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Abstract. Neurophysiological studies on hippocampal replay, which was
a phenomenon first shown in rodents as the reactivation of previously
active hippocampal cells, has shown it to be potentially important for
mnemonic functions such as memory consolidation/recall, learning and
planning. Since its discovery, a small number of neuronal models have
been developed to attempt to describe the workings of this phenomenon.
But it may be possible to utilize hippocampal replay to help solve some
of the difficult challenges that face robotic cognition, learning and mem-
ory, and/or be used for the development of biomimetic robotics. Here we
review these models in the hope of learning their workings, and see that
their neural network structures may be integrated into current neural
network based algorithms for robotic spatial memory, and perhaps are
particularly suited for reinforcement learning paradigms.
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1 Introduction

Hippocampal replay, first discovered in rodents, is a phenomenon in which hip-
pocampal cells that were previously active during awake exploratory behaviours
are later replayed in the same temporal order, often during sharp-wave ripple
events that compresses the time-scale of the replay event relative to the ex-
ploratory activation [?]. Hippocampal replay predominantly occurs whilst the
rat is in restful states such as sleep or awake quiescence, and can occur in a
‘forward’ direction, such that the previously active cells are reinstated with the
same temporal order [?]; or it can be in the ‘reverse’, such that the temporal
order of the cells are reversed during a replay event [?] (see [?] for a review on
hippocampal replay). But just how or why hippocampal replay occurs is still an
ongoing research problem, yet current evidence suggests that it may be impor-
tant for memory consolidation/recall, planning [?], and (reinforcement) learning
[?].

The neural mechanisms of reinforcement learning can be traced back to
Schultz’s seminal work on dopamine as a reward-predicting error signal [?], and
a recent review on the ventral basal ganglia (VBG) – a region heavily innervated
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with dopaminergic neurons [?] – has shown that the hippocampal region projects
to and possibly receives projections from the VBG [?]. Indeed, experimentally
there is strong evidence that interactions between hippocampus, VBG, and ven-
tral tegmental area support reward-guided memory and conditioned place pref-
erence (CPP) [?,?,?]. Furthermore, recent experimental results have shown that
hippocampal replays and sharp-wave ripples coordinate with bursts of activity
in the ventral tegmental area [?] and ventral striatum [?], and that changes in
reward modulates the rate at which hippocampal reverse replays, but not for-
ward replays, occur [?]. It has even been shown in a recent study on humans that
spatial memory is prioritized for rewarding locations “retroactively”, suggesting
that reward-prioritized spatial memory appears some time after an event has
occurred [?]. Perhaps it is hippocampal replay in the interim that modulates the
memory?

Hippocampal replay in coordination with dopaminergic activity therefore
seems well suited as a potential mechanism for reinforcement learning. A number
of models have looked to incorporate dopamine as a neuromodulatory third
factor in three-factor learning rules for synaptic plasticity (see [?] for a review),
successfully showing, for instance, behavioural changes for conditioned place
preference in a simulated Morris water maze task [?]. Traditionally, reinforcement
learning algorithms have only partially resembled biology, and there is certainly
no mention of hippocampal replay in the main body of reinforcement learning
literature (i.e. Sutton and Barto’s famous text book [?]). However, some of the
reinforcement learning algorithms, such as DynaQ algorithms and the deep Q-
network, seem well suited as explanations for the use case of hippocampal replay
with their need for offline sequence replays [?,?,?,?,?,?].

Memory, reinforcement learning and planning are all active challenges in the
field of robotics and AI, and bioinspired models have been and are being de-
veloped to tackle these challenges [?]. Given the role hippocampal replay has in
mnemonic functions, we review here a selection of the most recent studies that
aim to describe the neural dynamics of hippocampal replay through computa-
tional modelling. We hope that doing so will help determine how and whether
hippocampal replay could be useful for solving some of the mnemonic and learn-
ing challenges that face the robotics and AI fields.

