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A Compression Valve for Sanitary Control of Fluid

Driven Actuators
Simone Calò, Student Member, IEEE, James H. Chandler, Member, IEEE, Federico Campisano, Student

Member, IEEE, Keith L. Obstein and Pietro Valdastri, Senior Member, IEEE

Abstract—With significant research focused on integrating
robotics into medical devices, sanitary control of pressurizing
fluids in a precise, accurate and customizable way is highly
desirable. Current sanitary flow control methods include pinch
valves which clamp the pressure line locally to restrict fluid flow;
resulting in damage and variable flow characteristics over time.
This paper presents a sanitary compression valve based on an
eccentric clamping mechanism. The proposed valve distributes
clamping forces over a larger area, thereby reducing the plastic
deformation and associated influence on flow characteristic. Using
the proposed valve, significant reductions in plastic deformation
(up to 96%) and flow-rate error (up to 98%) were found,
when compared with a standard pinch valve. Additionally, an
optimization strategy presents a method for improving linearity
and resolution over the working range to suit specific control
applications. The valve efficacy has been evaluated through
controlled testing of a water jet propelled low-cost endoscopic
device. In this case, use of the optimized valve shows a reduction
in the average orientation error and its variation, resulting in
smoother movement of the endoscopic tip when compared to
alternative wet and dry valve solutions. The presented valve
offers a customizable solution for sanitary control of fluid driven
actuators.

Index Terms—Hydraulic/Pneumatic actuation, medical
robotics, soft robotics, waterjet actuation.

I. INTRODUCTION

THE concepts of precision and accuracy are central in

the field of robotics. The ability of a robot to generate

reproducible and exact motions depends on the performance

of its actuators; whether electromechanical, pneumatic or

hydraulic in nature. In these latter cases, precise introduction

of pressurized fluid is fundamental in facilitating reliable high

resolution actuator control for many applications. For exam-

ple, soft robotic systems based on the construct of pressure
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Figure 1. Assembled eccentric compression valve showing the sanitary valve
inlet and outlet, the soft tubing, the valve core and actuator.

driven hyper-elastic materials (e.g. silicone) generate a kinetic

response that depends directly on fluid control coupled with

the robot’s geometry and material properties [1]. Research into

soft robot based applications for augmenting the capabilities

of traditional robots [2] and for environmental exploration [3],

[4], [5] is common, however, one of the most prevalent areas

of interest for soft robotics is within medical applications

[6]. Devices have been developed for Minimally Invasive

Surgery (MIS) [7], endoscopy [8], heart assistance [9] and

rehabilitation [10].

For medical use cases, such as those exampled, consid-

eration of patient safety during interaction with the device

materials and drive system is crucial. Although regulation

of fluids through in-line valve systems (e.g. gate valves,

needle valves, etc) can offer technically effective solutions,

they require direct interaction with the working fluid. This

adds to contamination risks either from the valve directly

(i.e. corrosion), or cross-contamination of patients (i.e. back-

flow). Therefore, such in-line systems must be disposable or

be subject to reprocessing protocols that increase the cost and

downtime of the device [11].

Pressure or flow regulation devices that are physically
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separate from the transmission fluid offer a more appropriate

solution for medical applications. Examples include pinch

valves [12], [13] and peristaltic pumps [14] used for sanitary

applications such as dosage regulation and blood analysis or

infusion. Pinch valves work by applying a load normally

to pre-pressurized tubing through a “pinch-point” plunger;

thus reducing the cross-sectional area of the tube locally

and consequently the flow-rate. This flow regulation approach

generates a high level of stress on the soft tubing leading

damage and ultimately altering the flow characteristics of the

system over time [14]. Peristaltic pumps induce pressure in the

line through successive simultaneous squeezing and shearing

actions. In this case, the output flow generated by the pump

is highly pulsatile, which is undesirable if a fine control of

the pressure/flow needs to be achieved. This behaviour can

be attenuated by introducing an inline pulsation damper [15],

although this adds complexity and cost to the system. These

issues, when coupled with poor resolution in flow-rate control

and hysteresis, make them unsuitable for applications such as

medical actuators that require great precision. Therefore, there

is a need for sanitary pressure and flow regulation devices that

deliver safe and precise flow control.

