [26, 33]

was about 10% poorer.

The better performance of sequential analysis over maximum likelihood estimation originated

in using variable reaction times from a probability threshold for decision making. Both of these

probabilistic classifiers used an evidence accumulation framework based on log likelihood integration

assuming sampling independence over time. The maximum likelihood method was restricted to a

predefined decision time, whereas the sequential Bayes classifier dynamically made the decision when

at least one inferred posterior probability reached a preset probability threshold. Given that neuronal

recordings in monkeys making perceptual decisions suggest a mechanism of probabilistic threshold

crossing [3, 4, 5] and that here we have demonstrated clear benefits for texture discrimination with

artificial whiskers using a similar decision rule, we suggest that rats may also use this discrimination

strategy to perceive texture.

We also found that the performance of the sequential Bayes classifier improved dramatically as

the resulting decision times increased up to 100ms, but improved slowly thereafter. Hence, the

optimal integration time in the tradeoff between speed and accuracy would be around 100ms. It

is intriguing that in behaving rats, texture discrimination is achieved over a similar time frame,

consisting typically of three to four contacts of about 50ms duration each [37]. In other words,

the rat may collect and analyze three to four samples of whisker vibration in order to make a fast

and accurate decision. Thus the time scale is similar in optimizing biological and robot texture

classification.

These results inform about sensory encoding in biological systems, specifically rodents, in their

relation to various hypotheses about which features of whisker motion are important for texture

discrimination. One idea is that the entire set of whiskers functions analogously to the cochlea in
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performing frequency analysis [16], due to differences in vibrassae properties across the face [38]

resulting in differential resonant frequencies. A related idea is that a single whisker could also

use resonance as a texture cue, by considering the variation in oscillation amplitude [35] or mean

velocity [13] from the resonant interaction of surface features with the intrinsic whisker dynamics.

Another hypothesis stresses instead the kinematic conversion of surface shape into trains of discrete

motion events (stick-slips) by individual whiskers [15], such that those with high-velocity (and high-

acceleration) can encode textures by their occurrence, number and possibly timing [9, 10, 11, 12,

39, 40]. Meanwhile, another related view is that the mean speed of whisker micro-motion over the

contact could also cue for texture [8, 14, 15].

In our robot study of the rat whisker system, the artificial whisker resonated when contacting

natural surfaces, as was evident from both the fine detail of the whisker contact (Fig. 10) and the peak

near 30Hz in the frequency spectra (Fig. 9). The amplitude of this oscillation varied systematically

with surface roughness to give a discriminator for the probabilistic classifiers from the variance of the

sampling distributions associated with each likelihood (Fig. 4). Therefore in the present robot study

the probabilistic classifiers utilized changes in resonance amplitude to discriminate texture. However,

recent experimental evidence found that the power spectra of rat whisker movements during voluntary

palpation of various sandpaper surfaces have little systematic variation with texture [10, Figs 7c,d].

Taken on face value, this result suggests that the rat does not extract the same kinematic features

as the robot with a biomimetic whisker and probabilistic classifier over the time series of whisker

deflections.

Closer examination does however reveal some subtleties when directly comparing biological studies

with the present robot treatment, which are informative about both how the biological system is

configured for tactile sensing and how robots could better utilize artificial whisker sensors.

An argument against the resonance hypothesis was that the power of the whisker vibrations at the

resonance frequency does not vary substantially across textures, and therefore can not discriminate

surfaces [10]. However, a visual inspection of the power spectra from the biomimetic whisker in the

present study (Fig. 9) revealed only a small amount of systematic variation between several textures,

and yet the surfaces can be reliably identified to about 70-80% with a neural network classifier of the

power spectrum (Table 4). Therefore what may appear to be small differences in the overall shape

of the power spectra can be sufficient for reasonable classification. In our view, the most convincing

way to demonstrate that the power spectra are not sufficient for reliable classification is to apply
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an appropriate classifier to the whisker signals, such as the neural network method considered here,

which was not attempted in the original study [10].

