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The epigenetic pathway of a cell as it differentiates from a stem cell state to a

mature lineage-committed one has been historically understood in terms of

Waddington’s landscape, consisting of hills and valleys. The smooth top

and valley-strewn bottom of the hill represent their undifferentiated and

differentiated states, respectively. Althoughmathematical ideas rooted in non-

linear dynamics and bifurcation theory have been used to quantify this picture,

the importance of time delays arising from multistep chemical reactions or

cellular shape transformations have been ignored so far.We argue that this fea-

ture is crucial in understanding cell differentiation and explore the role of time

delay in amodel of a single-gene regulatory circuit.We show that the interplay

of time-dependent drive and delay introduces a new regimewhere the system

shows sustained oscillations between the two admissible steady states. We

interpret these results in the light of recent perplexing experiments on inducing

the pluripotent state inmouse somatic cells.We also comment on how such an

oscillatory state can provide a framework for understanding more general

feedback circuits in cell development.

1. Introduction
The ‘biological impossibility’ of reprogramming adult somatic cells to the pluripo-

tent state had been accepted as a dogma for a long time in biology [1]. This view

was radically changed by thework of John B. Gurdon in 1962, who showed that a

nucleus from a fully differentiated frog intestinal epithelial cell could generate a

functioning tadpole upon transplantation into an enucleated egg [2,3]. In another

seminal work, Shinya Yamanaka and co-workers demonstrated for the first time

in 2006, that four transcription factors (Sox4, Oct2, Klf-4 and c-Myc) were capable

of reprogramming an adult mouse fibroblast cell to pluripotency [4]. These

induced pluripotent stem cells (iPSCs) were fully germline-competent and were

used to clone fully functioning adult mice [5–7]. The discovery of germline-

competent iPSCs has opened up a new avenue for understanding the process

of cellular differentiation besides offering a new source for developing stem

cells for tissue regeneration and other biomedical applications,without the ethical

concerns of harvesting embryonic stem cells. Transcription factor-based somatic

cell reprogramming has since been shown to be a robust process, and humanplur-

ipotent cells have also been developed from somatic cells using a combination of

transcription factors, using the SOKMprotocol [5] as well as using other TFs such

as NANOG and Lin28 in place of Klf-4 and c-Myc [8,9]. While induced pluripo-

tency has been characterized for a number of different cell lines, understanding

the key gene regulatory networks and molecular mechanisms that underlie the

process remains a key outstanding challenge [10–12].
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Cell development and differentiation has been interpre-

ted in the light of Waddington’s epigenetic landscape [13],

visualized as a set of marbles rolling down a hill with the

position of the marble indicative of the state of cellular devel-

opment. Thus, undifferentiated cells all start at the same state

at the top of the hill and end up in different valleys corre-

sponding to their differentiated states at the bottom of the

hill depending on the surface topography. These differen-

tiated cell states are separated by barriers which prohibit

their spontaneous transformation from one state to another.

Though visually compelling and despite past attempts a

quantification of Waddington’s landscape has been attempted

only recently [14–17].

Cell developmental circuits have been modelled as self-

regulatory networks, where a transcription factor promotes

its own production [14–17] as well as inhibits the production

of other TFs (in multi-variable models) [14]. Such TF-regulated

gene networks are known to accurately represent cell fate

decision pathways in biological models. A two variable self-

activating and mutually inhibiting gene network has been

found in various tissues, where a multipotent cell undergoes

a binary decision process [14,18,19]. One known instance

is when the common myleoic progenitor differentiates into

either the myeloid or the erythroid fate, depending on

the expression levels of the PU.1 and the GATA1 transcription

factors [14,19,20]. Such models have been useful in providing

a quantitative description of developmental landscapes that

correspond to the spirit of Waddington’s landscape, with

different basins of attraction representing the valleys of the

differentiated states.

An important aspect of the reprogramming process is

identifying the pathways through which a fully differentiated

somatic cell is programmed back to pluripotency, and in par-

ticular, whether the path a cell takes in going from a somatic

state to a pluripotent state is the same as the reverse pathway.

Also of interest is characterizing the possible intermediate

states in the process. Recent experiments by Nagy & Nagy

[10] have shed some light on the path the cell takes as it is

reprogrammed back to a pluripotent state. They studied the

reprogramming of differentiated secondary mouse fibroblast

cells that were derived from iPSCs and encoded the four

Yamanaka factors under the control of doxycycline promo-

ters. Thus, expression of the four factors and induction of

pluripotency in entire populations of the fibroblasts could

be achieved by treating cultures with the drug doxycycline.