This paper presents a novel sanitary eccentric compression

valve (ECV) that allows indirect precise flow regulation in

pre-pressurized systems. The ECV, presented in Figure 1, uses

an eccentric mechanism to compress the tubing over a wider

contact area against a tunable spiral shaped profile, thereby

minimizing local stresses and the associated tube damage. An

optimization step is presented that allows for the geometry

of the device to be easily adapted to suit the components

and constraints of a wide range of applications. The method

applies to the mechanical design of the valve rather than

on its electronic controller to produce improved resolution

and linearity with respect to commercially available sanitary

solutions.

The presented work evaluates our novel ECV performance

against standard pinch valves in terms of volumetric flow-rate

characteristics over repeated actuation cycles. For the purpose

of this manuscript, the valve efficacy was demonstrated by

using an optimized ECV to control the medical device known

as the HydroJet: a portable water jet actuated capsule endo-

scope [8], [16]. Comparison of the ECV relative to pinch

and solenoid valves under cyclic actuation of the HydroJet

is presented and highlights improved flow-rate tracking and

reduced flow-rate fluctuation.

II. PRINCIPLE OF OPERATION

The proposed valve adopts a combination of custom com-

ponents to deliver a gradually increasing distributed load

onto standard flexible tubing carrying a pressurized fluid. The

design is comprised of two main parts, as shown in Figure 2a:

(1) a passive compression component (valve housing) that

includes a spiral compression profile encoded into its wall; and

(2) an active compression component with eccentric geome-

try (eccentric drive shaft and compression bearing). Flexible

tubing sits between these two components and is compressed

between the bearing and the compression profile. Through

the use of a bearing, shear forces induced by the relative

motion between the rotating drive shaft and the flexible tube

are minimized ensuring compressive forces remain normal to

the tubing cross-section. Relative motion between the active

and passive components therefore, results in varied occlusion

of the flexible tubing and hence alters the volumetric flow-rate

of the fluid (Figure 2b). The level of compression depends on

the rotation angle of the rotary actuator shaft with respect

to the tube housing. In the general case, the compression

profile radius r may be expressed as a function of an angle θ,

evaluated across an angular range, θi to θe, as:

r = r(θ) {θ | θi ≤ θ ≤ θe} (1)

The choice of r(θ) and tube size are application dependent,

and may be interchanged while maintaining the same active

compression components. For the example case presented in

Figure 2, an Archimedean spiral of the form r = ri + kθ has

been used to generate a linearly varying compression profile

as a function of angular position, where ri and k represent

the initial compression radius and its angular rate of variation,

respectively.

The spiral parameters ri and k can be evaluated by consid-

ering the bearing eccentricity (c), the bearing radius (b), the

geometry of the flexible tubing (e.g. tube inner diameter (id)

and wall thickness (wt)), and the working angular range (θe
- θi); allowing for suitable tubing access into and out of the

housing.

With a desired profile selected, the components of the valve

may be assembled from a combination of off-the-shelf compo-

nents (e.g. ball bearings and drive motor), machined parts (e.g.

upper and lower casing, tube housing, drive shaft, etc), and

parts produced with additive manufacturing (e.g. tube feeder

and tube guide), as illustrated in Figure 3. This approach deliv-

ers a flexible design for accommodating different application

requirements, for example: tube sizing, machining resolution,

drive torque, actuation speed, and positional resolution.