Furthermore, the probabilistic classifiers (sequential analysis and maximum likelihood) must also

use features other than the resonance amplitude to achieve better performance than classifiers based

solely on the power spectra. A distinctive feature is that mean whisker positional deflection (evident

in Fig. 4) varied systematically with surface roughness, as was also evident in the whisker deflection

profiles (Fig. 10). Physically, as the friction between the surfaces and the whisker increased, the

whisker was dragged back more strongly, which led to greater mean deflection. This signal component

is not usually considered in the biological literature, even though the animal has information about

whisker position at the thalamic relay to sensory cortex [41]. The contribution of this effect to

the perception of texture could be investigated in behavioral experiments, for example by checking

whether rodents can discriminate surfaces of equal roughness but differing friction or by presenting

de-meaned artificial whisker vibrations.

In general, discrimination based on the probabilistic classifiers will use all the available evidence

in the likelihood function to give the best decision. In the present robot experiment with fixed,

passive biomimetic whiskers, this evidence related to the amplitude of the whisker resonance and its

mean deflection, as represented in the mean and variance of the sampling distributions associated

with the likelihoods. However, in rodent experiments such as those described above [10, 11, 40], the

whiskers were actively dabbed against surfaces rather than passively brushed along them; moreover,

the scale of the whiskers was such that the resonance shifted to higher frequencies (around 100Hz

rather than 30Hz). In such circumstances, it appears from the biology that stick-slip events overtake

the resonance amplitude as the dominant signal component for reliable texture discrimination [9, 10,

11, 12, 39, 40].

To investigate these proposals further in a robot implementation would require a follow-up study

in which the whiskers are actuated rather than mounted in a fixed position, such as with the BIO-

TACT sensor which consists of a whisking head mounted on a robot arm [28]. The head of the

BIOTACT sensor has multiple whiskers of differing lengths akin to rodent vibrissae, also allowing

investigation of multi-whisker integration and the effect of whisker dynamics on discrimination. (For

example, shortening whiskers to reduce interference between the resonance and micro-features of the

surface has been reported to improve texture discrimination [23].) Direct control of the head and

whiskers would also allow study of reaction-time and perception in an artificial device, for example
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by manipulating the costs of making errors and delaying decisions, which are fundamental aspects

of animal perception [5].

The value of this approach for understanding biological sensing is that the experimenter can

design the robot to test theories motivated by the biology, whereas biology is principally an empiri-

cal science based on systems that are given. Combining both biological and engineering approaches,

through biomimetics, can in principle answer questions that are not answerable by biology alone [42].

The results presented here cast light on how the various previous proposals for rodent texture dis-

crimination are dependent on the whisker contact mechanics, and suggest a number of potential lines

of enquiry for future neurobiological studies. We would also anticipate that extending our biomimetic

approach to robotic systems that incorporate additional aspects of biological vibrissal sensing, such as

active control of whisker movement, should help resolve these issues in tactile sensing and contribute

to a common account of decision making across mammalian species

16



Acknowledgment

The authors thank members of ATLAS (Active Touch Laboratory At Sheffield), the Bristol Robotics

Laboratory, the BIOTACT (BIOmimetic Technology for vibrissal ACtive Touch) consortium and the

anonymous reviewers. This work was supported by EU Framework project BIOTACT (ICT-215910),

by the Human Frontier Science Program (contract RG0041/2009-C), the Compagnia San Paolo, and

the Italian Institute of Technology through the BMI Project.

17



References

[1] D.C. Knill and A. Pouget. The Bayesian brain: the role of uncertainty in neural coding and

computation. TRENDS in Neurosciences, 27(12):712–719, 2004.

[2] D. Kersten, P. Mamassian, and A. Yuille. Object perception as Bayesian inference. Annu. Rev.

Psychol., 55:271–304, 2004.

[3] A.C. Huk and M.N. Shadlen. Neural activity in macaque parietal cortex reflects temporal

integration of visual motion signals during perceptual decision making. Journal of Neuroscience,

25(45):10420, 2005.

[4] M.L. Platt and P.W. Glimcher. Neural correlates of decision variables in parietal cortex. Nature,

400(6741):233–238, 1999.

[5] J.I. Gold and M.N. Shadlen. The neural basis of decision making. Annu. Rev. Neurosci.,

30:535–574, 2007.

[6] R. Bogacz, E. Brown, J. Moehlis, P. Holmes, and J.D. Cohen. The physics of optimal decision

making: A formal analysis of models of performance in two-alternative forced-choice tasks.

