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Microsatellite instability (MSI) determines whether patients with gastrointestinal (GI) cancer 1 

respond exceptionally well to immunotherapy. In clinical practice however, not every patient is tested 2 

for MSI because this requires additional genetic or immunohistochemical tests. Here we show that deep 3 

residual learning can predict MSI directly from hematoxylin-eosin histology, which is ubiquitously avail-4 

able. This approach has the potential to provide immunotherapy to a much broader subset of GI cancer 5 

patients. 6 

While immunotherapy now represents a cornerstone of cancer therapy, patients with gastroin-7 

testinal (GI) cancer usually do not benefit to an extent comparable to other solid malignancies such as 8 

melanoma or lung cancer1 unless they belong to the group of microsatellite instable (MSI) tumors2. In this 9 

group, which accounts for approximately 15 % of gastric (stomach) adenocarcinoma (STAD) and colorectal 10 

cancer (CRC)3, immune checkpoint inhibitors demonstrated significant clinical benefit4, resulting in recent 11 

approval by the Food and Drug Administration (FDA). MSI can be identified by immunohistochemistry or 12 

genetically5, but not all patients are screened for MSI except in high-volume tertiary care centers6. Ac-13 

cordingly, a significant group of potential responders to immunotherapy may not be offered timely treat-14 

ment with immune checkpoint inhibitors, missing chances of disease control.  15 

Deep learning has outperformed humans in some medical data analysis tasks7 and can predict 16 

survival and mutations from images in lung8, prostate9 and brain10,11 tumors. To facilitate universal MSI 17 

screening, we investigated whether deep learning can predict MSI status directly from hematoxylin-eosin 18 

(HE) histology slides. First, we compared five convolutional neural networks (CNN) on a three-class set of 19 

GI cancer tissues (N=94 slides, N=81 patients, Fig. 1a-c, Extended Data Fig. 1). Resnet18, a residual learn-20 

ing12 CNN, was an efficient tumor detector with an out-of-sample area under the curve (AUC) of >0.99, 21 

which represented an improvement on the current state of the art13,14. Another resnet18 (Fig. 1d) was 22 

trained to classify microsatellite instability (MSI) versus stability (MSS, Fig. 1e) in large patient cohorts 23 
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from ͞TŚĞ CĂŶĐĞƌ GĞŶŽŵĞ AƚůĂƐ͟ ;TCGAͿ͗ Nсϯϭϱ stomach adenocarcinoma15 (formalin-fixed paraffin-em-24 

bedded [FFPE], TCGA-STAD), N=360 CRC16 (FFPE, TCGA-CRC-DX) and N=378 CRC patients (snap-frozen, 25 

TCGA-CRC-KR; Suppl. Table 1). 26 

Tumor tissue was automatically detected and subsequently tessellated into 100,570 (TCGA-27 

STAD), 60,894 (TCGA-CRC-KR) and 93,408 (TCGA-CRC-DX) color-normalized tiles, in which the deep learn-28 

ing model scored MSI. In the TCGA-CRC-DX test cohort, true MSI image tiles (as defined in Suppl. Table 2) 29 

had a median MSI score of 0.61 (95% confidence interval [CI] [0.12, 0.82], Fig. 2a) while true MSS tiles had 30 

an MSI score of 0.29 (CI [0.08, 0.57]; two-tailed t-test p-value = 1.1e-6, Fig. 2b). In the TCGA-CRC-KR test 31 

cohort, the MSI score for MSI tiles was 0.50 [0.17, 0.80] and 0.22 [0.06, 0.60] (p=7.3e-11) for MSS, indi-32 

cating that our approach can robustly distinguish features predictive of MSI both in snap-frozen and FFPE 33 

samples. Patient-level AUC for MSI detection was 0.81 [0.69, 0.90] in TCGA-STAD, 0.84 [0.73, 0.91] in 34 

TCGA-CRC-KR and 0.77 [0.62, 0.87] in TCGA-CRC-DX (Extended Data Fig. 2a; MSI frequency is listed in 35 

Suppl. Table 3).  36 

The multi-center DACHS study17,18 was used as an external validation set (N=378 patients). Using 37 

the automatic tumor detector and the MSI detector trained on TCGA-CRC-DX (Fig. 2c), patient-level AUC 38 

was 0.84 [0.72, 0.92] (Fig. 2d). ͞TƌĂŝŶ ŽŶ FFPE͕ ĚĞƉůŽǇ ŽŶ FFPE͟ was ƐƵƉĞƌŝŽƌ ƚŽ ͞ƚƌĂŝŶ ŽŶ ĨƌŽǌĞŶ͕ ĚĞƉůŽǇ 39 