In addition to being scalable to different applications, the

mechanical design of the valve intrinsically limits the max-

imum stress that can be applied on the flexible tube since

the gap between active and passive pinching components is

fixed, never falling below a pre-designed threshold. This will

increase the longevity of the tubing and reduce the influence

of damage on the output flow characteristics. As an example, a

minimum closing threshold equal to twice the wall thickness

(wt), and a maximum exactly equal to the thickness of the

uncompressed tubing with outer diameter (id + 2wt) may

be used as design inputs to minimize excessive stress on

the tubing while maintaining high compression resolution

(Figure 2b).

Implementation of a continuously variable compression

profile allows for valve customization to match the flow

characteristic of a specific pressure-tubing configuration or

application. The level of customization is thereby only limited

by the manufacturing process used to produce the valve.

Through experimental assessment of the relationship between

flow-rate (or output pressure or force) and tube occlusion, the
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Figure 2. Example compression profile: showing (a) a design with a linearly varying compression profile (exaggerated for clarity), and (b) a schematic
representation of tube compression at three locations along the profile, with: i) no occlusion - maximum flow, (ii) moderate occlusion - intermediate flow, and
(iii) completely occluded - no flow.

Figure 3. Sanitary ECV design, showing: (a) exploded view of the valve
housing assembly; (b) the active and passive components acting to compress
the tubing; and (c) the rotary actuator and its coupling to the housing assembly.

profile may be optimized to deliver any desired response with

shaft angle across the desired working range. An example

optimization scheme, for generating a linearly varying flow-

rate output, has been presented in Section III-A.

III. VALVE DESIGN, OPTIMIZATION AND

MANUFACTURING

An initial valve design was implemented using an

Archimedean (linearly varying radius) spiral as described

previously. Further practical considerations made to determine

the shape of the compression profile were:

• A suitable opening ∆θ (Figure 2a) in the housing should

be included that is wide enough to accommodate the

tubing and avoid undesired tubing compression when the

valve is completely open.

• When the valve is in the completely closed position, the

tube should be totally occluded.

• When the valve is in the completely open position, no

occlusion should be present on the tube.

To evaluate the radius of the profile under the completely

closed position (i.e. r(θi) = ri), the bearing radius b, the

distance between the shaft and the bearing’s centers (bearing

eccentricity) c, and the tube wall thickness wt were considered

in accordance with:

ri = b+ c+ (2 · wt) (2)

That is, the completely closed state is assumed to occur

when the space between the bearing and housing is equal to

twice the tube wall thickness. Similarly, the maximum radius

re was calculated to occur at the maximum angle (i.e. r(θe) =
re), and to generate a spacing exactly equal to the thickness

of the uncompressed tubing as:

re = ri + id (3)

Considering that, in the implemented design, the profile

starts at θ = θi and stops at θ = θe, and that it varies

linearly with the angle θ, it can be described parametrically

in Cartesian coordinates using:

r(θ) =

(

re − ri

θe − θi
· θ −

θe · ri − θi · re
θe − θi

)

(4a)

x(θ) = r(θ) · sin(θ) (4b)
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y(θ) = r(θ) · cos(θ) (4c)

A. Output Optimization

For the purpose of optimizing the compression profile to

match the needs of a particular application in terms of flow-

rate resolution and linearity, (1) was adjusted to account for

the non-linear response of tube compression vs flow-rate.

Optimization was performed using flow-rate vs position

data collected using the linearly varying profile ECV. A

representative function g(r, σ) was selected and fit to these

data using a curve fitting algorithm to evaluate the set of func-

tion parameters σ. Subsequently, a minimization process was

performed to evaluate the compression profile shape required

to linearize the output flow-rate vs position characteristic. A

desired optimized compression profile curve function r̂(θ, λ),
where λ is an unknown set of function parameters, will cause

a transformation of the output profile g(r, σ) to a straight line

g(r̂, σ) passing through the origin and the point where the

output is maximum. Formulating this problem as in (5a) allows

the coefficients λ of the optimized compression curve function

r̂(θ, λ) to be iteratively updated to minimize the difference

between g(r, σ) and g(r̂, σ):

min
λ

n
∑

j=1

wj · (g(r(θj), σ)− g(r̂(θj , λ), σ))
2 (5a)

x(θ) = r̂(θ, λ) · sin(θ) (5b)

y(θ) = r̂(θ, λ) · cos(θ) (5c)

where w represents the weightings used to constrain the

evaluation of r̂(θ, λ) to obtain a g(r̂(θ, λ)) that starts at 0

and ends at the maximum output. The optimization process

eventually produces the set of parameters λ and then (5b) and

(5c) as a result.