They found that there were two distinct timescales in the

reprogramming process, a point of no-return (PNR) time

and a commitment to pluripotent state (CPS) time. The con-

version of the cell from the somatic state to the pluripotent

state is a slow process, and it takes about 21 days for the

somatic cell to reach pluripotency under the effect of the

doxycycline input. There are numerous changes associated

with the return to a pluripotent state, and the external drive

(doxycycline) input needs to be provided for a time of

about 14 days for the endogenous factors to become active

and drive the cell to pluripotency in the absence of the

doxycycline input. This time is called the CPS timescale.

Similarly, the PNR timescale, at about 7 days, indicates the

time below which the cell returns to the somatic state if the

external doxycycline input is removed. The biological

changes associated with the two timescales are not clearly

understood and require further experiments to clarify. In

between these two timescales, the PNR and the CPS, they

found that the cell reached an undetermined state, which

was neither somatic nor pluripotent, but rather signals the

presence of a novel intermediate state in the reprogramming

process. Cessation of the doxycycline input during this

period results in neither return to somatic nor progress to

pluripotent states. They denoted this novel intermediate

state as the ‘Area 51’ state. However, the characteristics of

this state have not yet been determined.

Thepresence of an intermediate state in the reprogramming

pathway promises to be a useful tool in understanding the

mechanics of the uphill process. Furthermore, a full under-

standing of the Area 51 state could lead to enhanced control

over the reprogramming process, such as offering the possi-

bility to create and maintain lineage-committed cells that

have various applications. In this paper, we propose a theoreti-

cal framework that can lead to such intermediate states in the

context of a gene regulatory network. Our work focuses on

deterministic approaches to modelling the gene regulatory

network, in which the system attains a steady state depending

on the choice of parameters, and stays in the steady state once it

is reached. In biological systems, the cell may switch between

different steady states, and this can bemodelled by introducing

stochastic dynamics into the model, in which fluctuations

may lead to transitions between attractors [21]. While this

deterministic differential equation approach is an abstraction

of an inherently discrete and stochastic process, it has been

shown to be a powerful tool on analysing gene regulatory net-

works and has yielded experimentally verifiable predictions

for a large number of systems. Since the epigenetic reprogram-

ming process is characterized by an overexpression of the

associated transcription factors (Sox, Oct-4, Klf-4 and c-Myc),

which drives a somatic cell deterministically to the induced

pluripotent cell fate, it is expected that a deterministic approach

provides a reasonable modelling paradigm for the epigenetic

landscape. In this paper, we focus on the deterministic gene

networks, and the study of the effect of stochastic fluctuations

is left for future work. A comparative analysis of determinis-

tic and stochastic approaches to modelling gene regulatory

networks can be found in [22,23].

The reprogramming of a somatic cell to pluripotency is

a complex multistep reaction that involves both structural

modifications to the chromatin network as well as changes

in gene expression patterns [24,25]. These changes arise in

response to the expression levels in the gene regulatory net-

work and are modelled by a self-regulating feedback loop.

However, since these changes occur in a finite time, the feed-

back loop should in fact depend on the state of the system at a

previous instant of time, leading to delays. Delay differential

equations have been used to study diverse systems [26], such

as modelling disease onset in physiological systems [27] and

discrete time population models [28]. Biochemical circuits

involving feedback and delay have also been studied and

the general criterion for oscillations to exist in such systems,

i.e. existence of a (i) delayed negative feedback, (ii) nonlinear-

ity in the chemical kinetics, and (iii) a proper balancing of

timescales for forward and backward reactions, identified

[29]. These studies (see [29] and references therein) focused

on delayed negative feedback with nonlinear chemical kin-

etics in the degradation term that renders the steady-state

‘unstable’ leading to oscillations for a choice of model par-

ameters. In this work, we show that a time-dependent

chemical drive and a delayed positive feedback with no

delay on the degradation term of a chemical reaction leads
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to oscillations for certain choices of delay parameters. We

show that this interplay between a time-dependent drive

and a delayed positive feedback is critical in developing a

mathematical framework for understanding the nature of

the epigenetic landscape.

In this paper, we model the epigenetic landscape through

the dynamics of a single differentiation regulator, denoted by

x, that promotes its own synthesis through a feedback loop.