ŽŶ FFPE͟ and ͞ƚƌĂŝŶ ŽŶ CRC͕ ĚĞƉůŽǇ ŽŶ CRC͟ was better than ͞ƚƌĂŝŶ ŽŶ “TAD͕ ĚĞƉůŽǇ ŽŶ CRC͟ (Extended 40 

Data Fig. 2a). To probe the limits of our proposed method, we validated the MSI detector on N=185 gastric 41 

cancer patients from Yokohama, Japan (KCCH cohort19). Asian gastric cancer has a very different histology 42 

and clinical course than non-Asian gastric cancer20. A classifier trained on TCGA-STAD (approximately 80% 43 

non-Asian) achieved an AUC of 0.69 [0.52, 0.82] in the KCCH cohort (0% non-Asian, Extended Data Fig. 44 

2a). Because MSI is a pan-tumor biomarker with clinical usefulness beyond GI cancer, we additionally 45 

trained and tested our method in uterine cancer (UCEC, N=327 patients), which has a high prevalence of 46 

MSI3, yielding an AUC for MSI detection in held-out patients of 0.75 [0.63, 0.83] (Extended Data Fig. 2a). 47 
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While our new method attained robust performance across a range of human tumors and ex-48 

ceeded the previously reported performance of predicting molecular features from histology8,9, our ex-49 

periments point to some limitations: First, the ability to classify does not necessarily extend beyond the 50 

cancer type and ethnicity present in the training set. Larger training cohorts are likely to boost classifica-51 

tion performance because rare morphological variants can be learned by the network. Another limitation 52 

is the required tissue size. To define its lower limit, we generated ͞ǀŝƌƚƵĂů ďŝŽƉƐŝĞƐ͟ and found that per-53 

formance plateaued at approximately 100 tiles of 256 µm edge length, suggesting that biopsies are suffi-54 

cient for MSI prediction (Extended Data Fig. 2b-c). 55 

To reverse-engineer the black-box MSI detector, we correlated MSIness (the fraction of MSI-pre-56 

dicted tiles) to transcriptomic and immunohistochemical (IHC) data across our test sets. MSIness was cor-57 

related to a lymphocyte gene expression signature in gastric cancer and to PD-L1 expression and an Inter-58 

feron-gamma signature in colorectal cancer (Fig. 2e, Suppl. Table 4). Spatially, predicted MSI overlapped 59 

with poorly differentiated and lymphocyte-rich tumor regions (Extended Data Fig. 3), which is consistent 60 

with histopathological knowledge. MSI is a prognostic in addition to a predictive biomarker21,22 and corre-61 

spondingly, in MSS patients of the DACHS cohort, high MSIness defined a group with worse overall survival 62 

(univariable Cox hazard ratio [HR] 1.65 [1.00, 2.73], log rank p = 0.0207, multivariable models in Suppl. 63 

Table 5). Although this was not statistically significant in a four-variable model (HR 1.37 [0.88 ʹ 2.14], 64 

Suppl. Table 5), future clinical trials could determine the response to cancer immunotherapy in these MSI-65 

like patients.  66 

Cancer immunotherapy has changed the landscape of oncology but identifying patients who will 67 

benefit from immunotherapy has remained a key challenge. Recently, the American Society of Clinical 68 

Oncology (ASCO) has declared discovery of new biomarkers for immunotherapy as the top priority in can-69 

cer research in 2019 (https://www.asco.org/research-progress/reports-studies/clinical-cancer-advances-70 

2019/clinical-cancer-advances-2019-glance). However, even established biomarkers such as MSI are not 71 
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universally tested today. Our method can be implemented at tertiary care centers at a low cost (Extended 72 

Data Fig. 4a-b). It does not require additional wet lab tissue testing and can infer MSI status from ubiqui-73 

tously existing data. After training on larger data sets and prospective validation, this could ultimately 74 

enable efficient identification of MSI patients, allowing to distribute the benefit of cancer immunotherapy 75 

to a broader target population. 76 

Online content 77 

Any methods, supplementary data, Nature Research Life Sciences Reporting Summary, source data and 78 

source codes and associated accession codes are available online.  79 

Data availability  80 

All whole slide images for data sets are available at https://portal.gdc.cancer.gov/. Training images for 81 

tumor detection are available at http://dx.doi.org/10.5281/zenodo.2530789. Training images for MSI de-82 

tection are available at http://dx.doi.org/10.5281/zenodo.2530835 and http://dx.doi.org/10.5281/ze-83 

nodo.2532612. Raw data for the figures are available in the online Supplementary Data. Source codes are 84 

available at https://github.com/jnkather/MSIfromHE. 85 
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Figure legends 128 