The curve fitting on experimental data was performed using

a function of the form:

g(r(θ), σ) =
a1

π
·
(

arctan(b1 · r + c1) +
π

2

)

+ d1 (6a)

σ = (a1 b1 c1 d1) (6b)

Finally, an r̂(θ, λ) with unknown parameters λ, in the form:

r̂(θ, λ) = −
a2

b2
−

(

1

b2
· tan

(

(c2 − θ) ·
π

d2
+

π

2

))

(7a)

λ = (a2 b2 c2 d2) (7b)

was used to evaluate the compression profile shape. The

linearly varying compression profile r(θ), and the resulting

optimized compression profile r̂(θ, λ) are shown in Figure 4a.

Expected flow-rate characteristics for the two compression

profiles are shown in Figure 4b. It is worth mentioning that

in an ideal case the optimization result (expected flow-rate

output) and the desired output would coincide. Instead, in the

real case, the minimization problem stops when a minimum of

the error function (5a) is detected thus introducing a disparity

between the two curves.

Figure 4. (a) Compression radius vs angle relationship for linearly varying
and optimized compression profiles. (b) Volumetric flow-rate characteristic
measured using a linearly varying compression profile, curve fitting, desired
and expected optimization output.

B. Device Manufacturing

Two valve designs were fabricated to deliver a linearly vary-

ing compression profile (r(θ)), and the optimized compression

profile (r̂(θ, λ)), respectively. The design parameters used to

fabricate the two ECV for use with 1/8” inch diameter tubing

are summarized in Table I.

Table I
DESIGN PARAMETERS IMPLEMENTED FOR A LINEARLY VARYING PROFILE

ECV DESIGN FOR 1/8” INCH OD TUBING.

Parameter Value

ri 24.6 mm

re 26.4 mm

c 3.2 mm

b 20.0 mm

wt 0.79375 mm

id 1.5875 mm

∆θ 60.0◦

θi 0◦

θe 300◦

As the width of the gap between active and passive com-

pression components is responsible for fine tuning the flow-

rate, a number of additional parts were integrated to ensure

accurate and precise alignment (Figure 3). Firstly, the upper

and lower casings are equipped with ball bearings to align the

tube housing with the eccentric drive shaft. To further promote

concentric placement, both ends of the shaft are secured to the

bearings using two conical aligning nuts. Secondly, to make

sure the flexible tube is always in an optimal position in the

housing and to reduce its vertical displacement, a tube feeder

and a guide are also included.
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Figure 5. Experimental setup for evaluation of valve performance over repeated actuation; components include: (F) flowmeter, (V) valve under test (pinch or
compression), (D) valve driver, (M) manometer, Personal Computer (PC); pneumatic and hydraulic lines highlighted. For the application testing (Section V),
the setup also includes the HydroJet tethered capsule and a magnetic tracker.

Precision critical components such as tube housings (with

compression profiles), upper and lower casing, eccentric drive

shaft and the aligning nuts were fabricated in Aluminium using

a CNC milling machine (DMU 40 eVo 5-axis CNC Milling

Machine, DMG MORI). Minor custom components such as

the tube feeder and the guide were produced using additive

manufacturing (Form 2, Clear V4, FormLab). A stepper mo-

tor (535-0401 RS Pro, RS Components, UK) with 0.9◦/step

resolution was selected and coupled to a drive shaft and to a

compression bearing (764-3714 NSK, RS Components, UK)

using a rigid shaft coupling (MCLX-5-5-A, RS Components,

UK and 6203ZZC3, NSK, Japan).