While real-life regulatory circuits in the cell depend on two

or more differentiation regulators, the main aim of this

paper is to show the effects of time delays in such circuits,

and a single-variable genetic circuit offers a model system

in which to study such effects. Such single-variable circuits

are similar to the models proposed for progesterone-induced

Xenopus oocyte maturation [15–17,30,31] and might also be

applicable to scenarios where a single transcription factor

such as MyoD has been shown to induce a change of cell

fate from fibroblast to myoblast [32]. We define the single-

variable regulatory model in the next section and discuss

the results as a function of the parameters of the model.

A discussion of the importance and applicability of the result-

ing phase diagram to systems of differentiating cells and

its extension to more realistic gene regulatory networks are

discussed in §3.

2. Model and results
Gene regulatory networks that control cell fate differentiation

have been modelled by self-activating genes. While actual

gene regulatory networks inside the cell may consist of

multiple genes which have a complex interdependence on

each other, one or two-variable gene networks provide a

useful model to illustrate some of the basic principles of

cell fate determination.

We first introduce a single-variable model for cell differ-

entiation, where a single regulator x self-regulates its own

synthesis, as proposed by Ferrell [15–17]. The equations gov-

erning the rate of change of expression of a single gene is

given by

dx

dt
¼ a0 þ a1

xn

Sn þ xn
� bx, (2:1)

where the first term represents an external input a0 that is

constantly applied. The second term represents a feedback-

dependent self-regulation, modelled by a Hill function of

order n. The third term models degradation process through

a mass action process with the degradation rate b. The right-

hand side of equation (2.1) can be integrated with respect to

the variable x to give an ‘effective potential’ landscape

having two stable minima corresponding to different levels

of expression of the gene. This can be seen in figure 1a. The

two stable fixed points correspond to x ¼ ~x1 and x ¼ ~x2,

respectively (~x1¼ 0 and ~x2 � 2 for a0 ¼ 0) with an unstable

extremum at x ¼ x* (x* ¼ 1, for a0 ¼ 0). In the absence of

drive, the final gene expression level is crucially dependent

on its initial value x(t ¼ 0). Therefore, if x(t ¼ 0) ¼ [0, 1� e]

the system approaches x ¼ ~x1, while if x(t ¼ 0) ¼ [1þ e,1],

the fixed point x ¼ ~x2 is chosen. Furthermore, in this model

beyond a critical value of the external input (a0 . ac), themini-

mum at x ¼ ~x1 becomes unstable and the long-time steady

state is always x ¼ ~x2. This is in line with Ferrell’s idea that

saddle-node bifurcations are inconsistent with Waddington’s

landscape picture as there are no alternative endpoint states.

In his work, Ferrell [15–17] further introduces a two variable

gene regulatory circuit as a model mimicking lateral inhibition

and demonstrates pitchfork bifurcation commensurate with

Waddington’s picture. A similar two variable model had

been proposed around the same time by Wang et al. [14].

Motivated by these gene regulatory network models that

attempt at developing a quantitative picture of Waddington’s

landscape, we propose a simple generic single-gene regulat-

ory network model similar to Ferrell [15–17] incorporating

time-dependent drive and delay. The rate of change of the

gene regulator x in this model is described by

dx

dt
¼ a0Q[d� t]þ a1

xn(t� t)

Sn þ xn(t� t)
� bx(t), (2:2)

where a0, a1 and b have the same meanings as equation (2.1).

However, unlike that model both the chemical drive as well

as the feedback is functions of time. The Heaviside function

multiplying the a0 term represents the fact that the external

input is applied for a finite time-interval d, while the self-

regulatory term is dependent on the state of the regulator x

at a previous instant of time t2 t. The time delay in the self-

regulation term in equation (2.2) can have several possible

physical origins, including multi-step chemical reactions and

cell shape changes. We have assumed no such delay in the

degradation term, as it does not have biochemical warrant at

the same level as the self-regulation and it does not affect the

general results in our model.

We numerically integrated equation (2.2) for different

values of the delay time t and drive d. Figure 1b represents

the results of the single-gene regulatory circuit without

delay and with a chemical drive acting for a finite interval

d on an initial state x ¼ 0. The self-promotion rate coefficient

is a1 ¼ 1 and the decay constant b ¼ 0.5. Unless otherwise

specified the exponent in the self-regulatory term is chosen

to be n ¼ 5. Further, the amplitude of the chemical drive

is parametrized by a0 ¼ 0.5. We find that for a value of

a0 , ac and the duration of the drive d less than a critical

value dc(�2), the long-time steady state is x ¼ 0. If however

the drive is applied for a duration longer than dc, starting

from a state x(t ¼ 0) ¼ 0 the system transitions to the other

minimum x � 2. Identifying the x ¼ 0 state as a somatic and

x � 2 as the pluripotent state, the above process describes

inducing pluripotency via a chemical drive.

