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ABSTRACT

Biopolymer self-assembly pathways are complicated by the ability of their monomeric subunits to adopt different conformational states. This
means nucleation often involves a two-step mechanism where the monomers first condense to form a metastable intermediate, which then
converts to a stable polymer by conformational rearrangement of constituent monomers. Nucleation intermediates play a causative role in
amyloid diseases such as Alzheimer’s and Parkinson’s. While existing mathematical models neglect the conversion dynamics, experiments
show that conversion events frequently occur on comparable timescales to the condensation of intermediates and growth of mature polymers
and thus cannot be ignored. We present a model that explicitly accounts for simultaneous assembly and conversion. To describe conversion,
we propose an experimentally motivated initiation-propagation mechanism in which the stable phase arises locally within the intermediate
and then spreads by nearest-neighbor interactions, in a manner analogous to one-dimensional Glauber dynamics. Our analysis shows that
the competing timescales of assembly and conversion result in a nonequilibrium critical point, separating a regime where intermediates are
kinetically unstable from one where conformationally mixed intermediates accumulate. This strongly affects the accumulation rate of the
stable biopolymer phase. Our model is uniquely able to explain experimental phenomena such as the formation of mixed intermediates
and abrupt changes in the scaling exponent γ, which relates the total monomer concentration to the accumulation rate of the stable phase.
This provides a first step toward a general model of two-step biopolymer nucleation, which can quantitatively predict the concentration and
composition of biologically crucial intermediates.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0009394., s

I. INTRODUCTION

Biopolymer formation is essential to life. Uncontrolled self-
association of biological molecules to form non-covalent polymers is
implicated in diseases such as Alzheimer’s,1 Parkinson’s,2 and sickle-
cell anemia.3 In many cases, the monomeric subunits of biopoly-
mers adopt distinct conformational states. As a result, nucleation
often proceeds via a two-step mechanism, in which the monomers
first condense into a metastable intermediate and the stable polymer
develops by conformational conversion of the monomers within
this phase.4–10 Intermediates have diverse morphologies [Fig. 1(a)],
depending on the monomer interactions that drive condensation.

Polymeric intermediates are commonly observed in experimental
and computational studies of amyloid formation4,11–13 and convert
to stable polymers via reorganization of their secondary or tertiary
structures. In addition, diverse biopolymers including actin and pri-
ons are known to nucleate in spheroidal intermediates.5–7,10,14–16

Biopolymer nucleation intermediates are implicated in cell death
and resulting disease,17,18 and an understanding of their formation
is crucial for therapeutic development.

In order to accurately predict the rate and mechanism of
two-step biopolymer nucleation, theoretical models must realisti-
cally represent the process by which intermediates convert to sta-
ble polymers. Existing analytical models treat conversion as an
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FIG. 1. Schematic of the proposed
two-step biopolymer nucleation model.
(a) Biopolymer nucleation pathways fre-
quently involve diverse metastable inter-
mediates, which progress to stable poly-
mers by conversion of monomer sub-
units. [(b)–(f)] Schematic representation
of our model, accounting for explicit
growth and conversion of linear interme-
diates, as described in Sec. II A. Color
scheme for monomers: green, unassem-
bled; red, metastable (type-1); and blue,
stable (type-2).

instantaneous process,19–23 neglecting the dynamics by which the
stable polymeric phase spreads through the intermediate. However,
there is no general reason why the ordering transition should be
sufficiently rapid, or cooperative, for this to be valid. In contrast,
experimental and computational studies often point to progressive
ordering on slow timescales,7,15,24–27 indicating that the stable phase
arises locally and spreads through the intermediate. This means
that condensation and ordering can occur concurrently.15,24–26 In
addition, simulations support an autocatalytic mechanism by which
conformationally ordered monomers promote conversion of their
neighbors.24,28,29 This raises the possibility that condensation and
ordering may be kinetically coupled, with larger intermediates con-
verting at a higher rate;20,22 however, the kinetic prerequisites for
such a mechanism have not been rigorously determined. Thus, in
order to describe the time-evolution of intermediate populations
and elucidate the role of autocatalysis in two-step nucleation, there is
an urgent requirement for a model that explicitly considers the con-
version of intermediates by an autocatalytic initiation-propagation
(IP) mechanism.

In this paper, we address these issues. We develop a mini-
mal model of two-step nucleation [Figs. 1(b)–1(f)] in which poly-
meric intermediates undergo an autocatalytic conversion process
analogous to one-dimensional (1D) Glauber dynamics.30 Through
a combination of analytical calculations and stochastic simula-
tions (see the supplementary material for full details), we show
that this simple addition to Oosawa’s classical model of nucleated

polymerization31,32 produces rich, nonlinear dynamics. In autocat-
alytic systems, a nonequilibrium critical point (CP) arises, separating
a regime where intermediates do not accumulate from one where
the two-step nature of nucleation becomes apparent. In the vicin-
ity of this critical point, nucleation dynamics resemble a second-
order phase transition similar to the two-dimensional (2D) Ising
model.33,34 It is clear from our derivation that this phase transi-
tion does not require a particular dimensionality, and we expect our
results to be applicable to morphologically diverse intermediates.
Thus, we propose that models of explicit conformational conver-
sion have the capacity to reconcile apparently contradictory inter-
pretations of biopolymer nucleation and resolve important unan-
swered questions regarding the origin and nature of metastable
intermediates.

II. OUTLINE OF THE MODEL

In this section, we outline the mathematical basis of our two-
step biopolymer nucleation model. This model combines the estab-
lished formalism for nucleated biopolymer self-assembly31,32 with
a proposed initiation-propagation (IP) mechanism of conforma-
tional conversion, in which the stable phase arises locally within
the intermediate and spreads autocatalytically by nearest-neighbor
interactions (Fig. 1). In this respect, our IP mechanism resembles
1D Glauber dynamics.30 Although the proposed dynamics affect
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all polymerized monomers, we are particularly interested in their
effects onmacroscopic, observable nucleated polymerization. There-
fore, we concentrate on the aspects of these dynamics that are most
relevant to the biopolymer nucleation and growth, and leave a more
comprehensive treatment of the internal composition of developing
biopolymers as a subject for future work.

A. Microscopic processes

We consider nucleated polymerization of a free monomer pop-
ulation maintained at a fixed concentration m0, far from equilib-
rium. This situation arises physiologically, when there is a monomer
source, and is also valid for experimental systems on timescales
shorter than the typical timescale τinf for significant monomer deple-
tion to occur, which we discuss in greater detail in Sec. II B. Each
biopolymer is treated as a 1D lattice of monomers with length j. A
polymerized monomer is in either the metastable (type-1) or stable
(type-2) state [Figs. 1(b)–1(f)]. Polymerization is initiated at a rate
vn ≙ knm

j0
0 , and each polymer initially contains j0 ≥ 2 monomers in

the type-1 state [Fig. 1(b)]. Polymerized monomers irreversibly con-
vert to the type-2 state at a rate of kc or kc + kp if adjacent to a type-2
monomer [Figs. 1(e) and 1(f)]. Thus, kp represents the excess rate
due to autocatalysis. For the purpose of this study, it is not necessary
to consider cases where a type-1 monomer is bounded by two type-2
monomers, as such cases do not affect the macroscopic kinetics of
nucleated polymerization.

Each polymer can elongate by reversible monomer addition
at a single “active” end [Figs. 1(c) and 1(d)]. Strong bias toward
elongation at a single end is often observed experimentally35–37 and
is caused by the fact that most biopolymers exhibit structural dif-
ferences between their ends, which result in contrasting physico-
chemical properties. Although inclusion of this bias simplifies our
analysis, it is not expected to qualitatively alter the results. There-
fore, we fully expect our theory to generalize to more unusual
cases38 where both ends elongate at similar rates. It is also impor-
tant to note that the forward and reverse elongation rates must
exhibit an equal bias in order to satisfy detailed balance when m0

is at the solubility limit. From this point onward, we simply refer
to the forward process as elongation and the reverse process as
dissociation.

During elongation, the conformational state of the monomer
being incorporated into the polymer is templated by that of the
monomer already at the active end5,39 [Figs. 1(c) and 1(d)]. There-
fore, if the monomer at the active end is in the type-1 state, then
elongation proceeds via addition of type-1 monomers with a for-
ward rate k+1m0 and a reverse rate k−1 . Similarly, if the monomer at
the active end is in the type-2 state, then type-2 monomers are added
with forward and reverse rates k+2m0 and k

−
2 , respectively. Thus, poly-

mers exhibit one of two distinct growth modes, type-1 and type-2,
corresponding to the conformation of themonomer at the active end
and the resulting mechanism of elongation. Growth mode switch-
ing occurs when the monomer at the active end converts, causing
the emergence of an elongating type-2 phase. Experimental results
typically support k+2 ≫ k+1 ,

4,40 meaning that the switching rate deter-
mines the lifetime of intermediates with a high type-1 structure
content, as well as the observed macroscopic kinetics of nucleated
polymerization.

B. Characteristic timescales

Before deriving master equations to predict the macroscopic
kinetics of nucleated polymerization, it is informative to consider the
key conformational transitions that a nascent polymer undergoes,
and the timescales on which they occur (Fig. 2). There are three key
events that lead to the emergence of a type-2 growth mode: (i) initi-
ation of the polymer at a time t0, with all constituent monomers ini-
tially in the type-1 state; (ii) non-autocatalytic conversion of the first
polymerized monomer at time tc > t0, causing the formerly “pure”
intermediate to become amixed intermediate; and (iii) growthmode
switching at time ts ≥ tc, which coincides with conversion of the
monomer at the active end [Fig. 2(a)]. If the first monomer to con-
vert is situated at the active end, then ts = tc; otherwise, additional
conversion events are required for growth mode switching to occur
so that ts > tc. If kp ≪ kc, these additional conversion events will
be primarily non-autocatalytic and uncorrelated with one another;

FIG. 2. Characteristic timescales of two-step biopolymer nucleation. (a) Schematic
showing an example of how the length (j; black line) and AEM domain size (x; red
line) of a single polymer can change over time. The three key events (Sec. II B)
of initiation (t = t0), conversion of the first monomer (t = tc), and growth mode
switching (t = ts) are annotated with diagrams representing the change in the con-
formational state of the polymer, with the following color scheme for constituent
monomers: green, unassembled; red, metastable (type-1); and blue, stable (type-
2). (b) Schematic showing the macroscopic self-assembly kinetics of a typical
polymer population (Sec. II B) and relevant characteristic times. Curves represent
the proportions of monomers that are unassembled [m(t); green] or incorporated
into polymers with a type-1 [M1(t); red] or type-2 [M2(t); blue] growth mode.
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if kp ≫ kc, conversion of the first monomer will stimulate autocat-
alytic conversion of its neighbors, causing the type-2 state to prop-
agate from its point of origin to the active end. We also identify
three important time intervals: (i) the lifetime of a pure intermediate,
τc = tc − t0; (ii) the propagation time τp = ts − tc, which is the time
for amixed intermediate to adopt a type-2 growthmode; and (iii) the
total switching time τs = ts − t0 = τc + τp, which is the total time taken
for an intermediate to acquire a type-2 growth mode [Fig. 2(a)]. In
addition, we introduce a single domain wall propagation time τ′p,
which is distinct from τp and will be discussed in greater detail in
Sec. II C.