Tube compression profiles were designed and machined

using the linear compression profile and the optimized profile,

determined from the process described in Section III-A.

Profiles were subsequently used interchangeably for testing

with all other valve components being retained.

IV. ECV EVALUATION

Evaluation of the ECV was conducted to assess: the extent

and influence of plastic deformation on the tubing during

cyclic operation (Subsection IV-A), and the flow characteris-

tics as compared to different valve designs (Subsection IV-B).

To perform evaluation, in both cases, a testing platform

was developed to allow controlled and repeated operation of

the different valves; as detailed in Figure 5. A water tank,

pressurized to 30 PSI (above the atmospheric pressure) using

a regulated air supply and a digital manometer (PDMM01,

PYLE), was connected to an in-line flowmeter (ATRATO

Ultrasonic Flowmeter Model 760, Titan Flowmeters, UK).

The outlet of the flowmeter was connected to the inlet of the

valve under test via flexible tubing (1/16” I.D. - 1/8” O.D.).

Tubing from the valve outlet was subsequently mounted into a

water collection tank. The flowmeter data were captured and

the valve commands sent using a microcontroller (PSoC 5,

Cypress Semiconductor, USA) embedded in a ROS (Robotic

Operative System) network. The valves tested were: (1) an

ECV with linearly varying profile, (2) an ECV with opti-

mized profile, (3) a standard 1/8” O.D. pinch valve (MPPV-

2, Resolution Air, USA), and (4) an in-line solenoid valve

(Posiflow Proportional Solenoid Valve, SD8202G052V, ASCO

Numatics, USA). ECV and pinch valves were interfaced using

a standard stepper motor driver (Big Easy Driver, Sparkfun,

USA), while the solenoid valve utilized its own electronic

control unit (8908A001, ASCO Numatics, USA). Test-specific

details for investigating the influence of plastic deformation

during cyclic operation and for comparing valve designs are

detailed in the following subsections.

A. Tubing Deformation

In the case of dry valve designs, the soft tubing used to

transport fluid must be deformed to vary or occlude flow.

Repeated deformation of the tubing may result in plastic

deformation that has the potential to reduce the tubing integrity

and alter the flow characteristics during valve operation. To

assess the relative level and influence of induced plastic

deformation in the tubing during dry valve (pinch valve and

ECV) operation, cyclic actuation testing was conducted. As the

hardness of the tubing is an important factor [14], 7 different

tubing durometers in the range 40 - 70 Shore A (1/16” I.D. -

1/8” O.D.) were tested over 3000 cycles (1 cycle = completely

closed to completely open to completely closed) using each

valve. This range of tubing durometer was selected considering

a range beyond that of the recommended values for the pinch

valve (50 - 60 Shore A).

For each tube durometer-valve combination, data were

collected every 50 cycles over a total of 3000 cycles. Each

measurement period consisted of a single “slow” cycle (ac-

tuation rate of 5 steps-per-second) with data capture, and a

subsequent 49 “fast” cycles (actuation rate of 200 steps-per-

second) without any data capture. This approach was adopted

as a compromise between the need to acquire data from a

slow response sensor (flowmeter) and the limited amount of

water available in the tank. For pinch valve tests, repeatable

position-flow data capture was ensured between measurement

periods through implementation of an intermittent calibration.

Specifically, prior to each data capture cycle, the valve gate

was moved to an internally sensed position and zeroed to
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Figure 6. Visual influence of repeated valve actuation on 70 Shore A tubing;
showing microscope images of actuation locations before and after 3000 cycle
tests. Red arrows highlight the identified points of maximum stress.

avoid potential error produced by missed steps. Similarly, to

ensure position-flow repeatability for the ECV, a 600 pulse-

per-revolution absolute encoder (04A23902, British Encoder

Company, UK) was coupled to the shaft and used to monitor

the absolute shaft position and to identify possible missed

steps.