Figure 1c shows the variation of x(t) versus t starting from

the somatic state x ¼ 0 for d ¼ 10 and d ¼ 1000, and a time

delay t ¼ 500 for the same set of parameters a0, a1 and b.

As seen in the figure for d ¼ 10, the system relaxes back to

the x ¼ 0 steady state, while for d ¼ 1000 the pluripotent

state x � 2 is chosen. Sharp spikes showing attempted

transitions between the two states are also seen. In the inter-

mediate regime when the drive d is of the same order of

magnitude as the delay t, the trajectory of x(t) shows sus-

tained oscillations (this is shown in figure 1d ). We interpret

such sustained oscillations as the cells which are caught in

a limbo between the pluripotent and the somatic states and

conjecture that these states are possibly the ones seen in the

experiments by Nagy & Nagy [10] termed ‘Area 51’. The

chemical drive a0 is then interpreted as the doxycycline

input to somatic cells having a non-zero value, correspond-

ing to a finite rate of basal synthesis, which is switched off

(a0 ¼ 0) beyond the input time.
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The oscillations seen in some solutions of equation (2.2) are

an inherent feature of delay differential equations [26]. Sustained

oscillations are present forother choices of themodel parameters,

a0, a1 and the order of the Hill functions n that characterize the

chemical kinetics of gene regulatory circuit. This is shown in

figure 2 in which we illustrate the presence of the oscillatory

state for different choices of the various parameters. These

model parameters encapsulate the underlying biological mech-

anisms which accompany epigenetic changes. These

parameters are thus to be used as inputs from experiments, or

detailed molecular-level simulations. As is apparent from the

different panels of figure 2, the relative time spent in the somatic

and pluripotent state in the oscillatory regime is determined by

the precise value of the driving time, and the inherent time

delay of the gene network. The sustained oscillations are

expected to be biologically relevant when the relative time

spent in the two states is of the same magnitude, and this

regime is obtained when the drive time d is less than the delay

time t (d� 300 for t¼ 500, for our choice of parameters),

which is a reasonable assumption for a real biological system.

The theoretical model maps the full phase diagram, and real-

life experiments can then help identify which region of the

phase space is occupied by a biological system.

The oscillations as shown in figure 1d are investigated in

greater detail in figure 3 for d ¼ t¼ 500, and a0 ¼ 0.5, a1 ¼ 1

and n ¼ 5. It is possible to analyse the time of occurrence of

these sharp spikes. If the drive duration is smaller than the

delay time, i.e. d, t, x initially increases from its zero value

as a function of time. Once the drive is withdrawn the

dynamics of the system is completely dominated by the degra-

dation term and as a result x decreases. This behaviour

continues till t ¼ t when the self-regulation term promot-

ing gene activity becomes non-zero, and as a result x

increases monotonically till a time d þ t. At this time, the

self-regulatory term picks up the values of x from the earlier

cycle which was dominated by degradation kinetics. This can

be generalized to state that the downward spikes occur at

tp ¼ d þ pt, while the upturns occur at t ¼ qt. The slope of

the first downturn is completely dictated by b while the

upturn slope turns out to be a nonlinear function of a1

and b. For the situation in which d. t the first upward turn

occurs at t¼ t followed by a downturn upon reduction of
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Figure 1. Cell differentiation in single-gene regulatory network with delay. Somatic (x ¼ 0), induced pluripotent (x � 2), and Area 51 cells in a single-gene regulatory

circuit. (a) Steady-state values for equation (2.2) without drive or delay (a0 ¼ 0, d ¼ 0). Depending on the initial value x(t ¼ 0), the somatic (solid line (red)) and the

iPS cells (dash-dotted line (blue)) are stable. The unstable state x ¼ 1 (dashed line (green)) is also shown. If the initial state x(t ¼ 0) has a value infinitesimally above

the unstable state x ¼ 1, the system transitions to the pluripotent state (þ points), while if x(t ¼ 0) has an infinitesimally smaller value than x ¼ 1 the system

transitions to the somatic state (� points). (b) Corresponding steady states with a non-zero drive (a0 ¼ 0.5), a decay constant b ¼ 0.5, and the coefficient of self-