We also consider two timescales related to the overall self-
assembly of populations of mature polymers: (i) the characteristic
self-assembly time τchar and (ii) the inflection time τinf [Fig. 2(b)].
Both are common experimental observables that are derived from
the phenomenological analysis of biopolymer self-assembly curves
and can be used to derive mechanistic conclusions.41,42 Specifi-
cally, the time-dependent mass of mature polymers follows a convex
profile under circumstances where m0 is approximately constant.
If monomer depletion can occur, the self-assembly curve is sig-
moidal and approaches a constant limit due to exhaustion of the free
monomer41 [Fig. 2(b)]. For the purpose of this study, we identify
mature polymers as species with a type-2 growth mode and denote
the effective concentration of the monomer incorporated into such
species as M2(t). The self-assembly time τchar is the time required
for M2(t) to reach an arbitrary, often small proportion of the initial
free monomer concentration m0, such that M2(τchar) = Cm0 and C
is a constant in the interval (0, 1)41 [Fig. 2(b)]. While a number of
different values of C are used, for small C, these different character-
istic times typically produce similar scaling behaviors. The inflection
time τinf is the time at whichM2(t) has its inflection point such that
∂
2
t M2(τinf) ≙ 042 [Fig. 2(b)]. Because inflection is a consequence

of monomer depletion, τinf provides a general timescale on which
monomer depletion occurs. Therefore, the assumption that m0 is
approximately constant implies that τs ≪ τinf, meaning that M2(t)
is locally convex.

C. Growth mode switching as an absorbing
boundary problem

The ability of type-2monomers to autocatalytically induce con-
version of their neighbors allows the type-2 state to propagate to
the active end from a distant site of origin. Thus, the rate of growth
mode switching depends not only on the conformational state of the
monomer at the active end but also on the length distribution of
the domain of type-1 monomers adjacent to the active end, which
we term the “active end metastable” (AEM) domain. When the
size x of this domain becomes zero, growth mode switching occurs
[Fig. 2(a)]. We are primarily interested in far-from-equilibrium
cases where m0 ≫ k−2 /k+2 so that growth mode switching has a neg-
ligible reverse process and can be treated as an absorbing boundary
problem. Initially, the polymer is formed with all monomers in the
type-1 state so that x = j for t0 ≤ t ⎡ tc. Following the first conver-
sion event at t = tc, the polymer acquires a mixed composition so
that x ⎡ j for t ≥ tc. For t > tc, the AEM domain can grow due to
elongation at the active end [Fig. 1(c)] or contract due to either dis-
sociation of monomers from the active end [Fig. 1(d)] or conversion
of monomers within the AEM domain [Figs. 1(e) and 1(f)]. Growth

mode switching occurs when the AEMdomain size hits an absorbing
boundary at x = 0 at the time ts.

The fact that both autocatalytic and non-autocatalytic con-
version events may occur during propagation leads to a distinc-
tion between the total propagation time τp and the single domain
wall propagation time τ′p [Fig. 2(a)]. While autocatalytic conversion
is restricted to the nearest neighbors of type-2 monomers, non-
autocatalytic conversion is not. Thus, non-autocatalytic conversion
of type-1 monomers within the AEM domain may cause a new
domain wall to form, superseding the existing AEM domain wall.
While τp denotes the total time between the onset of propagation
and growth mode switching, τ′p denotes the time taken for a sin-
gle domain wall to successfully propagate to the active end, without
being superseded. Therefore, τ′p only applies to the propagation of
the last AEM domain wall to form before growth mode switching.
If the original domain wall successfully propagates to the active end,
then τ′p = τp; otherwise, τ

′
p ⎡ τp.

D. General master equations

We consider the multivariate probability mass function (PMF)
pj ,x(t; j0, t0), which gives the probability that a polymer will have
total length j, AEM domain size x, and a type-1 growth mode at time
t. The master equation for pj ,x(t) has the following form:

dpj,x(t)
dt

≙ δj,j0δx,j0δ(t − t0) + kc

j∑
y≙x+1

pj,y(t) − kcxpj,x(t)
+ kp∫θ(j-x-2)pj,x+1(t) − θ(j-x-1)pj,x(t)⨙
+ k

+
1m0∫pj−1,x−1(t) − pj,x(t)⨙

+ k
−
1 ∫pj+1,x+1(t) − pj,x(t)⨙, (1)

where δj,j0 and δ(t − t0) are the Kronecker and Dirac deltas, respec-
tively, and θ(z) is a step function such that θ(z) = 1 if z ≥ 0 and
θ(z) = 0 if z ⎡ 0. As with previous models,42–44 j0 is taken to be a
minimum polymer length below which rapid disassembly almost
always occurs; therefore, an absorbing boundary exists such that
pj0−1,x(t) ≙ 0. In addition, to account for irreversible growth mode
switching, we impose the absorbing boundary condition pj ,0(t) = 0.
While the first term in Eq. (1) accounts for initiation at t = t0,
the terms proportional to kc, kp, k

+
1m0, and k−1 account for non-

autocatalytic conversion, autocatalytic conversion, elongation, and
dissociation, respectively.

The terms accounting for non-autocatalytic conversion intro-
duce a jump process to Eq. (1), which complicates efforts to sat-
isfy the boundary conditions. Nonetheless, analytical solutions can
be obtained in specific cases. In the case where x = j, correspond-
ing to the length distribution of intermediates with a purely type-1
composition, the summation disappears and the problem becomes
significantly more tractable. We use this special case to obtain ⟨τc⟩
in Sec. III B. For mixed intermediates, the time-dependence of AEM
domain size can be solved by summing over the polymer length. Let
ϕx(t; xc, tc) represent the probability that a mixed intermediate has
an AEM domain of size x and a type-1 growth mode at time t, given
the boundary condition that x = xc when t = tc. We can determine
ϕx(t) by summing pj ,x(t) over j,
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ϕx(t) ≙ ∞∑
j≙j0∨x+1

pj,x(t), (2)

where j0 ∨ x + 1 denotes the maximum of j0 and x + 1. The corre-
sponding master equation is as follows (see Sec. I of the supplemen-
tarymaterial for a detailed description of the summation procedure):

dϕx(t)
dt

≙ δx,xcδ(t − tc) + kc
∞∑

y≙x+1
ϕy(t) − kcxϕx(t)

+ k
+
1m0∫ϕx−1(t) − ϕx(t)⨙ + (k−1 + kp)∫ϕx+1(t) − ϕx(t)⨙.

(3)

As with related theories,41–43 we consider the case where k−1 is small,
allowing losses due to destabilization of polymers with length j ⎡ j0
to be neglected. The absorbing boundary at x = 0 corresponds to
growth mode switching and is retained. Equation (3) is the discrete
analog of a jump-diffusion equation,

∂ϕ(x, t)
∂t

≙ δ(x − xc)δ(t − tc) + kc ∫ ∞
x

ϕ(y, t)dy
− (kcx + μ

∂

∂x
−D ∂

2

∂x2
)ϕ(x, t), (4)

where μ ≙ k+1m0 − k−1 − kp and D ≙ (k+1m0 + k−1 + kp)/2 are the
drift and diffusion coefficients for AEM domain size, withD ≥ 0 and−2D ≤ μ ≤ 2D. Because Eq. (3) can be written in an equivalent form
to Eq. (4), μ and D are also informative in a discrete context. It is
important to note that the discrete nature of the system means that
μ and D are temporal frequencies and lack the spatial dimensions
usually expected for drift and diffusion constants; this also holds for
the continuous case where we treat x as dimensionless. For the rest
of this paper, we focus on the discrete case as it can be applied to
situations where j or x is small and is, thus, more general.

The relative importance of advection and diffusion in AEM
domain contraction depends not only on μ and D but also on xc,
the initial size of the AEM domain. The greater the xc, the more the
microscopic events are likely to be needed for growth mode switch-
ing to occur. The diffusive component of the root mean square of
the displacement Δx = x − xc scales more weakly with the number
of events than the advective component. Thus, a greater xc means
that a larger displacement is needed for growth mode switching, and
more of that displacement is likely to be attributable to advection,
rather than diffusion. In parallel with definitions used in continu-
ous systems, we define an effective Péclet number xc|μ|/D, which
gives the relative importance of advective and diffusive effects in
the propagation of the type-2 state to the active end. This num-
ber does not account for the jump process described by the terms
proportional to kc, which we consider separately. Additionally, the
effective Péclet number is only relevant to the propagation of a sin-
gle AEM domain wall with a known xc; in our numerical results
and certain analytical results, there is a summation over xc, and in
these situations, μ/D is the most descriptive parameter. Nonethe-
less, in situations involving propagation of a single AEM domain
wall with a minimal jump process, the effective Péclet number pro-
vides a means to quantify the relative importance of advective and
diffusive propagation and even arises naturally in our subsequent

analytical results [see Eq. (11c)]. Under these circumstances, advec-
tive effects predominate when xc|μ|/D > 1 and diffusive effects pre-
dominate when xc|μ|/D ⎡ 1. The advective component tends to cause
AEM domain contraction if μ ⎡ 0 and expansion if μ > 0. Thus, μ is
the expected rate of AEM domain expansion due to the competing
effects of type-1 growth and type-2 propagation, and this compe-
tition provides the basis of the critical behavior we observe in this
paper.

III. CRITICAL PHENOMENA IN GROWTH MODE
SWITCHING

In this section, we investigate how the competing effects of
propagation and elongation on AEM domain size alter the lifetime
of intermediates. Using a combination of stochastic simulations and
analytical theory, we uncover the existence of a nonequilibrium crit-
ical point resulting from transcritical bifurcation of an order param-
eter Pe around the point μ = 0. This critical point shares many
common features with equilibrium second-order phase transitions,
including a jump in ∂μPe, critical slowing, and diverging susceptibil-
ity to autocatalytic effects. These effects will be shown in Sec. IV to
significantly affect the macroscopic kinetics of two-step biopolymer
self-assembly.

A. Existence of a nonequilibrium critical point

To evaluate how the competing effects of propagation and elon-
gation on AEM domain size alter the lifetime of intermediates, we
calculate the mean switching time ⟨τs⟩. For this purpose, we use a
rejection-free kinetic Monte Carlo (rfKMC; see Sec. II of the sup-
plementary material for more information) algorithm to determine
hitting times at the boundary x = 0 in Eq. (1). The rfKMC algorithm
converges to the exact solution for the dynamics as the number of
polymers N →∞,45–47 and its application to biochemical problems
including biopolymer self-assembly is well-established.46,48,49 In this
case, the rfKMC algorithm is preferable to deterministic methods as
it samples broad polymer size distributions more efficiently. For the
purpose of the simulations, we set k−1 ≙ 0 so that there is a single
absorbing boundary, although our subsequent mathematical anal-
ysis (Secs. III C and III D) is more generally applicable to small,
non-zero k−1 . In addition, while we have carried out simulations for
diverse j0, the results are qualitatively similar in all cases (see Sec. II
of the supplementary material); therefore, we focus on the j0 = 2 case
as a representative example. To explore the system’s limiting behav-
ior in a 2D space, it is convenient to normalize both the timescales
and rate constants with respect to kc. Therefore, we use relative
time kct and sample points in (kp/kc, k+1m0/kc) space by varying a
pair of bounded, mechanistically significant parameters, μ/D and
ζ = kp/(kc + kp). While μ/D defines the tendency for expansion or
contraction of the AEM domain (Sec. II D), ζ is the proportion of
the conversion rate adjacent to a domain wall, which is attributable
to autocatalytic effects. Thus, ζ provides a measure of the impor-
tance of autocatalysis in conformational conversion of the assembled
monomers.