Fig. 1: Tumor detection and MSI prediction in hematoxylin-eosin histology. (a) A convolutional neural 129 

network was trained as a tumor detector for gastric and colorectal cancer. Scale bar 4 mm. (b) Tumor 130 

regions were cut into square tiles, which were (c) color-normalized and sorted into microsatellite instable 131 

(MSI) or stable (MSS). (d) Another network was trained to classify MSI versus MSS. (e) This automatic 132 

pipeline was applied to held-out patient sets. Scale bar: 256 µm. 133 

Fig. 2: Classification performance in an external validation set. (a-b) Tissue slides of MSI and MSS patients 134 

in the TCGA-CRC-DX test set show spatial patterns of predicted MSI score (see also Extended Data Fig. 4). 135 

These images are representative of N=378 patients. (c) A network was trained on the TCGA-CRC-DX train-136 

ing cohort (N=260 patients) and deployed on the DACHS cohort (N=378 patients). (d) Patient-level receiver 137 

operating characteristic (ROC) curve with bootstrapped 95% confidence interval in DACHS (N=378 pa-138 

tients), TPR = true positive rate (sensitivity), FPR = false positive rate (1 ʹ specificity). (e) Pearson correla-139 

tion of predicted MSIness to transcriptomic and immunohistochemical (IHC) data across test sets. Precise 140 

p-values are listed in Suppl. Table 5. Sample size per cohort are: STAD N=91, CRC-KR N=105, CRC-DX N=95, 141 

DACHS N=134 patients. No adjustments for multiple comparisons were made and all statistical tests were 142 

two-sided. 143 

 144 



Methods 145 

Ethics statement 146 

All experiments were conducted in accordance with the Declaration of Helsinki and the International Eth-147 

ical Guidelines for Biomedical Research Involving Human Subjects (CIOMS). Anonymized archival tissue 148 

samples were retrieved from the tissue bank of the National Center for Tumor diseases (NCT, Heidelberg, 149 

Germany; including samples from the DACHS trial17,18) and from the pathology archive at UMM (University 150 

Medical Center Mannheim, Heidelberg University, Mannheim, Germany) after approval by the institu-151 

tional ethics boards as described before13. Clinical data for all cohorts are listed in Supplementary Table 152 

1.  153 

Tumor detection, MSI detection and patient cohorts 154 

To train an automatic tumor detector for histological images of GI cancer, we used histological specimens 155 

of colorectal and stomach cancer surgical specimen from UMM and NCT tissue bank. This cohort was 156 

described before and encompassed N=94 whole slide images from N=81 patients13. Regions in these im-157 

ages were manually annotated and classified as tumor and two types of non-tumor tissue (dense and 158 

loose tissue, representing muscle/stroma and fat/mucus, respectively), yielding 11,977 unique image tiles 159 

of 256 µm edge length. All of these images are freely available for download at 160 

http://dx.doi.org/10.5281/zenodo.2530789. Image preprocessing was performed as previously de-161 

scribed13, including color normalization. For color normalization, we used the Macenko method which 162 

converts all images to a reference color space as described by Macenko et al.13,14,23   163 

We retrieved histology images of N=315 STAD patients (diagnostic slides, FFPE tissue), N=387 CRC-KR pa-164 

tients (kryosections, snap-frozen tissue), N=360 CRC-DX patients (diagnostic slides, FFPE tissue) and N=492 165 
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UCEC ƉĂƚŝĞŶƚƐ ;ĚŝĂŐŶŽƐƚŝĐ ƐůŝĚĞƐ͕ FFPE ƚŝƐƐƵĞͿ ĨƌŽŵ ͞TŚĞ CĂŶĐĞƌ GĞŶŽŵĞ AƚůĂƐ͟ ;TCGAͿ24. All slides con-166 

tained tumor tissue (after manual review in a blinded way) and had resolution available as part of the 167 

metadata (microns per pixel, MPP). 99 (STAD), 109 (CRC-KR), 100 (CRC-DX) and 110 (UCEC) randomly se-168 

lected patients were held out during training and were used as a test set. In all cases, training and test set 169 

were split on a patient level and no image tiles from test patients were present in any training set. A more 170 

extensive description of these datasets and all image files are freely available for download under an open 171 

source license at http://dx.doi.org/10.5281/zenodo.2530835 and http://dx.doi.org/10.5281/ze-172 

nodo.2532612. All TCGA images can be downloaded from public repositories at the National Institutes of 173 