promotion a1 ¼ 1.0. Depending on the duration d ¼ 2 (solid line (red)) the somatic, or d ¼ 3 (dash-dotted line (blue)) iPS cells are chosen. (c) Shows x(t) versus t

corresponding to equation (2.2) for a delay of t ¼ 500 and for drive d ¼ 10 (solid line (red)), and d ¼ 1000 (dashed line (blue)) indicating stability of somatic and iPS

states. (d ) Shows x(t) versus t for d ¼ 500 with sustained fluctuations between the iPS and somatic states. (Online version in colour.)
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the drive at t¼ d þ t. Following this, oscillations are repeated

at t¼ tp as discussed above. The preceding analysis is strictly

valid in the initial time regime, where the spikes occur singly,

as shown in figure 3b. At later times, the single spikes give

way to a double spike, with two spikes occurring in quick suc-

cession, as shown in figure 3c. A complete description of the

behaviour of the oscillations in this later time regime requires

a full nonlinear analysis of the original equation.

The two critical timescales alluded to earlier, the ‘PNR’

and ‘CPS’, are shown in figure 1c and d, respectively. These

indicate threshold values such that for d, dPNR the system

would return to their somatic state, while for d. dPNR the

cell fate is changed. The second threshold corresponds to

the drive being on for a duration d. dCPS which results in

a final pluripotent cellular state. The intermediate region of

drives dPNR , d, dCPS defines the ‘Area 51’ region. Taking

cue from our numerical results discussed above, we draw a

phase diagram showing the domain of ‘Area 51’ as functions

of d and t in a single-gene regulatory circuit incorporating

time-dependent drive and delay dynamics.

Figure 4 demonstrates the variation of the two thresholds

dPNR and dCPS as a function of the delay t. For 0 � t � 50, the

two threshold values are almost the same, i.e. dPNR � dCPS.

In this regime, the system transitions from the somatic state

to the induced pluripotent state once the duration of the drive

is greater than dPNR. However for larger values of t, the

two threshold values are different exposing an intermediate

regime marked by sustained oscillations. As seen from the

graph, dCPS monotonically increases with delay t while some

fluctuations in dPNR are observed. With increasing t, the ‘Area

51’ region widens as can be seen in figure 4. Phase plots reveal-

ing the single-gene expression level for the regulatory circuit is

shown in figure 5 in which x(t) is plotted against x(t þ t).

The drive is provided for a time d ¼ 500 and the time-

delay parameter t ¼ 500. These parameters correspond to the

shaded region of figure 4, i.e. ‘Area 51’. A limit cycle is observed

indicating the presence of sustained nonlinear oscillations.

3. Discussion
We have illustrated the importance of time delays in feedback

circuits in the context of a simple gene regulatory network, in

which the state of differentiation is regulated by a single differ-

ential regulator. The energy landscape of the model, in the

absence of delays, has two minimas, denoting the pluripotent

and differentiated states. Introducing a delayed self-regulation

term changes the landscape such that there is now a region in

phase space, in which the system shows sustained oscillations

(figures 2 and 3a) and the steady state corresponds to a limit
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Figure 2. ‘Area 51’ oscillations as a function of parameters. The presence of the oscillatory state for different values of the parameters a0, a1, that characterize the

single-gene expression kinetics, the driving time d, delay time t and the order of the Hill function n. (a) Presence of ‘Area 51’ states for parameter values n ¼ 5,

t ¼ 500, d ¼ 300, a0 ¼ 0.5 and a1 ¼ 2.0. Changing the parameters a0 ¼ 0.6 and a1 ¼ 1.0, while keeping n, t and d unchanged also shows oscillations as

in (b). For a choice of parameters a0 ¼ 0.5, a1 ¼ 1.0, and n ¼ 6 while keeping parameters t and d same as (a) shows oscillations with accessible short lived

intermediate states that lie between pluripotent and somatic fixed points. This is shown in (c). In (d ) by changing the driving time to a lower value d ¼ 100 and

n ¼ 5 while holding all other parameters same as in (c) the duration of time spent in the somatic state can be increased. (Online version in colour.)
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cycle (figure 5). We propose that such oscillatory states may

underlie the existence of novel intermediate states observed

in the reprogramming of mouse somatic cells, and denoted

by ‘Area 51’. We hope that our prediction of a long-lived inter-

mediate oscillatory state will motivate future experiments on

studying the reprogramming pathways of the cellular differen-

tiation process. Experiments with fast decaying reporters

which are proxies for pluripotency or somatic cell markers

may provide one avenue for exploring the predicted oscillatory

state. If the oscillatory state is experimentally validated, this

would then help identify which markers of pluripotency

are responsible for the oscillations. This will give a better

understanding of the delay timescale, and help identify the

regime of parameter space which is appropriate for analysing

a real biological system.