In Fig. 3(a), we show how the normalized mean growth mode
switching time kc⟨τs⟩ varies as a function of the model parame-
ters (μ/D, ζ). We use these data to plot a nonequilibrium phase
diagram, which we divide into three different dynamical regimes
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FIG. 3. Two-step biopolymer nucleation exhibits distinct dynamical regimes. (a) Nonequilibrium phase diagram superimposed on a heat map of mean growth mode switching
time kc⟨τs⟩ (color scale). The solid and dashed lines are contours that separate three dynamical regimes (A, non-autocatalytic switching; B, cooperative; C, competitive). At
the critical point (CP), ∂⟨τs⟩/∂(μ/D) undergoes a jump. (b) A close-up of the heat map of kc⟨τs⟩ at high ζ values (0.95 ≤ ζ < 1.0). Varying μ/D or ζ close to the critical point
causes a rapid change in the switching time. (c) Schematics of regimes A–C, with color representing monomer conformation: green, unassembled; red, metastable (type-1);
and blue, stable (type-2).

[Fig. 3(c)]: (A) non-autocatalytic, (B) cooperative, and (C) com-
petitive. In the non-autocatalytic switching regime, propagation of
the type-2 state does not occur, so switching depends entirely on
non-autocatalytic conversion of the monomer at the active end.
In the cooperative regime (ζ → 1 when μ/D ⪅ 0) (Fig. 3), auto-
catalytic conversion events allow the type-2 state to spread from
a distant site of origin to the active end. Thus, non-autocatalytic
conversion events occurring anywhere in the intermediate can indi-
rectly lead to growth mode switching, causing the instantaneous
switching rate to approach kcj. This means that mass accumulation
and autocatalytic conversion cooperate to bring about a change in
growth mode. In the competitive regime, which arises for μ/D ⪆ 0,
the effects of elongation on AEM domain size outweigh those of
autocatalytic conversion. Therefore, the AEM domain undergoes
net expansion, which inhibits propagation of the type-2 state to the
active end. This causes an increase in kc⟨τs⟩, allowing accumula-
tion of large, metastable intermediates with a mixed composition.
In this regime, mass accumulation and autocatalytic conversion can
be said to compete with one another. Although regimes A–C are
continuous with one another, we observe a singular point at (μ/D,
ζ) = (0, 1), where the second derivative of ⟨τs⟩ with respect to μ/D
diverges in a manner resembling a second-order phase transition
[Figs. 3(a), 3(b), and 5(a)].

B. Lifetime of pure intermediates

The switching time ⟨τs⟩ must reflect a similar critical point in
the lifetime of pure intermediates ⟨τc⟩ or the propagation time of
mixed intermediates ⟨τp⟩ since ⟨τs⟩ = ⟨τc⟩ + ⟨τp⟩. The fact that the

critical point occurs on the μ = 0 line, along which the competing
effects of autocatalytic conversion and elongation on AEM domain
size are balanced, indicates that an effect on propagation is respon-
sible for the observed criticality. To ascertain whether ⟨τc⟩ also plays
a role in the critical point, we solve Eq. (1) in the case x = j to obtain
a moment-generating function (MGF) for τc. As our simulations
were carried out in the k−1 ≙ 0 case, we apply the same condition
when determining ⟨τc⟩. The MGF of the first-conversion time is
given by ⟨e−sτc⟩ ≙ 1 − s∑ p̂j,j(s), where p̂j,j(s) ≙ ∫∞t0 pj,j(t)e−s(t−t0)dt
is the Laplace transform of pj ,j(t). By taking the Laplace transform
of Eq. (1) in the case x = j and rearranging, we obtain the follow-
ing result (see Sec. III A of the supplementary material for the full
derivation):

⟨e−sτc⟩ ≙ 1 − s

kc
e

k+1m0
kc (k+1m0

kc
)−(

s+k+1m0
kc

+j0)

× γ( s + k+1m0

kc
+ j0,

k+1m0

kc
), (5)

where γ is a lower incomplete gamma function. Thus,

⟨τc⟩ ≙ 1
kc
e

k+1m0
kc (k+1m0

kc
)−(

k+1m0
kc

+j0)
γ(k+1m0

kc
+ j0,

k+1m0

kc
). (6)

Equation (6) decreases monotonically with k+1m0/kc and has the lim-
its ⟨τc⟩ → (kcj0)−1 as k+1m0/kc → 0 and ⟨τc⟩ → 0 as k+1m0/kc → ∞.
This behavior reflects the fact that elongation increases the number
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FIG. 4. The critical point in ⟨τs⟩ = ⟨τc⟩ + ⟨τp⟩ is caused by a similar critical point in ⟨τp⟩ but not ⟨τc⟩. (a) Heat map of kc⟨τc⟩, the normalized mean lifetime of pure
intermediates. The phase behavior is described by Eq. (6) and does not exhibit a critical point at (μ/D, ζ) = (0, 1). (b) Heat map of kc⟨τp⟩, the normalized mean time for mixed
intermediates to undergo growth mode switching. Mixed intermediates are kinetically unstable (kc⟨τp⟩ = 0) along the line between (μ/D, ζ) = (−2, 1) and (0, 1), and it follows
that ∂⟨τp⟩/∂(μ/D) = 0 along this line as well. A second-order critical point (CP) occurs at (μ/D, ζ) = (0, 1), where ∂⟨τp⟩/∂(μ/D) jumps to a non-zero value.

of monomers within the polymer that can non-autocatalytically con-
vert, reducing the time until the first monomer converts. Thus, if
growth does not occur (k+1m0/kc → 0), then the total conversion rate
is simply kcj0. Conversely, if growth is rapid, then the length goes to
infinity and the time until the first conversion event becomes negligi-
ble. Importantly, Eq. (6) does not predict any form of criticality, and
the fact that it does not depend on kp/kc means that it cannot pre-
dict a critical point that occurs exclusively at (μ/D, ζ) = (0, 1). This is
because k+1m0/kc ≙ ∫ζ/(1 − ζ)⨙∫2 + (μ/D)⨙/∫2 − (μ/D)⨙, meaning it
has a diagonal symmetry axis along the line ζ = [2 + (μ/D)]/4; since
kc⟨τc⟩ is a function of k+1m0/kc alone, it must possess the same sym-
metry and cannot predict a critical point that occurs on only one side
of this axis. The lack of criticality and presence of the symmetry axis
are confirmed by analysis of kc⟨τc⟩ values from our rfKMC trajecto-
ries, which we present in Fig. 4(a). This means that changes in ⟨τc⟩
cannot account for the critical point so that ⟨τp⟩must be responsible
for the observed criticality.

C. Nature of the critical point

The critical point in ⟨τs⟩ must be caused by an abrupt change
in the manner in which the type-2 state propagates to the active end.
This deduction is supported by analysis of kc⟨τp⟩ values from our
rfKMC trajectories, which we present in Fig. 4(b). While kc⟨τc⟩ is
unaffected by the critical point, kc⟨τp⟩ exhibits second-order criti-
cal behavior similar to kc⟨τs⟩. Specifically, mixed intermediates are
kinetically unstable (kc⟨τp⟩ = 0) along a line from (μ/D, ζ) = (−2,
1) to (0, 1), corresponding to the idealized case in the autocatalytic
limit where propagation of the AEM domain wall to the active end
is instantaneous. Because the value of kc⟨τp⟩ is constant along this
line, it follows that ∂⟨τp⟩/∂(μ/D) = 0 along this line as well. At the
critical point at (μ/D, ζ) = (0, 1), we observe a jump in ∂⟨τp⟩/∂(μ/D)
= 0, allowing kc⟨τp⟩ to take nonzero values to the right of this point.
To understand this result, let us consider the propagation of a sin-
gle AEM domain wall from its site of origin to the active end. For
this purpose, we solve Eq. (3) in the case where kcx ≪ kp so that

the terms proportional to kc become negligible. This describes the
propagation of a single domain wall when the probability of addi-
tional non-autocatalytic conversion events is negligible (ζ → 1), and
x remains finite. We obtain ϕx(t; xc, tc) using lattice Fourier trans-
forms and the image method (see Sec. III B of the supplementary
material),

ϕx(t) ≙ e−2D(t−tc)( 2D + μ

2D − μ)
x−xc
2

× {I∣x−xc ∣∫ν(t − tc)⨙ − I∣x+xc ∣∫ν(t − tc)⨙}, (7)

for x ≥ 0 and t ≥ tc, where Ix(t) is a modified Bessel function
of the first kind and ν ≙ √4D2 − μ2. The switching rate, which
is equal to the hitting rate at the boundary x = 0, is given by
h(t; xc, tc) ≙ (k−1 + kp)ϕ1(t; xc, tc). We define an escape probabil-
ity Pe(xc) = limt→∞∑xϕx(t; xc, tc), which is the probability that a
given AEM domain wall does not reach the active end as t → ∞.
In the ζ → 1 limit, this can only occur if x goes to infinity. In this
case, additional non-autocatalytic conversion events become non-
negligible, allowing propagation to be interrupted by formation of a
new domain wall closer to the active end. Thus, Pe(xc) is the prob-
ability that the AEM domain does not disappear without additional
non-autocatalytic conversion events occurring. From the final value
theorem, we find that Pe(xc) ≙ 1 − lims→0+ ĥ(s; xc). The Laplace
transform ĥ(s; xc) ≙ ∫∞tc h(t; xc, tc) exp∫−s(t − tc)⨙dt has the follow-
ing form (see Sec. III C of the supplementary material for the full
derivation):

ĥ(s; xc) ≙ ( s + 2D − r±
2D + μ

)xc , (8)

where r± ≙ ±√s2 + 4Ds + μ2. As shown in Fig. 5(b), Eq. (8) delin-
eates a parabola-like curve, which opens to the right and whose
upper (r−, unphysical) and lower (r+, physical) branches meet at the
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FIG. 5. A continuous phase transition arises in the limit ζ = kp/(kc + kp) → 1. (a) Dependence of kc⟨τs⟩ on μ/D for varying kp. Color scale: black solid curve, kp = 0; gray

curve, kp = kc ; purple curve, kp = 10kc ; blue curve, kp = 102kc ; green curve, kp = 103kc ; amber curve, kp = 104kc ; red curve kp = 105kc ; and black dashed curve, asymptotic
scaling law for kc⟨τs⟩ ∼ Pe(xc = 1), as given in Eqs. (9) and (10). Note the emergence of a critical point at μ/D = 0. (b) Origin of the criticality, showing an exchange of

intercepts by the physical and non-physical branches of ĥ(s; xc) in the ζ → 1 limit. In this panel, we show the case xc = 1, as other cases exhibit the same behavior according

to the relation ĥ(s; xc) = ĥ(s; 1)xc . Color scale: blue curve, μ = −D; black curve, μ = 0; and red curve, μ = D. (c) Divergence of the mean (kp⟨τ′p⟩/xc ; dashed curve) and

variance (k2pVar(τ
′

p)/xc; solid curve) of the single domain wall propagation time around the critical point in the ζ → 1 limit, normalized with respect to kp and xc . This panel

is derived from the analytical results in Eq. (11).

point (s∗, ĥ∗), where s∗ = ν − 2D ≤ 0. When μ ≠ 0, both branches
intercept the ĥ axis; when μ = 0, (s∗, ĥ∗) touches the ĥ axis and the
branches exchange intercepts, causing an abrupt change in ∂μPe(xc),

Pe(xc) ≙
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, μ ≤ 0
1 − (2D − μ

2D + μ
)xc , μ > 0. (9)

In the ζ → 1 limit, autocatalytic conversion and growth occur on
much faster timescales than non-autocatalytic conversion. There-
fore, the mean switching time is asymptotically given by the follow-
ing summation over all possible xc (see Secs. III D and III E of the
supplementary material):

kc⟨τs⟩ ∼ lim
j→∞

⎧⎪⎪⎨⎪⎪⎩
j−1∑
xc≙0
∫1 − Pe(xc)⨙⎫⎪⎪⎬⎪⎪⎭

−1 ≙ Pe(1). (10)

Thus, Eqs. (9) and (10) explain the critical point in kc⟨τs⟩, and the
agreement between our calculated scaling law and the simulated
result is shown in Fig. 5(a). The emergence of the critical point in the
ζ → 1 limit [Fig. 5(a)] is remarkably similar to the behavior of the 2D
Ising model in the case of the vanishing magnetic field H.34 There-
fore, we propose that the appearance of nonzero Pe(xc) for μ > 0
represents a second-order phase transition, where Pe(xc) is an order
parameter and (μ, ζ) play an analogous role to (T, H) in the Ising
model. This transition is associated with the emergence of a regime
where mixed intermediates have a finite lifetime, and their contin-
ued formation allows a nonequilibrium steady-state population to
persist.