Health (NIH, USA) at https://portal.gdc.cancer.gov/.  174 

For TCGA-CRC and TCGA-STAD, all patients who were previously defined as MSI-H (by Liu et al.25) were 175 

included in the MSI group. All patients with unknown MSI status but with a mutation count of >1000 (as 176 

defined by Bailey et al.26) were also included in the MSI group (this was the case for less than 10 patients 177 

in any cohort). Suppl. Table 2 lists the methods that were used to determine MSI in all cohorts. In the 178 

TCGA cohorts, patients with less than 10 image tiles per slide were not used for prediction. As an external 179 

ǀĂůŝĚĂƚŝŽŶ ĐŽŚŽƌƚ ĨŽƌ CRC͕ ǁĞ ƵƐĞĚ Nсϯϳϴ ƉĂƚŝĞŶƚƐ ĨƌŽŵ ƚŚĞ ƉŽƉƵůĂƚŝŽŶ ďĂƐĞĚ ͞DACH“͟ ƐƚƵĚǇ͕ Ă ĐĂƐĞ-180 

control study on CRC in the southwest of Germany with long-term followed-up patients enrolled in more 181 

than 20 clinics of the study region. Also, we analyzed data of N=185 patients from Kanagawa Cancer Cen-182 

ter, Yokohama, Japan (KCCH) as described previously19. More information about the cohorts is shown in 183 

Suppl. Tables 1-3. 184 

Neural network models, tumor detection and MSI detection 185 

For tumor detection in GI cancer, we trained a convolutional neural network (CNN) with deep residual 186 

ůĞĂƌŶŝŶŐ ;͞ƌĞƐŶĞƚϭϴ͟Ϳ27 model to classify tumor tissue vs. normal tissue by transfer learning. In TCGA-STAD, 187 

TCGA-CRC-KR, TCGA-CRC-DX and DACHS, the automatic GI tumor detector was used while in TCGA-UCEC 188 
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and KCCH, tumor regions were delineated by a pathologist. For MSI detection we trained another resnet18 189 

model for each tumor type. We chose resnet18 because our initial experiments showed that among five 190 

popular neural network models (Extended Data Fig. 1) which we compared on our tumor detection da-191 

taset, resnet18 had a short training time, excellent classification performance and fewer parameters than 192 

similarly performing models (alexnet, vgg19), reducing the risk of overfitting. 193 

The number of image tiles per class was equalized by undersampling. Training was stopped if the valida-194 

tion accuracy in a held out set of 12.5% of all training tiles did not increase for three successive validation 195 

checks (checked every 256 iterations). All CNNs were pre-trained on the ImageNet (www.image-net.org) 196 

database as described before13. Only the weights in the last 10 layers were trainable while all other 197 

weights were frozen. We used the Adam algorithm for training, counteracted overfitting by an L2-regu-198 

larization of 1e-4 and used a fixed learning rate of 1e-6 for TCGA-STAD, TCGA-CRC-DX and TCGA-CRC-KR 199 

and 1e-4 for TCGA-UCEC. DACHS and KCCH were only used for prediction and not for training. All codes 200 

were implemented in MATLAB R2018a and run on desktop workstations with Nvidia GPUs (Titan Xp, 201 

Quadro P6000, Titan RTX). Performance was scored as area under the curve (AUC) in a receiver operating 202 

characteristic (ROC) analysis as in previous studies8,9. AUC values are given as median with 95% confidence 203 

intervals as calculated by 500-ĨŽůĚ ďŽŽƚƐƚƌĂƉƉŝŶŐ ǁŝƚŚ ƚŚĞ ͞ďŝĂƐ ĐŽƌƌĞĐƚĞĚ ĂŶĚ ĂĐĐĞůĞƌĂƚĞĚ ƉĞƌĐĞŶƚŝůĞ 204 

ŵĞƚŚŽĚ͟ ƵŶůĞƐƐ ŽƚŚĞƌǁŝƐĞ ŶŽƚĞĚ28. Our source codes are freely available at https://github.com/jnka-205 

ther/MSIfromHE and can be applied to any tumor type.  206 

Statistics 207 

Classifier performance was assessed by area under the receiver operating curve (AUC under ROC) as cal-208 

ĐƵůĂƚĞĚ ǁŝƚŚ ͞ƉĞƌĨĐƵƌǀĞ͟ ŝŶ MATLAB RϮϬϭϴĂ͘ CŽƌƌĞůĂƚŝŽŶƐ ǁĞƌĞ ĐĂůĐƵůĂƚĞĚ ǁŝƚŚ R ǀĞƌƐŝŽŶ ϯ͘ϱ͘ϭ ͞ĐŽƌ͘ƚĞƐƚ͟ 209 

ƵƐŝŶŐ ƚŚĞ ͞PĞĂƌƐŽŶ͟ ŵĞƚŚŽĚ͘  210 

211 
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Extended data figure legends 212 
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