2 Computational Models of Hippocampal Replay

Models of hippocampal replay are almost exclusively composed of neural net-
works with either rate-based or spiking-based neural dynamics, and most, if not
all, necessitate the use of recurrent networks in order to store memory traces
for later reinstatement. Furthermore, they mostly simplify the problem of place
cell activation by assuming evenly distributed place fields, usually overlapping,
in an environment for which specific place cells fire as a function of the agent’s
distance from the centre of the respective place field.

We start with a spiking-based model of leaky-integrate and fire neurons by
Jahnke et al. [?]. Here they exploit theta phase precession [?] to generate memory
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Fig. 1. Dendritic spiking causes supralinear responses to synchronous inputs (solid line)
above what would be expected with a simple summation of inputs only (dashed line),
important in the model by Jahnke et al. [?] for modelling forward/reverse replays and
sharp-wave ripples. This plot was modelled using a standard leaky-integrate and fire
neuron receiving instantaneous synchronous inputs at t=0, with and without dendritic
spiking (see main text).

traces via spike-timing dependent plasticity. But the key inclusion in their model
is to use dendritic spiking, which occurs when a high number of synchronous
inputs exceed some threshold Θb within a time interval of ∆T s. This then causes
a dendritic current impulse which causes an increase in membrane voltage above
what would be expected without dendritic spiking (Figure 1).

Once a dendritic spike is initiated, the dendrite enters a refractory period
during which time it cannot transmit any spikes. In a linear sequence of place cells
with bidirectional connections, this refractory period is important for restricting
replays to only travel in a single direction, without reversing back on itself [?].
Furthermore, the supralinear nature of the dendritic impulse generates activity
pulses that are reminiscent of sharp-wave ripples.

Dendritic spiking, found to occur in CA1 pyramidal cells of the hippocampus
[?], offers a unique explanation for the occurrence of both sharp wave ripples and
replay, and Matheus Gauy et al. [?] have extended the use of dendritic spikes, as
modelled by Jahnke et al. [?], but invented a new cell type termed ‘sequence cells’.
The reason for this inclusion is that Jahnke et al.’s model could not account for
different trajectories containing the same place cells. Having multiple trajectories
emanating from the same place cell would cause replays of multiple trajectories at
once. Rather, sequence cells, activated in sequential order as an agent traversed
an environment, were paired with place cells via Hebbian learning. As such, one
needs only save individual trajectories of sequence cells, and reactivate them in
order to reinstate the place cell sequences learned during exploration. It is worth
noting that the assumption of sequence cells causes two possible issues: 1) this
may necessitate an indefinite number of distinct sequences of sequence cells to
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Fig. 2. A model by Chenkov et al. [?] of a synfire-like chain of cell assemblies containing
excitatory (E) and inhibitory (I) cell populations, recurrently connected to each other
with probability Prc, and connected feedforwardly with probability Pff . Replay events
are characterized as activity propagation from one cell assembly to another and so on,
with activity modulated by the inhibitory interneurons. Figure adapted from [?].

account for all trajectories experienced; 2) there is no biological evidence for the
existence of sequence cells (though for bioinspiration this may be irrelevant).

Matheus Gauy et al.’s model above had sequences of sequence cells arranged
in a similar fashion to synfire chains, and Chenkov et al. [?] designed a similar
synfire-like chain of cell assemblies. Within each cell assembly of the synfire chain
was a collection of excitatory and inhibitory cells with recurrent connections
(Figure 2). By carefully designing each assembly such that there was increased
inhibition for accumulating excitatory spikes, the model was able to successfully
amplify activity down through the assembly sequences, mimicking replay events,
but avoids explosions of activity reminiscent of synfire chain explosions and
bursting. This controlled amplification allows weak memory traces, such as
those that might be generated during one-shot learning episodes, to successfully
re-fire. Furthermore, the increase in inhibition due to accumulating excitatory
activity causes replay events to travel in a single direction only.