D. Diverging propagation times and susceptibility
at the critical point

As further evidence for this critical point, we observe that the
moments of the propagation time diverge when (μ/D, ζ) = (0, 1)

[Fig. 5(c)]. As discussed in Sec. II C, τ′p is the time taken for a sin-
gle domain wall to successfully propagate to the active end, without
being interrupted by the formation of a new domain wall closer to
the end [Fig. 2(a)]. In the ζ → 1 limit, the nth-order moment is given
by ⟨(τ′p)n⟩ ≙ (−1)n lims→0+(∂n

s ĥ)/ĥ. The upper and lower branches

of ĥmeet at s∗ = 0 when μ = 0, so the derivatives ∂n
s ĥ diverge and the

moments behave correspondingly. For example,

lim
ζ→1
⟨τ′p⟩ ≙ xc∣μ∣ , (11a)

lim
ζ→1

Var(τ′p) ≙ 2xcD∣μ∣3 , (11b)

lim
ζ→1

σ(τ′p)⟨τ′p⟩ ≙
√

2D
xc∣μ∣ , (11c)

where Var(τ′p) and σ(τ′p)/⟨τ′p⟩ are the variance and proportional stan-
dard deviation, respectively. While we provide a full interpretation
of these results in Secs. III E–III G of the supplementary mate-
rial, it is informative to note that Eq. (11c) clearly demonstrates
that σ(τ′p)/⟨τ′p⟩ scales inversely with the square root of the effective
Péclet number xc|μ|/D (Sec. II D). This is intuitive as a greater effec-
tive Péclet number means that diffusion plays a less important role
in AEM domain contraction compared to advection, causing the
proportional uncertainty in τ′p to decrease.

The diverging moments of τ′p strongly resemble the divergence
of magnetic susceptibility χH = ∂HM near the Curie point. Because
τ′p is the time interval in which non-autocatalytic conversion events
can interrupt propagation, a connection to a susceptibility of the
form χζ ∝ ∂ζPe is highly intuitive. To test this connection, we deter-
mine analytic bounds for the susceptibility in the ζ → 1 limit. We
define the susceptibility as χζ ≙ −∂ζPe ≙ kp∂kcPe, where the sign
of our definition ensures a positive value but does not affect the
presence or absence of a divergence. This is essentially the effect
of ζ on the probability that propagation will be interrupted by a
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non-autocatalytic conversion event in the AEM domain. By differ-
entiating Eq. (3) with respect to kc, we obtain a master equation
that can be used to determine ∂kcϕ1(t, kc; xc, tc) (see Sec. III F of
the supplementary material for the full derivation). In turn, this can
be used to assess the impact of kc on the hitting rate and Pe. We
solve this master equation to obtain upper and lower bounds for
∂kcϕ1(t, kc; xc, tc),

χζ ≙ C(μ,D, xc)kp(1 − Pe)
2

⟨τ′p⟩, (12a)

1 ≤ C(μ,D, xc) ≤ xc(2D∣μ∣ ) + (2D∣μ∣ )
2

. (12b)

Thus, there is a divergence in χζ at the critical point, which has
a scaling law between |μ|−1 and |μ|−3 and is closely related to the
divergence of ⟨τ′p⟩ and Var(τ′p).

E. Relationship to a transcritical bifurcation

The exchange of intercepts by the branches of ĥ(s; xc) closely
resembles a transcritical bifurcation [Fig. 5(b)], raising the question
of whether Pe(xc) can be written as a fixed point of the correspond-
ing normal form.We begin by noting that the escape probability can
be expressed as a limit Pe(xc) = limt→∞Φ(t; xc, tc) of the probabil-
ity Φ(t; xc, tc) = ∑xϕx(t; xc, tc) that the AEM domain wall has not
yet propagated to the active end, under conditions where kc is suffi-
ciently small that additional non-autocatalytic conversion events are
negligible. Because Pe(xc) ≙ 1 − ∫1 − Pe(1)⨙xc , a bifurcation in Pe(1)
must cause a similar behavior in Pe(xc); therefore, we focus on the
case where xc = 1. Using the conservation law ∂tΦ(t; xc, tc) = δ(t− t0) − h(t; xc, tc), we re-express Eq. (8) in the form

s
2
Φ̂(s; 1) − s ≙ μsΦ̂(s; 1) − k+1m0s

2
Φ̂(s; 1)2. (13)

Either by applying the final value theorem and the power rule of
limits50 to Eq. (13) or by taking the inverse Laplace transform and
evaluating the convolution that corresponds to the Φ̂(s; 1)2 term, it
is possible to obtain the following result in the t →∞ limit (see Sec.
III G of the supplementary material):

dΦ(t; 1, tc)
dt

≈ μΦ(t; 1, tc) − k+1m0Φ(t; 1, tc)2. (14)

This is the normal form of a transcritical bifurcation. The physical
and non-physical branches of Eq. (8) correspond to the regions of
Eq. (14) where ∂tΦ(t; 1, tc) decreases or increases with Φ(t; 1, tc),
respectively, and the exchange of intercepts between these branches
corresponds to an exchange of stability between the fixed points of
Φ(t; 1, tc). Solutions to Eq. (14) provide insights into the diverging
mean and variance of τ′p at the critical point as the hitting rate can be
derived fromΦ(t; 1, tc) according to the formula h(t; 1, xc) = −∂tΦ(t;
1, tc) (see Sec. III G of the supplementary material). When μ ≠ 0,
the solution is a logistic function so that the hitting rate is exponen-
tially bounded. However, when μ = 0, the solution is ∼ (k+1m0t)−1,
meaning that the hitting time distribution becomes heavy-tailed and
its moments diverge. This is an example of critical slowing and
is caused by the disappearance of the linear term in ∂tΦ(t; 1, tc).
In equilibrium systems, a relationship between critical slowing and

diverging susceptibility can be established by considering the Lan-
dau potential V(Φ), which satisfies the law ∂tΦ = −∂ΦV(Φ). Both
the relaxation time following a small variation and the suscepti-
bility of Φ to a linearly coupled external field are inversely pro-
portional to ∂

2
ΦV(Φ). At the critical point, disappearance of the

linear term in ∂tΦ means that ∂2
ΦV(Φ) ≙ 0 so that both the relax-

ation time and susceptibility diverge. In our system, the connec-
tion between critical slowing and the susceptibility is more direct
as the mean propagation time defines a lower bound for the suscep-
tibility. Nonetheless, the principle is similar, in that the exchange
of stability by the fixed points causes disappearance of the linear
term in Eq. (14), allowing the susceptibility to another parameter to
diverge.

It is possible to obtain an effective potential of the form V(Φ)≙ −μΦ2/2 + k+1m0Φ
3/3 by integrating Eq. (14) with respect to Φ.

However, this result must be interpreted with caution. Thermody-
namic equilibrium relies on microscopic reversibility, which does
not exist for our parameter Φ(t; 1, tc). Due to the irreversible nature
of growth mode switching, Φ(t; 1, tc) can only decrease; thus, the
regions of Eq. (14) for which ∂tΦ(t; 1, tc) > 0 are non-physical and
correspond to the parts of ĥ(s; 1) situated at s ⎡ 0 [Fig. 5(b)]. Instead,
we propose that the shared feature between our critical point and
those observed in equilibrium systems is the presence of a bifur-
cation. While our bifurcation is the result of irreversible dynam-
ics, bifurcations observed in equilibrium systems are caused by
large numbers of microscopically reversible processes. Nonetheless,
because these processes result in similar dynamical laws, our model
has many features in common with equilibrium phase transitions.

IV. EFFECTS OF CRITICALITY ON THE MACROSCOPIC
SELF-ASSEMBLY KINETICS

Autocatalytic biopolymer systems with high ζ will exhibit a
nonlinear response to μ near the critical point. In this section,
we evaluate the effects of this criticality on the macroscopic self-
assembly kinetics. We begin by estimating likely ζ values based on
typical biological free energy scales. We find that stabilization of
conformational transition states by even modest free energy differ-
ences (⎡10kBT) can result in highly autocatalytic conformational
conversion. Thus, different biopolymers are expected to exhibit the
full spectrum of autocatalytic behaviors predicted by our model.
In systems with high ζ, the critical point has a profound effect
on the macroscopic kinetics, inducing rapid changes in the size
and abundance of steady-state populations of intermediates, and
the concentration-dependent scaling behavior of the formation of
mature polymers. These effects are not predicted by existing local
equilibrium models51–53 and indicate that nonequilibrium critical-
ity may explain widespread experimental phenomena,54,55 which
one-step nucleation models have not been able to address.

A. Estimation of ζ from Kramers theory

Critical behavior arises in the autocatalytic (ζ → 1) limit
[Fig. 3(b)]. Although kc is non-zero and kp is finite, meaning that a
value of ζ = 1 is not strictly possible, ζ can be asymptotically close to
this limit. Realistic ζ values can be estimated from reaction rate the-
ory. Let us consider the conversion rate of a single type-1 monomer
in the AEM domain, situated n monomers from the active end. We
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represent the conformation of the monomer with a single continu-
ous degree of freedom, qn; however, we note that our analysis can be
generalized to cases where monomers have additional slow degrees
of freedom without changing the conclusions. The free energy G(qn;
qn−1, qn+1) of a polymerized monomer depends on its own con-
formation qn and a term accounting for interactions with the adja-
cent monomers qn−1 and qn+1. The monomer at position n has free
energy minima corresponding to the type-1 and type-2 states, which
are situated at qn = p1 and qn = p2. These minima are separated by
a barrier at qn = p‡, which corresponds to a conformational transi-
tion state. The fact that conversion has a negligible reverse process
entails that G(p1; qn−1, qn+1)≫ G(p2; qn−1, qn+1), and the effectively
two-state nature of our model entails that G′′(p1; qn−1, qn+1) and
G′′(p2; qn−1, qn+1) are both large. Therefore, the conformation qn′ of
all non-converting monomers n′ ≠ n is assumed to be close to p1 or
p2. Monomers situated closer to the active end (n′ ⎡ n) are part of the
AEM domain and must be in the type-1 state (qn′ ≈ p1); monomers
situated further from the active end (n′ > n) may be in either the
type-1 or type-2 state (qn′ ≈ p1 or qn′ ≈ p2). Although it is possible to
write a Langer equation56,57 for the conversion rate that accounts for
continuous conformational variation in the monomers at positions
n′ ≠ n, the results are hard to interpret. The main reason for this is
that such a model predicts dynamics based on the j-dimensional free
energy function∑nG(qn; qn−1, qj+1), which has 2j−1 relevant saddle
points. Instead, we simplify the analysis by neglecting variation in qn′
about the points p1 or p2. We write the free energy of the monomer
at position n as a pair of functions corresponding to the two possible
conformations of the monomer at position (n + 1),