Psychological Review, 113(4):700, 2006.

[7] A. Wald and J. Wolfowitz. Optimum character of the sequential probability ratio test. The

Annals of Mathematical Statistics, 19(3):326–339, 1948.

[8] T. Morita, H. Kang, J. Wolfe, S.P. Jadhav, and D.E. Feldman. Psychometric curve and behav-

ioral strategies for whisker-based texture discrimination in rats. PloS one, 6(6):e20437, 2011.

[9] M.E. Diamond. Texture sensation through the fingertips and the whiskers. Current opinion in

neurobiology, 20(3):319–327, 2010.

[10] J. Wolfe, D.N. Hill, S. Pahlavan, P.J. Drew, D. Kleinfeld, and D.E. Feldman. Texture coding in

the rat whisker system: slip-stick versus differential resonance. PLoS Biol, 6(8):e215, 2008.

[11] M.E. Diamond, M. Von Heimendahl, and E. Arabzadeh. Whisker-mediated texture discrimina-

tion. PLoS Biol, 6(8):e220, 2008.

18



[12] M.E. Diamond, M. von Heimendahl, P.M. Knutsen, D. Kleinfeld, and E. Ahissar. ‘Where’ and

‘what’ in the whisker sensorimotor system. Nature Reviews Neuroscience, 9(8):601–612, 2008.

[13] J.T. Ritt, M.L. Andermann, and C.I. Moore. Embodied information processing: vibrissa me-

chanics and texture features shape micromotions in actively sensing rats. Neuron, 57(4):599–613,

2008.

[14] M. Von Heimendahl, P.M. Itskov, E. Arabzadeh, and M.E. Diamond. Neuronal activity in rat

barrel cortex underlying texture discrimination. PLoS biology, 5(11):e305, 2007.

[15] E. Arabzadeh, E. Zorzin, and M.E. Diamond. Neuronal encoding of texture in the whisker

sensory pathway. PLoS Biology, 3(1):e17, 2005.

[16] M.A. Neimark, M.L. Andermann, J.J. Hopfield, and C.I. Moore. Vibrissa resonance as a trans-

duction mechanism for tactile encoding. The Journal of neuroscience, 23(16):6499, 2003.

[17] T.J. Prescott, M.J. Pearson, B. Mitchinson, J.C.W. Sullivan, and A.G. Pipe. Whisking with

robots from rat vibrissae to biomimetic technology for active touch. IEEE Robotics and Au-

tomation Magazine, 16(3):42–50, 2009.

[18] J.H. Solomon and M.J.Z. Hartmann. Artificial whiskers suitable for array implementation:

Accounting for lateral slip and surface friction. IEEE Transactions on Robotics, 24(5):1157–

1167, 2008.

[19] D.E. Kim and R. Moller. Biomimetic whiskers for shape recognition. Robotics and Autonomous

Systems, 55(3):229–243, 2007.

[20] J.H. Solomon and M.J. Hartmann. Biomechanics: Robotic whiskers used to sense features.

Nature, 443(7111):525, 2006.

[21] M.J. Pearson, I. Gilhespy, C. Melhuish, B. Mitchinson, M. Nibouche, A.G. Pipe, and T.J.

Prescott. A biomimetic haptic sensor. International Journal of Advanced Robotic Systems,

2(4):335–343, 2005.

[22] A.E. Schultz, J.H. Solomon, M.A. Peshkin, and M.J. Hartmann. Multifunctional whisker arrays

for distance detection, terrain mapping, and object feature extraction. Proc. IEEE Int. Conf.

Robot. Autom. (ICRA 2005), pages 2588–2593, 2005.

19



[23] D.E. Kim and R. Moeller. A biomimetic whisker for texture discrimination and distance esti-

mation. In From Animals to Animats 8, page 140. The MIT Press, 2004.

[24] M. Fend, S. Bovet, H. Yokoi, and R. Pfeifer. An active artificial whisker array for texture

discrimination. In Proc. IEEE Int. Conf. Intelligent Robots and Systems (IROS 2003), volume 2,

pages 1044–1049, 2003.

[25] M. Evans, C.W. Fox, M.J. Pearson, and T.J. Prescott. Spectral template based classification

of robotic whisker sensor signals in a floor texture discrimination task. Proceedings of Towards

Autonomous Robotic Systems (TAROS 2009), pages 19–24, 2009.