Refractory periods and inhibitory effects with symmetric bidirectional con-
nections are two methods that allow reverse replays to occur, but Haga and Fukai
[?] have shown that the effects of short-term plasticity could also be an expla-
nation for reverse replay. By modelling short-term depression and facilitation at
synapses, it is possible to long-term potentiate bidirectional connections in an
asymmetric fashion, such that the reverse direction is potentiated more than the
forward direction following a forward activation of a sequence. However, it is not
clear how this model accounts for forward replay, nor how it prevents continu-
ous reversals in the memory trace strength. For instance, reverse replays cause
potentiations to favour the forward direction again, which could be useful, but
a forward replay would re-potentiate the reverse direction, which is perhaps not
quite clearly as useful.

It seems likely that we’d be interested in models that can support both for-
ward and reverse replays, and perhaps the earliest model of a network incorpo-
rating both forward and reverse replay was from Molter et al. [?]. Their original
model was more typical in that a traversal through a set of place cells would
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potentiate that trajectory more in the forward than the reverse direction, but
still has non-negligible reverse connections necessary for reverse replays. They
also, like in Jahnke et al.’s model [?], employed theta phase precession during
memory trace formation. The model was also somewhat simpler and compu-
tationally cheaper than the above models, as it was rate-based as apposed to
spiking (though both [?] and [?] include rate-based and spiking-based models).
But the replays themselves in a 2D environment were similar to a wave-like
propagation across the entire environment emanating from the position of re-
play initiation – as such it does not hold an accurate model of traversal for the
environment, though it can provide replays of inexperienced paths.

Following memory trace formation it is then necessary to initiate replay
events, and all models suggest that an external stimulus be input to the first
(last) cell/cell assembly to initiate forward (reverse) replays. Chenkov et al.
[?], however, through control of recurrent and feedforward connection probabili-
ties, show that asynchronous-irregular spiking can spontaneously initiate replay
events – whether this is of use is unknown, but a recent study with a DynaQ
neural network algorithm suggests ‘random’ hippocampal replays are not only
useful, but necessary, for converging Q-values (see section 3 below).

To summarize, there have been a small number of computational models,
rate-based and spiking-based, that aim to capture the dynamics of hippocampal
replay. Most networks require recurrent connections, either across the whole
network or within sub-assemblies that are then connected as synfire-like chains,
so that memory traces can be effectively stored and, as a consequence of an
external stimulus, reinstated later as a replay event. The mechanisms through
which each model forms memory traces and then initiates and maintains replay
events is summarized in Table 1.

It is worth noting that a small number of studies have modelled the process
of sharp-wave/ripples in the hippocampus, which occurs simultaneously with a
replay event [?]. Particularly they model the generation of sharp-wave/ripples
via interactions of inhibitory interneurons, extra-hippocampal inputs such as
septal inputs, and/or neuromodulators like acetylcholine, and the relationship
between sharp-wave/ripples and replay events [?,?,?,?].

3 Hippocampal Replay for Robotics Applications

The models reviewed here are computational models with the sole intent of
replicating experimental findings. But they do not prove immediately useful
for practical applications, as they all require place cell representations readily
available prior to replay, and offer no useful outputs post-replay. What could
be missing then is a unified model of place cell, or state, representations at
the input end of a hippocampal replay model, and a means for action-selection
improvement at the output end. A line a literature on each of these areas is
available, but a full review of these is outside the scope of this paper.

Though a few recent studies are worth mentioning here that could integrate
well with hippocampal replay. On the place cell representation end, the first
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Table 1. Summary of the hippocampal replay models. The means by which each model
performs the stages required for hippocampal replay are summarized here. See main
text for full details.

is a biologically inspired SLAM algorithm, or RatSLAM, developed by Milford
et al. [?], which has proven effective at capturing state representations in the
form of ‘pose cells.’ With an accurate map represented in the form cell values,
this offers itself as a candidate for replay models based upon neural networks.
Alternatively, Byrne et al. model [?] hippocampal place cells, boundary vector
cells and head direction cells, all neurophysiological features of the hippocampal
region [?,?], which could provide a more biologically plausible model of place
cell representations, whilst Jauffret et al. [?] have recently developed a model of
grid cells [?] and place cells that was successfully applied for spatial navigation
in a robot.