In order to model more realistic differentiation events,

one would need to study higher dimensional systems, where

the number of differential regulators is more than one. Two

variable gene regulatory models [14] offer a straight forward

generalization of these ideas to mimic realistic cell differen-

tiation scenarios. For a full description of the dynamics of the

reprogrammed cell due to the four Yamanaka factors, one

needs to study the effect of delays in a four variable model,

and map out the effect of the interplay of these four variables

on the intermediate state.
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The switch from the somatic state to the pluripotent state is

accompanied by various changes inside the cell, including

changes in the chromatin structure, loss of somatic cell-specific

markers, and reactivation of endogenous genes essential for

pluripotency and self-renewal, among others. Recent exper-

iments suggest that the various changes associated with

pluripotency occur in a well-defined sequential manner. For

instance, the pluripotency marker of mouse pluripotent cells,

SSEA-1 appears to be expressed in the very early stages of

pluripotency [33,34], while the reactivation of endogenous

genes such as Oct4, Nanog and Sox2 occurs late in the repro-

gramming process. It is probable that the rapid fluctuations

predicted by the delayed self-regulation model proposed

here arise only in the context of one or a few of these pluripo-

tency markers, instead of the full state of the cell switching

from somatic to pluripotent. Thus, experiments designed to

validate this hypothesis of a fluctuating intermediate state

need to identify the probable candidates for such switching.

Another area of interest in the context of induced pluripo-

tent cells is whether there is an inherent asymmetry to the

landscape. Nagy et al. do not comment whether the ‘Area 51’

is encountered if we perform the reverse experiment, i.e. start

from the pluripotent state and induce differentiation by keeping

the cells in a chemical environment for different durations.

Further experiments are needed to map out the landscape

as a pluripotent cell divides under the influence of time-

dependent stimuli. Such experiments would then provide an

additional input to the model to facilitate understanding of

the full epigenetic landscape.

The concept of time delays, possibly induced by remodelling

of cellular architecture, is an important one in the differentiation

context, as reorganization events inside the cell that accompany

a change in cell state take place over a timescale of days [35].

Thus when modelling the epigenetic landscape through dyna-

mical equations, one must consider the effect of delays on

differentiation pathways. Similar oscillatory behaviour has also

been observed in other related biological systems, such as

the epithelial to mesenchymal transition in early embryonic

development and cancer metastasis [36–38]. In both these situ-

ations, the oscillations arise from time-dependent remodelling of

the cytoskeleton. Thus, the concept of delays may be important

also in other biological contexts and shouldprove a useful tool in

the design of predictive experiments.

It is natural to ask the question whether there exists an

equivalent ‘Area 51’ intermediate state when the more

common experimental scenario, i.e. studying cell differen-

tiation starting from an initial pluripotent state is considered.

Such an experiment would involve withdrawing the chemical

drive responsible for differentiation at different stages of devel-

opment. The original experiments of Nagy et al. do not shed

light on this scenario.

Our mathematical model is constructed such that the

somatic state is identified as x �� 0 while x �� 2 is the pluripotent

one. Application of a chemical drive (a0 . 0) with the initial

state at x �� 2 (pluripotent) will not result in an ‘Area 51’ or

even differentiation to a somatic state.

However, if we hypothesize that starting from the pluri-

potent state, a0 , 0, corresponds to the reverse situation,

i.e. the presence of a morphogen that induces differentiation,

then for a choice of parameters d, and t transition to the plur-

ipotent state as well as an intermediate state characterized by

sustained fluctuations is obtained.

This opens up the interesting question of addressing

which model correctly describes the physical scenario, a delayed

model versus a tri-stable chemical reaction system with the three

minima corresponding to somatic, pluripotent and Area 51.

In such a chemical reaction system, as the chemical drive (in

the form of a linear potential ramp) is applied over a period

of time, the somatic, intermediate Area 51 and pluripotent

minimas would become unstable in a similar manner as our

delayed model. However, the precise nature of bifurcations and

phase transitions that would arise in these two different systems

would be different. Further theoretical work involving a full non-

linearanalysis of themodel backedupby careful experimentation

would be required to discern between these two scenarios. We

hope that our work will prompt such experiments.
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