[26] N.F. Lepora, M. Evans, C.W. Fox, M.E. Diamond, K. Gurney, and T.J. Prescott. Naive bayes

texture classification applied to whisker data from a moving robot. In The IEEE 2010 Interna-

tional Joint Conference on Neural Networks (IJCNN), pages 1–8, 2010.

[27] M.J. Pearson, B. Mitchinson, J.C. Sullivan, A.G. Pipe, and T.J. Prescott. Biomimetic vib-

rissal sensing for robots. Philosophical Transactions of the Royal Society B: Biological Sciences,

366(1581):3085–3096, 2011.

[28] J. Sullivan, B. Mitchinson, M. Pearson, M. Evans, N. Lepora, C. Fox, C. Melhuish, and

T. Prescott. Tactile discrimination using active whisker sensors. IEEE Sensors, 2011.

[29] B. Mitchinson, T.S. Chan, J. Chambers, M. Pearson, M. Humphries, C. Fox, K. Gurney, and

T.J. Prescott. BRAHMS: Novel middleware for integrated systems computation. Advanced

Engineering Informatics, 24(1):49–61, 2010.

[30] J.I. Gold and M.N. Shadlen. Neural computations that underlie decisions about sensory stimuli.

Trends in Cognitive Sciences, 5(1):10–16, 2001.

[31] J.M. Wooldridge. Introductory econometrics: A modern approach. South-Western Pub, 2009.

[32] VP Dragalin, A.G. Tartakovsky, and V.V. Veeravalli. Multihypothesis sequential probability

ratio tests. I. Asymptotic optimality. Information Theory, IEEE Transactions on, 45(7):2448–

2461, 1999.

[33] N.F. Lepora, C. Fox, M. Evans, B. Mitchinson, A. Motiwala, J.C. Sullivan, M. Pearson,

J. Welsby, T. Pipe, K. Gurney, and T. Prescott. A general classifier of whisker data using

20



stationary naive Bayes: application to BIOTACT robots. In Towards Autonomous Robotic

Systems, Lecture Notes in Computer Science.

[34] M. Fend. Whisker-based texture discrimination on a mobile robot. Advances in Artificial Life,

pages 302–311, 2005.

[35] J. Hipp, E. Arabzadeh, E. Zorzin, J. Conradt, C. Kayser, M.E. Diamond, and P. Konig. Texture

signals in whisker vibrations. Journal of neurophysiology, 95(3):1792, 2006.

[36] C.W. Fox, B. Mitchinson, M.J. Pearson, A.G. Pipe, and T.J. Prescott. Contact type dependency

of texture classification in a whiskered mobile robot. Autonomous Robots, 26(4):223–239, 2009.

[37] Y. Zuo, I. Perkon, and M.E. Diamond. Whisking and whisker kinematics during a texture

classification task. Philosophical Transactions of the Royal Society B: Biological Sciences,

366(1581):3058–3069, 2011.

[38] M. Brecht, B. Preilowski, and M.M. Merzenich. Functional architecture of the mystacial vibris-

sae. Behavioural brain research, 84(1-2):81–97, 1997.

[39] E. Lottem and R. Azouz. Dynamic translation of surface coarseness into whisker vibrations.

Journal of neurophysiology, 100(5):2852, 2008.

[40] S.P. Jadhav, J. Wolfe, and D.E. Feldman. Sparse temporal coding of elementary tactile features

during active whisker sensation. Nature Neuroscience, 12(6):792–800, 2009.

[41] R.S. Petersen, M. Brambilla, M.R. Bale, A. Alenda, S. Panzeri, M.A. Montemurro, and M. Mar-

avall. Diverse and temporally precise kinetic feature selectivity in the VPm thalamic nucleus.

Neuron, 60(5):890–903, 2008.

[42] B. Mitchinson, M. Pearson, T. Pipe, and T.J. Prescott. In biomimetic robots as scientific models:

a view from the whisker tip. Neuromorphic and Brain-Based Robots, page 23, 2011.