G1(qn) ≙ G(qn; p1, p1), (15a)

G2(qn) ≙ G(qn; p1, p2). (15b)

Themonomer conformation exhibits overdamped Langevin dynam-
ics so that the corresponding conformational probability density
functions ρ1(qn, t) and ρ2(qn, t) satisfy the following Fokker–Planck
equation:

∂ρi

∂t
≙ ∂

∂qn
Di[ ∂ρi

∂qn
+ βρi

dGi

dqn
], (16)

where i = 1, 2 is the conformation of themonomer at position (n + 1),
β = 1/kBT, and Di(qn) is the conformational diffusion coefficient.
The conversion rate can be estimated from Gi(qn) and Di(qn) using
Kramers theory.57,58 The non-autocatalytic conversion rate is given
by the passage rate at the barrier (qn, qn+1) = (p‡, p1),

kc ≙ βD1(p‡)
2π

[G′′1 (p1)∣G′′1 (p‡)∣]1/2e−βΔG‡
1 , (17)

where ΔG‡

1 ≙ G1(p‡) − G1(p1). Similarly, the autocatalytic conver-
sion rate is given by the passage rate at the saddle point (qn, qn+1)
= (p‡, p2),

kc + kp ≙ βD2(p‡)
2π

[G′′2 (p1)∣G′′2 (p‡)∣]1/2e−βΔG‡
2 , (18)

where ΔG‡

2 ≙ G2(p‡) − G2(p1). Therefore, the definition ζ = kp/(kc
+ kp) gives the result

ζ ≙ 1 − D1(p‡)[G′′1 (p1)∣G′′1 (p‡)∣]1/2
D2(p‡)[G′′2 (p1)∣G′′2 (p‡)∣]1/2 e

−βΔΔG‡

, (19)

where ΔΔG‡ ≙ ΔG‡

1 −ΔG‡

2 is the reduction in the free energy barrier
of conversion due to autocatalytic effects. It is not immediately obvi-
ous whether the pre-exponential ratio would have a value greater
or less than 1. While ordering of the (n + 1) monomer might be
expected to reduce conformational diffusion, the simultaneous loss
of complementarity between the monomers’ structures might exert
the opposite effect. The effects on G′′(p1) and G′′(p‡) are also hard
to gauge and may be biopolymer-specific. In the absence of fur-
ther information, we set the value of the pre-exponential ratio to
1 so that ζ = 1 − exp(−βΔΔG‡), and we examine the relationship
between ζ and ΔΔG‡. Equation (19) predicts that even high ζ values
will be associated with relatively modest free energy differences; for
example, ζ = 0.999 ⇔ kp ≈ 103kc implies ΔΔG‡ = 6.9 kBT, which
is well within the range of typical biological free energy scales at
T = 310 K. For comparison, formation of a single hydrogen bond
in protein has a free energy change of ∼2 kBT,

59,60 and estimated
free energy barriers for protein folding are mostly in the 2–20 kBT
range,61 accounting for the effects of large numbers of competing,
non-additive interactions. In addition, a recent experimental study
of biopolymer nucleation by the Aβ peptide indicated that auto-
catalytic interactions between polymers reduce the nucleation free
energy barrier by ΔΔG‡ = 19 kBT.

62 Although this form of autocatal-
ysis is different from the form that we consider here as it depends
on interactions between polymers rather than within a polymer, the
two processes may share a common physical basis. It is interest-
ing to note that an equivalent ΔΔG‡ value in our model would give
ζ ≈ 1 − 10−8⇔ kp ≈ 108kc, resulting in highly autocatalytic behavior.
Thus, we believe that values of ζ close to the ζ = 1 limit are highly
plausible, meaning that biopolymer systems will frequently exhibit
high levels of autocatalysis and resulting critical behavior.

B. Nonlinear response to perturbations
in the autocatalytic limit

We now investigate the response of the macroscopic self-
assembly kinetics to variations in μ/D, when ζ is high. To do so, we
calculate the time-evolution of the principal moments of the poly-
mer length distribution. Let f i ,j(t) represent the concentration of
polymers with growth mode i = 1, 2 and length j at time t. In parallel
with the notation used by Refs. 42 and 43, we define the following
principal moments:

Pi(t) ≙ ∞∑
j≙j0

fi,j(t), (20)

Mi(t) ≙ ∞∑
j≙j0

jfi,j(t). (21)

The zeroth-order moment Pi(t) is the total concentration of poly-
mers with growth mode i and acts as an effective normalization
constant for f i ,j(t). The first-ordermomentMi(t) is the effective con-
centration of monomers incorporated into polymers with growth
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mode i or the “polymer mass-concentration.” The mean polymer
length Li(t) can be obtained by the normalization

Li(t) ≙ Mi(t)
Pi(t) . (22)

Let us begin by examining the effect of the critical point on M1(t)
and L1(t). The length distribution f 1,j(t) of the population of type-1
species contains contributions from individual polymers initiated at
all t0 ⎡ t. If nucleated polymerization begins when t = 0, then

f1,j(t) ≙ vn j∑
x≙1
∫ t

0
pj,x(t; t0)dt0, (23)

where vn ≙ knmj0
0 is the nucleation rate. Thus,

P1(t) ≙ vn ∞∑
j≙j0

j∑
x≙1
∫ t

0
pj,x(t; t0)dt0, (24)

M1(t) ≙ vn ∞∑
j≙j0

j
j∑

x≙1
∫ t

0
pj,x(t; t0)dt0. (25)

In Sec. III A, we obtained numerical solutions for pj ,x(t; t0) using an
rfKMC algorithm. We will now use these solutions to predictM1(t)
and L1(t) by applying Eqs. (24) and (25). As we are specifically inter-
ested in the response of the system to varying μ/D at high ζ, we will
focus on cases where μ/D varies through the range [−2, 2), while ζ
is fixed at the value ζ = 0.999⇔ kp ≈ 103kc. This value is associated
with a comparatively small ΔΔG‡ and so is physically very plausible
(Sec. IV A).

In Fig. 6, we present the effect of μ/D on the time-evolution
of αM1(t) and L1(t), where α = kc/vn is a normalization constant
facilitating the use of relative time kct. The integral ∫∞0 pj,x(t; t0)
converges, allowing both αM1(t) and L1(t) to approach steady-
state values αMss = α limt→∞M1(t) [Figs. 6(a) and 6(b)] and Lss
= limt→∞L1(t) [Fig. 6(b)] in the t→∞ limit. These nonequilibrium
steady states reflect the concentrations and size of intermediates
likely to be observed in physiological contexts, if the free monomer

concentration and chemical environment are stable on timescales≫τsteady, where τsteady is the approximate timescale taken to reach the
steady state. In experimental contexts, the pre-steady-state behavior
is likely to dominate in the self-assembly lag phase if τinf ≪ τsteady,
and the steady-state behavior is likely to dominate if τinf ≫ τsteady.

We will evaluate the effects of the critical point on both the pre-
steady-state kinetics and the steady-state kinetics. The pre-steady-
state kinetics appear linear when plotted on double–logarithmic axes
[Fig. 6(a)], indicating that they are described by a power law of the
form αM1(t) ∝ td. Power laws are often observed in biopolymer
self-assembly kinetics where t is small, and d can be interpreted as
the number of sequential processes contributing to biopolymer mass
accumulation; thus, nucleation without polymerization gives d = 1,
and nucleated polymerization gives d = 2. To assess whether the pre-
steady-state kinetics are affected by the critical point, we calculated
d ≙ ∂ lnM1(t)/∂ ln t∣kct≙0.01 for varying μ/D [Fig. 6(b)]. Although d
increases with μ/D, reflecting the increasing importance of polymer-
ization in mass accumulation, there is no clear response to the crit-
ical point. This is unsurprising, given that the critical point results
from changes in growth mode switching, which is negligible in the
pre-steady-state.

In contrast, the steady-state kinetics are strongly affected by
the critical point. We begin by examining the effect of the critical
point on τsteady. For the purpose of this analysis, we define τsteady
such that αM1(τsteady) = 0.9αMss. As shown in Fig. 6(a), τsteady ini-
tially decreases with the increase in μ/D as both elongation and
propagation cooperate to accelerate growth mode switching. How-
ever, this trend reverses close to the critical point, causing a delay
in the approach to the steady-state and allowing greater accumula-
tion of polymer mass. This delay corresponds to the emergence of
a population of large, conformationally mixed intermediates. As a
result, both αMss and Lss exhibit a highly nonlinear response to μ/D
around the critical point [Figs. 6(a) and 6(b)]. In physiological and
experimental contexts, this means that small variations in the free
monomer concentration or solvent composition have the potential
to induce large changes in the populations of biopolymer nucleation
intermediates. In addition, the total rate of growth mode switching
is strongly dependent on the size and nature of the intermediate

FIG. 6. Varying μ close to the critical point (kp = 103kc) results in a highly nonlinear response of the macroscopic kinetics. (a) Time-evolution of the mass of species with a
type-1 growth mode, αM1(t), for varying μ/D. Color scale: red line, μ/D = −2; orange line, −1.9; yellow line, −1.5; green line, −1; cyan line, −0.5; blue line, 0 (starred, critical);
indigo line, 0.5; purple line, 1; and gray line, 1.5. The dashed line plots (kc t, αM1(t)) at which αM1(t) = 0.9αMss for varying μ/D. [(b), left axis] Effect of μ/D on the steady-state
mass (αMss; black solid line) and length (Lss; black dashed line) of species with a type-1 growth mode. [(b), right axis)] Effect of μ/D on the scaling exponents d (red line) and
γ (blue line). (c) Dependence of γ on μ/D for varying ζ. Color scale: red line, ζ = 0; amber line, ζ = 0.9; green line, ζ = 0.99; blue line, ζ = 0.999; purple line, ζ = 0.9999; and
dark gray line, ζ = 0.999 99.
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populations, so the increase in τsteady will strongly affect the accu-
mulation of mature polymers with a type-2 growth mode.

C. Low concentration-dependence is a dynamical
signature of a nonequilibrium critical point

As discussed in Sec. II B, a common experimental descriptor
of the macroscopic self-assembly kinetics is the characteristic time
τchar at which M2(τchar) = Cm0, where C is an arbitrary constant
[Fig. 2(b)]. The concentration-dependence of τchar can be described
using a scaling exponent γ, which has the following definition:

γ ≙ −∂ ln τchar
∂ lnm0

. (26)

In cases where C is sufficiently small (0 ⎡ C ⪅ 0.5), mechanistic
conclusions can be drawn from the value of γ.41 For example, the
Oosawa model predicts γ = nc/2,

32 where nc is the nucleation order,
and the nucleation-conversion-polymerization (NCP) model, which
assumes instantaneous growth mode switching, predicts γ = nc/3.