For action-selection improvement, the first is a DynaQ neural network algo-
rithm developed by Aubin et al. [?], which is a reinforcement learning model
using Q-learning and the Dyna algorithm. It too is composed of a neural net-
work that represents states, but pairs the states with (discrete) actions. They
indeed integrated a version of hippocampal replay and showed that where Q-
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values could not converge online due to similarities in state values, they could
however converge offline via ‘random’ hippocampal replays. Mnih et al.’s deep
Q-network (DQN) [?], in a similar fashion to the DynaQ neural network, uti-
lized experience replays, which is conducted by selecting from a random uniform
distribution groupings of state, action, reward and next state experiences. A list
of experiences could then be denoted by Dt = {e1, ..., et} with et = (st, at, rt, s

′

t)
being an individual experience, and applying the Q-learning update for each
erand ∼ U(D) where U(·) is the uniform distribution. But both these algorithms
suffer from perhaps one minor issue, in that Q-values here are learned for a dis-
crete set of actions. Though perhaps rectifiable, this could prove problematic for
states that are represented continuously.

Recent work by Mattar and Daw [?] developed a Q-learning based reinforce-
ment learning model that prioritizes Bellman backups. Such a prioritization (for
which something similar is found in the model by Aubin et al. [?] and termed
prioritized sweeping) determines whether the agent should prioritize the evalu-
ation of upcoming decisions, or whether to perform updates in order to capture
newly learned information about a reward. Prioritization of the former increases
the number of forward replays, whilst for the latter reverse replays become more
prominent. In this way, the model favours forward replays at the start of a trial,
whilst reverse replays are favoured at the end of a trial – effects similar to that
found with hippocampal replay [?].

Another challenge for robotics is the number of trials required for reinforce-
ment learning algorithms to properly converge. This was a problem addressed
by Vasilaki et al. [?,?] in a spike-based model of hippocampal place cells for
a reinforcement learning Morris water maze task. They showed that whereas
policy-gradient methods require either a high number of learning trials (due to
small learning rates) or cause noisy eligibility traces (when learning rates are
high), their model could account for effective learning within a small number of
trials, as is found experimentally with rats. Interestingly, they modelled “action
cells”, which could possibly be found in the basal ganglia as an action selection
mechanism [?], and further, unlike the models discussed above, they were able to
represent actions and states as continuous, rather than discrete. Yet importantly
for our discussion here, they did not employ hippocampal replay.

Hippocampal replay could offer another means to achieve the low number of
learning trials required – learning is done “offline” as (perhaps noisy) repetitions
of previous experience. This could therefore offer an effective and highly efficient
mechanism that converges state-action values “offline”, which could prove use-
ful for robotic learning, as well as offer bioinspired learning mechanisms for
biomimetic robotics. And indeed there can be a symbiotic relationship between
neurophysiology and robotics, such that whilst robotics can take inspiration from
biology, we may also enhance our understanding of the underlying biology by
providing solutions, via behavioural robotics, of some of the functional properties
that exists in biological creatures.
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4 Conclusion

The discovery of hippocampal replay, via its ability to reinstate previously active
place cells, along with dopaminergic activity in the basal ganglia, offers a possi-
bly efficient “offline” mechanism that seems to be in place for post-hoc pairing of
state-actions with rewards. We have therefore reviewed a number of biologically-
plausible models that aim to describe the neural mechanisms of hippocampal
replay in both the forward and reverse directions. Integrating biologically plau-
sible state representations, such as place cells, with a biologically plausible action
selection mechanism remains an open challenge, but incorporating hippocampal
replay into the process could help understand better the underlying biology,
as well perhaps aid in the development of memory and learning algorithms.
Whether it can be used for robotic mnemonics and biomimetic robotics remains
open for further investigation, but the groundwork seems already to be in place.
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