21



Table 1: Maximum likelihood classifier

200ms temporal window (400 samples)

Robot Rough Smooth Tarmac Vinyl Mean

motion carpet carpet flooring hit rate

anticlockwise 80% 94% 91% 100% 91%

clockwise 74% 84% 84% 97% 85%

rotating 82% 87% 88% 99% 89%

autonomous 57% 90% 93% 68% 77%

Table 2: Sequential Bayes classifier

Decisions taking close to 200ms (400 samples)

Robot Rough Smooth Tarmac Vinyl Mean

motion carpet carpet flooring hit rate

anticlockwise 99% 98% 99% 100% 99%

clockwise 91% 84% 94% 98% 92%

rotating 96% 89% 97% 99% 95%

autonomous 85% 97% 99% 91% 93%
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Table 3: Template classifier of power spectrum

Fourier transform over 400ms window (800 samples)

Robot Rough Smooth Tarmac Vinyl Mean

motion carpet carpet flooring hit rate

anticlockwise 65% 64% 54% 100% 71%

clockwise 36% 53% 3% 96% 47%

rotating 32% 60% 49% 97% 48%

autonomous 6% 43% 83% 79% 53%

Table 4: Neural network classifier of power spectrum

Fourier transform over 400ms window (800 samples)

Robot Rough Smooth Tarmac Vinyl Mean

motion carpet carpet flooring hit rate

anticlockwise 68% 84% 84% 99% 84%

clockwise 48% 56% 72% 94% 68%

rotating 68% 81% 79% 97% 81%

autonomous 62% 57% 91% 96% 76%
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Figure 1: The robot with whisker attachment (online version in color).

A Roomba robot was used as a platform for the experiments. The whisker was mounted on the front

of the robot, angled down to make constant contact with the floor. The panels show the various

textured surfaces: (a) rough carpet; (b) smooth carpet; (c) tarmac and (d) vinyl.
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Figure 2: Stereotyped motion data.

Data for the four floor surface textures were collected in eight trials each of length sixteen seconds.

The first four trials were for anticlockwise rotating motion and the last four trials were for clockwise

motion.
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Figure 3: Autonomous motion data.

Data collection as for Fig. 2, but with the robot moving autonomously in a series of externally

unpredictable anticlockwise, clockwise and forward motions.
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Figure 4: Texture sampling distributions.

The sampling distributions associated with texture likelihoods were calculated from the empirical

frequencies with which the samples occurred in training data for the four textures. The top panels

show the distributions from the sensor x-component and the bottom panels show the y-component.

The horizontal groups of panels are ordered by robot motion, for anticlockwise, clockwise, either

rotating and autonomous motion.
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Figure 5: Hit rates for maximum likelihood classifier.

The percentages of correct classification were evaluated over validation data from the four textures

for the maximum likelihood classifier with fixed window durations. The four types of robot mo-

tion (stereotyped anticlockwise, clockwise, either rotation and autonomous motion) were considered

separately.
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Figure 6: Hit rates for sequential Bayes classifier.

The percentages of correct classification were evaluated over validation data from the four textures

for the sequential Bayes classifier. The four types of robot motion (stereotyped anticlockwise, clock-

wise, either rotation and autonomous motion) were considered separately. The top row (panels a-d)

displays the mean hit rate plotted against decision threshold and the bottom row (panels e-h) plots

this mean hit rate against the mean decision time calculated at the same decision threshold.
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Figure 7: Example texture discrimination for the sequential Bayes classifier.

The posterior probabilities are plotted against increasing the window duration of sampled test data

(for rough carpet; texture classes denoted with the line styles from Figs 4-6). Probability thresholds

of 0.5, 0.7 and 0.9 are also shown, giving decision times of 10ms, 20ms and 30ms respectively.
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Figure 8: Example decision times for the sequential Bayes classifier.

Histograms of the decision times are shown for each of the four textures. Data were taken from the

stereotyped rotating motion, with probability thresholds 0.5, 0.9 and 0.999.
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Figure 9: Power spectra of whisker signals.

Whisker deflection power spectra are shown for trials 1 to 4 (anticlockwise rotating motion), which

were taken over 400ms windows and then averaged. These spectra are normalized by the mean

total power for all textures.
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Figure 10: Whisker deflection profiles for four textures.

Whisker deflection profiles are shown for trial 1 (from 5 to 6 seconds).
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