21

To illustrate the impact of the abrupt change in τsteady on the macro-
scopic self-assembly kinetics, we predict γ values based on our
simulations. We begin by observing that

df2,j(t)
dt

≙ vn(k−1 + kp)∫ t

0
pj,1(t; t0)dt0 + k

+
2m0∫f2,j−1(t) − f2,j(t)⨙

− k
−
2 ∫f2,j+1(t) − f2,j(t)⨙. (27)

Our rfKMC simulations were carried out in the k−1 → 0 limit,
meaning that the following conservation principle applies:

P2(t) ≙ vnt − P1(t). (28)

To simplify our analysis, let us consider the case where k+2m0≫ Mss/τs so that the predominant contribution to the type-2
polymer mass comes from elongation, rather than conversion of
intermediates. Therefore,

M2(t) ≈ k+2m0 ∫ t

0
P2(τ)dτ. (29)

In the pre-steady-state (t≪ τsteady), P1(t) is approximately linear, so
both P2(t) and M2(t) will exhibit higher-order scaling with time. In
the steady-state (t≫ τsteady), P1(t) is approximately constant, mean-
ing that P2(t) and M2(t) will exhibit linear and quadratic scaling
with time, respectively. It is more convenient to express concen-
trations in relative units than it is to choose arbitrary values of the
rate constants. Therefore, we calculate α′M2(t) using Eqs. (24), (28),
and (29), where α′ ≙ (k+1/kp)j0+1(k2c/knk+2) is a normalization con-
stant, and set C = 0.01/α′. Under circumstances where the rate con-
stants are kept fixed, variation in μ/D can be attributed to changes
in the free monomer concentration m0, according to the relation
k+1m0/kp ≙ ∫2 + (μ/D)⨙/∫2 − (μ/D)⨙. Thus, γ values can be approx-
imated by calculating τchar for varying, finely spaced μ/D values and
then applying Eq. (26) (see Sec. II of the supplementary material).

In Fig. 6(c), we present the effect of μ/D on γ for various ζ
values. At low ζ, γ monotonically transitions between the limits
limμ/D→−2γ = 1 and limμ/D→2γ = 2/3, which agree with the predic-
tions of Oosawa and Asakura32 and Garcia et al.21 discussed above.
It is important to note that the resemblance to the Oosawa regime is

restricted to the macroscopic self-assembly kinetics, and the micro-
scopic nucleation mechanism remains distinct. At high ζ, however,
γ exhibits a minimum that starts at the point μ/D = 2 and moves
toward μ/D = 0 as ζ → 1. This depression occurs because μ/D scales
with m0 so that increasing m0 causes a reduction in growth mode
switching, inhibiting further acceleration of type-2 mass accumula-
tion. In highly autocatalytic systems (kp > 103kc), the effect is severe
enough to cause a temporary reversal in concentration-dependence.
As the minimum γ decreases, the drop in γ becomes increas-
ingly sharp about the point μ/D = 0. Both the low concentration-
dependence (γ ⎡ 0) and sharp drop in γ predicted by our model
are commonly observed in experimental studies but cannot be
explained by existing models.51–53 Furthermore, while existing mod-
els invoke local equilibria to explain low γ,51–53 our model predicts
a low γ purely as a result of the dynamics. We thus propose that
a low concentration-dependence in biopolymer self-assembly may
represent the dynamical signature of the nonequilibrium critical
point.

V. DISCUSSION

Biopolymer self-assembly is a fundamental mechanism of bio-
logical organization and plays a key role in disease. Experimental
and computational studies have revealed that monomers often pop-
ulate metastable conformational states during the process of self-
assembling to form a biopolymer.39,63–65 As a result, nucleation of
a biopolymer often proceeds via one or more metastable interme-
diates, whose constituent monomers are conformationally distinct
from those within the mature polymer. In addition, monomers
within the same intermediate often exhibit considerable confor-
mational heterogeneity. This complexity has challenged our abil-
ity to extract detailed mechanistic information at the molecular
level. Current mathematical models either neglect the conforma-
tional heterogeneity of the assembled monomers entirely or assume
that monomers within the same intermediate rapidly assume the
same conformational state so that intermediates with a mixed com-
position are not observed. However, mixed intermediates are com-
monly observed in experiments and simulations, indicating that
mathematical models that neglect these dynamics are only appli-
cable under highly simplified experimental conditions.63 Moreover,
this conformational diversity is responsible for many of the most
important biological behaviors of biopolymers.66–68 One notable
example is the role of intermediates in the assembly of amyloid
fibers from protein monomers. The conformational heterogene-
ity of amyloid self-assembly intermediates allows them to inter-
act with a diverse range of other biomolecules.69 This disrupts
cellular function and is causative in the majority of degenera-
tive conditions of aging, including Alzheimer’s and Parkinson’s
diseases.16,18,70–73

In this paper, we address this issue by introducing a mini-
mally complex process by which the self-assembled monomers are
able to exhibit conformational heterogeneity and change conforma-
tion over time. This simple addition causes our model to exhibit
rich, critical dynamics. As a result, the macroscopic self-assembly
kinetics display features such as a highly nonlinear dependence of
steady-state intermediate populations on the self-assembly condi-
tions and loss or even inversion of the concentration-dependence
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of the self-assembly rate of the stable phase. These phenomena
are commonly observed in experimental studies54,55 but are not
explained by existing models. Thus, for the first time, the initiation-
propagation (IP) model proposed here allows quantitative predic-
tions to be made regarding the concentration of conformationally
heterogeneous intermediates.

A. Competing dynamics in morphologically
diverse intermediates

While polymeric intermediates are commonly observed in
biopolymer self-assembly, a diverse range of other intermediate
morphologies are also observed, including small prenucleation
clusters with an apparently random organization of constituent
monomers,74,75 large spheroidal intermediates,51,76,77 and species
possessing fractal geometry that is evident at a macroscopic scale.78

In addition to applying to polymeric intermediates, we expect
the conclusions of our study to generalize to these other diverse
geometries. To make this generalization, we note that propaga-
tion involves incorporation of monomers into a growing stable
phase by autocatalytic conversion of condensed monomers in the
intermediate phase. Thus, the dimensionality of propagation is
defined by that of the stable phase. In an n-dimensional interme-
diate, propagation will manifest as linear growth of the stable phase
through the intermediate, with the growth mode switching when an
autocatalytic end reaches the solvent. This form of propagation is
well-supported by experimental observations of spheroidal interme-
diates,6,14,15 which are often large enough to be observed by light
microscopy techniques. In these studies, the stable polymeric phase
appears to originate within the intermediate by conformational rear-
rangement of a subset of the monomers and then emerge from
the surface of the intermediate. When the active end reaches the
solvent, the dramatic change in the physicochemical environment,
and the availability and conformational state of nearby monomers,
would be expected to induce a marked change in the growth behav-
ior of the polymeric phase analogous to the switch from propaga-
tion (kc + kp) to type-2 growth (k+2m0) behavior in our polymer
model.

The fact that polymerization is likely to manifest as linear
growth-like behavior in multidimensional intermediates means that
we expect IP models involving such intermediates to reduce to
pseudo-1D absorbing boundary problems. A transition from a
regime where Pe = 0 to one where Pe > 0 is a general feature of
such problems,79 so we expect similar transitions for diverse inter-
mediate geometries. It is also important to note that our critical
point is conserved in the continuous limit of x, i.e., the case where
the intermediate is so large as to behave like a continuous phase,
rather than a discrete collection of monomers. In this limit, we
obtain the classical results for the first-passage of Brownian motion
with drift,80 and a jump in ∂μPe(xc) occurs about the point μ = 0
(see Sec. III H of the supplementary material). Besides the discrete
polymer example considered in this paper, IP mechanisms with a
number of other intermediate geometries are likely to be mathe-
matically tractable. For example, in the case of spherical interme-
diates with a continuous-like composition, the problem considered
in Sec. II can be recast as a continuous advection-diffusion [Eq. (4)]
along a 1D trajectory toward a spherical absorbing boundary. In the
simplified case of radial propagation, we have performed a quick

calculation to estimate the rate at which large spherical intermediates
give rise to growing stable polymers (see Sec. III I of the supple-
mentary material). While this rate is proportional to the volume of
the intermediates in the cooperative regime, it is proportional to
their surface area in the competitive regime. This behavior closely
resembles the way in which initiation sites for successful propaga-
tion events are restricted to the ends of polymeric intermediates in
the competitive switching regime. Thus, a more general principle
may exist, in which the competition between growth and propaga-
tion dynamics creates two distinct regimes: In one, a polymerizing
stable phase may originate from anywhere within the volume of the
intermediate, and in the other, the sites where such a phasemay orig-
inate are restricted to the boundary of the intermediate. The fact that
a critical point separating these regimes appears to be a widespread
feature of two-step biopolymer nucleation pathways underlines the
more general principle that the prerequisites for critical behavior are
relaxed in far-from-equilibrium systems.

In addition to being compatible with a wide range of inter-
mediate morphologies, our IP mechanism also predicts significant
morphological diversity. The incorporation of a single alternative
monomer conformation means that polymers of a given length may
exhibit a large number of different sequences of type-1 and type-
2 monomers. Because the conformation of a monomer affects its
mechanical properties, we would expect these different sequences
to result in diverse morphologies. In this study, we have primar-
ily focused on the mechanism of growth mode switching and have
ignored aspects of the conformational conversion dynamics that are
not relevant to this problem. However, in future studies, it may
be possible to rigorously predict changing polymer morphologies
by obtaining analytical solutions to describe the progressive con-
version of monomers throughout the polymer. As an example of
how polymer compositionmight affect morphology, we observe that
monomers in the type-1 and type-2 states are likely to exhibit dif-
fering degrees of conformational ordering. It is most often assumed
that the intermediate is less ordered than the stable species so that
conformational conversion can be regarded as an ordering transi-
tion. In this case, the conformational degeneracy of the type-1 state
would be expected to result in greater flexibility for type-1 domains.
As the monomers within a polymer converted to the type-2 state,
we would expect to see a progressive increase in the persistence
length lp. However, in cases where the persistence length of the type-
1 and type-2 monomers are markedly different, the presence of a
small number of type-1 monomers would be expected to strongly
affect the overall morphology of the polymer. Thus, polymers with
a small but significant type-1 content might exhibit radically dif-
ferent morphologies from mature polymers, as is often observed
experimentally.65,81,82

It would also be possible to introduce further conformational
diversity to our model by introducing additional metastable confor-
mations for the polymerized monomers. While analysis of such a
model would not be trivial, additional conformational freedom and
the presence of other slow dynamics might be expected to yield even
richer behaviors than those presented here. However, it is useful
to note that structural data from solid-state nuclear magnetic reso-
nance (NMR) studies suggest that monomers within amyloid fibrils
occupy a limited range of stable or metastable conformations,83,84

while high-resolution microscopy data have revealed a diverse range
of morphologies.81,85 Therefore, even in amyloid systems where
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the free monomer is often highly conformationally degenerate, the
range of accessible conformations seems to remain limited within
the polymer. Thus, a simple model in which polymerized monomers
occupy one of the two conformations may be sufficient to account
for much of the observed morphological diversity.

B. Explicit conversion dynamics are essential
to a general two-step biopolymer nucleation model

The inclusion of explicit conformational conversion dynamics
also allows our IP model to exhibit a generality not seen in other
two-step nucleation models. Propagation of the stable phase is not
assumed to be instantaneous and can occur on timescales similar to
either polymerization of the intermediate or non-autocatalytic con-
version (Fig. 2). As a result, the dynamical behavior of our model
depends on two key parameters: μ/D and ζ. The first of these, μ/D,
describes the competing effects of propagation and polymerization
on the time-dependence of growth mode switching. When μ/D ⎡ 0,
the stable phase propagates through the intermediate faster than
the intermediate phase can polymerize, causing accelerated switch-
ing. When μ/D > 0, polymerization is rapid and reduces the like-
lihood of successful propagation. The second parameter, ζ, com-
pares the timescale for propagation due to autocatalytic conversion
with the timescale for non-autocatalytic conversion. When ζ = 0,
nearest–neighbor interactions between monomers do not promote
conformational conversion so that the rate of growth mode switch-
ing is independent of the length of the polymer. When ζ = 1,
nearest-neighbor interactions strongly promote conversion so that
the timescale for propagation is much faster than that of non-
autocatalytic conversion, and the rate of growth mode switching is
accelerated.

Existing models that neglect the conversion dynamics are not
able to consider the variation accounted for by μ/D and ζ and
thus make various assumptions regarding the rate at which the
new growth mode emerges. While certain models20,22 have correctly
supposed a connection between intermediate size and the rate of
emergence of a growing stable phase (e.g., kc⟨τs⟩ ≈ 1/j), the lack of
competing dynamics means they are restricted to a limited range
of points close to the top left (ζ → 1, μ/D ⎡ 0) of our phase dia-
gram [Fig. 3(a)]. In contrast, other models have assumed that there
is no relationship between the intermediate size and the switch-
ing rate19,21 (i.e., kc⟨τs⟩∝ 1). Justifications for this behavior include
irrelevance of size due to the lack of a growth process or a sce-
nario in which monomer conversion is highly cooperative. While
the former is plausible in specific cases where growth of interme-
diates is slow, the latter is unlikely to be widely observed as inter-
mediates either are typically low-dimensional or have highly degen-
erate monomer interactions. However, a sufficient level of coop-
erativity may occur in exceptional cases where monomers within
intermediates exhibit a limited variety of interactions with a large
number of neighbors. In our model, length-independence arises
in two scenarios: when conversion is entirely non-autocatalytic so
that adjacent monomers convert independently (ζ = 0) and when
growth is sufficiently rapid that growth mode switching is inhib-
ited (μ/D → 2). Thus, the behavior assumed by Refs. 19 and 21
will be observed at points on our phase diagram corresponding to
these limits [Fig. 3(a)]. It is important to emphasize that we expect
length-independence to be a somewhat unusual phenomenon. Even

stabilization of the conformational transition state by a small free
energy (∼1 kBT) would result in a significant ζ value, and in the
vast majority of our phase space, some level of reduction in kc⟨τs⟩
is observed [Fig. 3(a)].

We have seen that existing models of two-step biopolymer
nucleation describe a limited range of possible scenarios, which
are restricted to points close to three lines (ζ → 1 given μ/D ⎡ 0,
ζ = 0, and μ/D → 2) on the limits of our phase diagram [Fig. 3(a)].
As a result, these models exhibit markedly different behaviors that
appear difficult to reconcile. By explicitly considering the dynam-
ics by which conversion of monomers within a polymeric inter-
mediate leads to emergence of a new growth mode, we are able to
explore a much broader region of parameter space and show that
these apparently contrasting scenarios are in fact different limits
of the same underlying reaction scheme. In addition, we find that
these previously unexplored regions contain rich phase behavior
that is not anticipated based on the behavior observed in the lim-
its. Therefore, our model has the capacity to explain a wide variety
of “poorly behaved” experimental or physiological systems, which
are not described by existing models, such as those with mixed
intermediates or low concentration-dependence (Secs. IV B and IV
C). Moreover, by classifying existing two-step nucleation models in
the context of our phase diagram [Fig. 3(a)], we have shown that
these models occupy disparate regions of phase space that can only
be united by considering the competitive dynamics accounted for
by μ/D and ζ. Therefore, while our model still does not describe
some of the more complex scenarios that have been suggested,23

we have shown that explicit conversion dynamics are essential fea-
tures of a general model of two-step biopolymer nucleation. We
thus believe that our study represents a crucial step toward such a
model.

C. Biological importance of the nonequilibrium
critical point

In addition to generalizing existing models, the inclusion of
an explicit conformational conversion process allows our model to
predict a nonequilibrium critical point. While critical points have
previously been described in biopolymer systems, the possibility
of nonequilibrium criticality has largely been overlooked. Instead,
the most commonly suggested critical point is the critical micel-
lar/oligomer concentration (CMC),51,76,86 which is the concentration
at which the free monomer and intermediate are in local equilibrium
such that m0 ≙ k−1 /k+1 . CMC models typically assume that forma-
tion of intermediates causes rapid depletion of the free monomer
so that k−1 /k+1 represents an upper limit on the free monomer con-
centration; as a result, saturation behavior occurs. In this paper, we
consider a different scenario. We focus primarily on the case where
the free monomer depletes slowly, as occurs in physiological circum-
stances where there is a monomer source or in many experimental
situations.87–90 Thus, while our basic model (Fig. 1) has the required
processes to produce a CMC-type effect, we are primarily interested
in the case where the free monomer is supersaturated with respect
to the intermediate (m0 > k−1 /k−1 ) and thus out of local equilib-
rium. Under these circumstances, a second critical point emerges
at m0 ≙ (k−1 + kp)/k+1 (Figs. 3 and 5), at a higher concentration
than the CMC. On our nonequilibrium phase diagram [Fig. 3(a)],
the CMC would manifest as a vertical line (i.e., constant μ/D)
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situated to the left of the nonequilibrium critical point. The differ-
ence in concentration between these two points will be given by
kp/k+1 . Although we set k−1 ≙ 0 in our simulations to focus primar-
ily on the nonequilibrium critical point, our mathematical analysis is
valid formore general k−1 subject to the condition that destabilization
of intermediates is negligible. Thus, the CMC and the nonequilib-
rium critical point described in this paper are compatible so long
as the concentration difference between the two is sufficiently large.
This situation is highly relevant to nonequilibrium scenarios where
the dissociation of monomers from the intermediates is relatively
slow, as occurs in Alzheimer’s and Parkinson’s diseases.88–90 In cases
where kp ≪ k−1 , the CMC and nonequilibrium critical point will
become close to one another on the phase diagram and the presence
of two non-negligible absorbing boundaries in Eq. (1) will further
complicate the dynamics of self-assembly and conversion. A rigor-
ous analysis of this effect is both mathematically involved and out-
side the scope of this paper and so has been left as a subject for future
work.

It is interesting to note that in cases where physiological and
experimental systems exhibit slow variation in free monomer levels
over time, the phase behavior of biopolymer self-assembly will vary
accordingly. Experimental systems are likely to exhibit a monotonic
depletion of the free monomer. In this case, μ/D will decrease over
time, causing the system to pass the nonequilibrium critical point en
route to the CMC. The formation of stable polymers due to growth
mode switching will then cause further monomer depletion, result-
ing in either destabilization or switching of the remaining interme-
diates. Thus, accelerated growth mode switching will occur when
the free monomer concentration passes the nonequilibrium critical
point at m0 ≙ (k−1 + kp)/k+1 , with destabilization of the remain-
ing intermediates occurring shortly after. This sort of behavior has
been observed for the amyloid-β (Aβ) peptide. Under conditions
of high supersaturation, Chimon et al.7 described the formation of
large, spheroidal intermediates by Aβ, similar to those discussed in
Sec. V A. Over time, these intermediates progressively acquired sec-
ondary structure content similar to the stable polymeric phase, but
growing, stable polymers only appeared following depletion of the
free monomer. This behavior is strongly indicative of a transition
from the competitive switching regime to the cooperative regime, as
described by our model.

The biological implications of the nonequilibrium critical point
extend beyond the biopolymer self-assembly process itself. The rapid
change in steady-state behavior when μ/D ≈ 0 (Fig. 6) means that
small changes in free monomer concentration or the physicochemi-
cal environment will have a pronounced effect on the population of
intermediates. This provides a way for biological systems to rapidly
switch between producing stable polymers and metastable interme-
diates with distinct biological activity. This sort of switch-like regula-
tion is typical of biological systems67,91 and may, for example, reflect
the importance of controlling the population of potentially toxic
species in the assembly of amyloids.92 Thus, while previous work
is restricted to specific sets of conditions, our model encompasses a
muchwider context. Thismakes it possible to predict the response of
the system to a wide range of stimuli, including changes in internal
conditions during the course of a reaction or external stimuli such
as mutations and temperature changes, and to interpret the possi-
ble role that particular variations in self-assembly conditions play in
healthy functioning and disease.

Biological systems are typically maintained far-from-
equilibrium, with free monomer concentrations often highly super-
saturated in relation to their respective polymers.87 However,
existing models of two-step biopolymer nucleation neglect the
dynamics that arise under these nonequilibrium conditions. The
requirements for criticality are relaxed under nonequilibrium con-
ditions, and many of these neglected dynamics have the potential to
produce complex, biologically relevant behaviors, such as we observe
in our IP model. As discussed above, these behaviors may explain
experimental observations that are not predicted by existing mod-
els and rationalize the role of physiological conditions in human
diseases. As a result, we propose that the role of nonequilibrium crit-
ical phenomena in physiological biopolymer self-assembly has been
severely underestimated.

D. Relationship to autocatalytic
secondary nucleation

The model developed here can be applied to any two-step
biopolymer nucleation process. A fundamental aspect of our model
is its ability to predict mixed intermediates consisting of self-
assembled monomers in two distinct conformations, resulting in
diverse intermediate morphologies. Conversion of a self-assembled
monomer from the metastable type-1 state to the stable type-2 state
occurs either non-autocatalytically with rate kc or autocatalytically
with rate kc + kp. Thus, the stable phase is able to initiate locally
within the intermediate and then propagate autocatalytically to the
active end. This type of intramolecular structural propagation has
been extensively documented in the biochemical literature in mod-
els of multi-subunit proteins7,15,24,26,27,93 and is responsible for the
nonequilibrium criticality that our model exhibits.

A different type of autocatalysis that is often discussed in mod-
els of biopolymer nucleation is secondary nucleation, the process by
which the surface of an existing stable biopolymer catalyzes the for-
mation of additional biopolymers by heterogeneous nucleation.94–97

Thus, while the proposed IP mechanism can be considered a form
of intra-polymer autocatalysis, secondary nucleation is an example
of inter-polymer autocatalysis. Secondary nucleation has been used
to explain features such as exponential [M2(t)∝ exp(κt)] rather than
quadratic [M2(t)∝ t2] accumulation of the stable phase and the for-
mation of significant concentrations of toxic intermediates during
the “growth phase” (i.e., when t ≈ τinf).96 Given the prominence of
secondary nucleation models in the protein polymerization litera-
ture, it is pertinent to question how they are mechanistically related
to our IP model. At the microscopic level, the process of secondary
nucleation results from the alignment of free monomers to the sur-
face of the mature biopolymer.98 In the context of our model, this
alignment could promote initiation of type-1 polymers that then
detach from themature polymer and independently undergo growth
mode switching. This would manifest as an increase in the initia-
tion rate vn. There is also the possibility that interactions between
conformationally ordered monomers in the stable phase and disor-
dered monomers in the nascent intermediate promote ordering of
the latter. This would create a more tightly coupled process in which
conversion and propagation are accelerated, resulting in an increase
in kc and kp. Thus, it is possible that the IP mechanism and sec-
ondary nucleation share a common mechanistic basis and are sim-
ply different examples of a common tendency for an autocatalytic
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conformational change induced by interactions between monomers.
All these effects are easy to incorporate into the framework of
our IP model, and we anticipate that future studies that combine
the IP mechanism with inter-polymer autocatalysis may be able to
gain deeper insights into the microscopic mechanism of secondary
nucleation.

E. Relationship to surface-catalyzed primary
nucleation

In addition to autocatalytic secondary nucleation, another
commonly observed form of heterogeneous nucleation is surface-
catalyzed primary nucleation.95,99 In this process, a surface other
than that of an assembled biopolymer catalyzes nucleation of new
biopolymers. A wide variety of surfaces have been found to have
catalytic activity, including biological surfaces such as lipid bilay-
ers99–101 and extracellular matrix components,102 and experimental
surfaces such as graphite,103 mica,14,103,104 and polystyrene.100,105 Due
to the considerable abundance of potentially catalytic surfaces in
both physiological and experimental contexts, surface-catalyzed pri-
mary nucleation is likely to play a significant role in many biopoly-
mer self-assembly processes. While a one-step mechanism is often
assumed, there is also experimental and computational evidence to
support two-step nucleation on surfaces.106,107

As with secondary nucleation, surface effects on the self-
assembly process are likely to manifest as changes in themicroscopic
rate parameters. Both experimental14 and computational106 studies
have reported enhanced initiation and growth of metastable inter-
mediates on surfaces, corresponding to an increase in vn or k+1m0

in our model. In most cases, this is likely to result from increased
local concentration close to an attractive surface,106 although more
specific mechanisms are possible. In addition, surface interactions
could induce ordering of pre-formed intermediates, causing an
increase in kc or kp. For example, reduced screening of molecular
interactions at the surface would favor secondary structure devel-
opment. Alternatively, specific features such as the presence of cer-
tain moieties, or a regular surface structure resulting in periodic
variations in interaction potentials, could promote ordering of the
monomers within the intermediate. The phenomenon of surface-
catalyzed ordering of metastable intermediates has been observed
in Langevin dynamics simulations of coarse-grained biopolymer
models.107

In some cases, surface-catalyzed primary nucleation may differ
from the surface-independent process in ways that extend beyond
simple modifications to the rate parameters. For example, the dis-
tinct physicochemical environment of the surface may cause inter-
mediates to adopt different geometries from those observed in
solution.14 In these cases, generalized versions of this model that
account for different geometries are likely to be needed; in prin-
ciple, however, the competition between growth and propagation,
as well as the nonequilibrium critical point, is still likely to exist
(see Sec. V A). Therefore, the predictions of this paper are likely
to extend to surface-catalyzed primary nucleation and will respond
to the specific characteristics of the surface in addition to those
of the biopolymer and the solution environment. Because pro-
cesses occurring at surfaces are well-suited to investigation by bio-
physical techniques such as neutron scattering,105 atomic force
microscopy,14,100,103,104,108,109 and fluorescence microscopy,36,110,111

experimental studies of surface-catalyzed primary nucleation pro-
vide a promising opportunity to test the mechanistic predictions of
our model.

F. Competing dynamics can explain low
concentration-dependences

One of the key experimental validators for biopolymer
assembly models is their ability to accurately describe the
concentration-dependence of the process and relate this to the-
ory.5,23,31,32,39,54,55,96,112,113 The Oosawa model31,32 was first to ascribe
a physical meaning to the value of γ [Eq. (26)], the scaling expo-
nent for the concentration-dependence of accumulation of the stable
polymer phase (Sec. IV C). The Oosawamodel predicts that γ = nc/2,
where nc is the effective order of nucleation and often represents the
minimum size for a polymer to be stable or metastable (i.e., j0).

41

While nc is often interpreted as reflecting the number of monomers
within the critical nucleus (n∗ = nc − 1),114 which is the least stable
species during the self-assembly pathway, this explanation has been
challenged by the widespread observation of γ ⎡ 1.54 Such low val-
ues of γ would imply n∗ ⎡ 1, which is physically implausible.55 In
addition, many biopolymer systems with higher γ still exhibit much
lower concentration-dependences than would be expected, based on
biophysical predictions of their n∗.20,23,115 Some authors have pro-
posed that saturation effects, such as the presence of a saturable
catalytic surface that induces heterogeneous nucleation, may explain
the low concentration-dependences.52,53,116 Indeed, γ ⎡ 1 is gener-
ally observed under conditions where γ appears to saturate with the
increase in monomer concentration. However, under some experi-
mental conditions, the concentration-dependence drops further to
γ ⎡ 0.5.54 This is not only incompatible with the Oosawa model,
but it also occurs under circumstances where secondary nucleation
remains active, meaning it is incompatible with saturation mod-
els. To our knowledge, the nucleation-conversion-polymerization
(NCP)21 model is the only model in the literature that produces
low γ without invoking a saturation effect. In the NCP model, low
γ values are explained in the context of a “cascade nucleation sys-
tem,” where sequential conversion of N − 1 pre-fibrillar intermedi-
ates results in a concentration-dependence of nc/(N + 1) ≤ γ ≤ nc/2.
In this model, although the number of intermediate types can be
infinite, their conversion occurs as a single-step process without
considering the underlying dynamics, and the intermediates do not
exhibit a growth process. As a result, the conversion mechanism
of an NCP intermediate corresponds to the scenario predicted at
the point (μ/D, ζ) = (−2, 0) on our nonequilibrium phase diagram
[Fig. 3(a)].

The IP mechanism proposed here generalizes the conversion
mechanism considered in the NCP model to explicitly consider the
dynamics by which intermediates grow and individual monomers
convert. As a result, our model makes predictions regarding the
pre-steady and steady-state scaling behaviors of intermediates and
mature polymers that can easily be generalized to the case of mul-
tiple intermediates in the same manner as the NCP model. How-
ever, the inclusion of additional dynamics allows our model to
explore a broader region of parameter space, leading to our obser-
vation of sharp changes in γ near the critical point [Figs. 5(b)
and 5(c)]. This results in local depression of the concentration-
dependence, which is more pronounced and occurs more abruptly
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at higher ζ. High ζ values correspond to systems in which
autocatalysis plays a dominant role in conformational conver-
sion and can be achieved on comparatively modest free energy
scales (Sec. IV A). This reduction in concentration-dependence
allows our far-from-equilibrium model to violate constraints on the
concentration-dependence of existing models over a broad range of
μ/D values, and this effect is likely to be further enhanced when
saturation effects are also active. Under many experimental con-
ditions, a value of γ ⎡ 1 is thus expected and is simply a result
of the competing dynamics. In this study, the competing processes
are polymerization of the metastable intermediate and propagation
of the stable conformational state through this intermediate. How-
ever, models that explore other nonequilibrium dynamics are also
likely to produce such an effect. Therefore, our work highlights the
potential that far-from-equilibrium self-assembly models with com-
peting dynamics have to resolve outstanding issues relating to low
concentration-dependences.

G. Interpretation of the nucleus size

Figure 6(c) shows how γ varies with μ/D for different ζ values.
While both μ/D and ζ are likely to depend on the physicochemical
environment under which self-assembly occurs and the underly-
ing properties of the biopolymer system, μ/D exhibits an additional
dependence on the free monomer concentrationm0, which can eas-
ily be varied in experimental contexts. It is useful to note that differ-
ent ζ values result in highly characteristic changes in concentration-
dependence [Fig. 6(c)] so that the ζ value intrinsic to a particular
biopolymer system can be determined by experimentally vary-
ing μ/D and measuring the changing concentration-dependence of
assembly of the stable polymer. Thus, while it is possible to deter-
mine nc from the values of γ observed in the limits where μ/D
→ ±2, our model predictions provide an easier alternative. Instead,
we anticipate that it will be possible to determine nc and ζ from
the characteristic curve shape with which γ varies at intermediate
values of μ/D. This may be preferable as it eliminates the need to
explore extreme values of μ/D, which is challenging due to lack of
sensitivity of experimental methods at low concentrations and the
likely presence of additional competing processes at high concentra-
tions. This approach can also be generalized to cases similar to the
NCP model21 in which multiple intermediates are present. In this
scenario, we would typically expect the Oosawa behavior (γ = nc/2)
to be recovered in the μ/D → −2 limit and the NCP-type behavior
[γ = nc/(N + 1)] to be recovered in the μ/D → 2 limit, as we have
observed in Sec. IV C. The inclusion of extra intermediates would
also be expected to introduce additional critical points, which could
be experimentally observable.

It is also important to note that, while our current model iden-
tifies nc as being equal to the minimum size of a metastable inter-
mediate j0, future models that consider additional complexities of
the conversion dynamics may arrive at different interpretations for
nc. For example, a previous coarse-grained simulation study22 that
investigated a scenario similar to our cooperative switching regime
identified nc with the minimum size at which conversion can initiate
within an intermediate, rather than the absolute minimum size of an
intermediate. While we take these sizes to be the same in our model,
future work that treats these quantities as different may provide
analytical justification for this result.

VI. CONCLUSIONS

We have developed a minimal model of two-step biopoly-
mer nucleation that accounts for conformational conversion of
metastable intermediates by an initiation-propagation (IP) mecha-
nism. In our framework, the stable polymer phase initiates locally
within the intermediate and propagates by autocatalytic nearest-
neighbor interactions between the assembled monomers. This
mechanism is well-supported by experimental studies showing pro-
gressive ordering of intermediates on slow timescales7,15,24–27 and
computational studies suggesting an autocatalytic mechanism for
structural conversion of the monomers.20,24,28,29 The inclusion of
conformational ordering on timescales comparable to condensation
of the intermediates causes our model to exhibit rich dynamics and
a nonequilibrium critical point, which are not predicted by models
with an implicit ordering step.19–23 Furthermore, by explicitly con-
sidering the dynamics of conformational conversion, our framework
unifies existingmodels and shows that their apparently unconnected
behaviors occur as different limits of a single underlyingmechanism.
The IP mechanism has the potential to explain a wide variety of
experimental behaviors that are not predicted by existing models,
such as the formation of large, conformationally mixed interme-
diates6,7,14,15 and nucleation of the stable polymer phase at a rate
independent of the free monomer concentration.54 In our model,
these phenomena arise naturally as a result of the competing dynam-
ics of self-assembly and conversion, resolving the apparent paradox
that concentration-independent nucleation rates suggested critical
nuclei with a non-physical size.55

While existing experimental data strongly support our
model,7,15,25–27 comprehensive data across a broad range of exper-
imental conditions would be needed to observe the full range
of predicted behaviors. At the microscopic level, techniques
such as fluorescence-based imaging36,110,111 or atomic force
microscopy108,109 will allow direct observation of processes such as
nucleation, conversion, and polymerization, as well as measurement
of the corresponding rate parameters. Alternatively, macroscopic
techniques reporting on the time-evolution of intermediate and sta-
ble polymer populations can be used to indirectly test the exis-
tence of these processes via numerical fitting. Suitable macroscopic
data for fitting include dye-based kinetic assays,9,117–120 size distri-
butions,121,122 and techniques allowing quantification of the mass of
polymer populations.123

Biopolymer nucleation intermediates are responsible for toxic-
ity in a huge range of human diseases,16,18,70–73 and the nonequilib-
rium critical point predicted by our model may explain the extreme
sensitivity of many polymerization disorders to small changes in
self-assembly conditions.124–126 As a result, our model provides a
deeper understanding of the origin of these toxic intermediates and
suggests promising therapeutic strategies to treat diseases caused
by their formation. Moreover, future theoretical studies that build
on the results presented here are likely to yield analytical solutions
for the size distribution and composition of nucleation interme-
diates, which will provide a powerful tool in therapeutic devel-
opment. Biopolymers are also increasingly exploited by materi-
als scientists,127–129 and the development of a general model of
their nucleation will allow us to regulate their formation and pre-
vent unwarranted side reactions. In this paper, we have shown
that explicit conformational conversion dynamics, such as those
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addressed by our initiation-propagation mechanism, are essential
to such a theory. We thus believe that our work represents a cru-
cial step toward a general theory of two-step biopolymer nucle-
ation, with important implications for both experiments and human
diseases.

SUPPLEMENTARY MATERIAL

See the supplementary material for a more detailed description
of the mathematical derivations and simulation procedures.
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