After each test, the tube was removed and the visible level

of plastic deformation assessed using a microscope (DMS300,

Leica, Germany). Objective measures of tube damage (%

reduction in diameter) were determined through comparison

of the undeformed tubing thickness to the region of minimum

tube thickness; measured at tubing regions that were outside

and inside of the valve mechanism respectively. Thickness

values were determined through calibrated software measure-

ment, using a known length reference and image analysis

software (LAZ EZ, Leica, Germany).

To evaluate the variation in position-flow characteristics

for each durometer-valve combination, comparison was made

between the first cycle response and subsequent cycles. To

quantify relative error, the difference between the flow-rate at

the position of 50% maximum flow on the first cycle and the

flow-rate at the same position on the n-th cycle was deter-

mined. These data were calculated for each measured cycle

and normalized to their respective cycle 1 maximum flow.

At a pressure difference of 30 PSI, the maximum registered

flow-rate was 0.324 l/min, corresponding to the valves in a

completely open state.

1) Visual Assessment: Following the cyclic operation of

the dry valves, each tube durometer-valve combination was

analyzed to determine the level of plastic deformation present.

An example comparison of the level of visible damage on

the 70 Shore A hardness tubing before use and after 3000

actuation cycles using the pinch valve and ECV is shown in

Figure 6. Objective measures of tube damage (% reduction

in diameter) for all durometers are presented in Table II. It

is evident from Figure 6 that the pinch valve induces greater

visible plastic deformation on tubing when compared to the

ECV. This finding is consistent across durometers, with the

average (mean ± SD) percentage reduction in tube diameter

across all durometers being 21.6 ± 13.8% and 2.7 ± 2.3% for

the pinch valve and ECV, respectively, which is statistically

significant (p<0.05) under a Student’s t-test.

Table II
TUBE DAMAGE INDUCED BY REPEAT VALVE ACTUATION ON DIFFERENT

TUBE DUROMETERS; SHOWING RESIDUAL % REDUCTION IN DIAMETER

MEASURED AFTER 3000 CYCLES.

Durometer

40 A 50 A 55 A 60 A 65 A 70 A

Pinch valve - 3.0 14.1 21.5 31.7 37.7

ECV - 1.7 1.0 0.9 3.6 6.4

‘-’ represents no visually identifiable change in tubing diameter.

Figure 7. Influence of repeat valve actuation on the hysteretic behaviour of
the sanitary valves. Graphs a) and c) show the hysteresis loop during the first
actuation cycle. Graphs b) and d) refer to the last (3000th) cycle.

2) Flow Characteristic Variation: Example opening and

closing flow-rate responses for the pinch valve and ECV at

the first and last test cycle are shown in Figure 7. With

fresh tubing (Figure 7a and 7c), the valve position vs flow-

rate characteristic includes a hysteretic behaviour for both the

pinch valve and the ECV. After 3000 loading cycles, the level

of hysteresis for the pinch valve is reduced while the ECV

response remains broadly unchanged, as shown in Figure 7b

and 7d respectively.

Figure 8 presents the relative error in the 50% of maximum

flow-rate position as a function of loading cycle for each

durometer-valve combination for opening and closing. The

graph highlights that, when using the pinch valve (Figure 8a

to 8c), the relative error drifts significantly as the number

of cycles increases; prevalent across all tubing durometers

for opening and closing procedures. When coupled with low
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Table III
PERCENTAGE SHIFT IN 50% MAXIMUM FLOW-RATE POSITION BETWEEN

CYCLE 1 AND CYCLE 3000.

Durometer

40 A 50 A 55 A 60 A 65 A 70 A

Pinch valve 23.5 33.5 43.6 33.7 27.6 11.7

ECV 11.7 11.4 5.2 1.9 0.5 2.3

durometer tubing (40A-55A), the pinch valve shows less

variability (Figure 8b), however, the median error remains

high; particularly for the opening procedure. Conversely, for

the ECV the reduced variability is coupled with low overall

median error for opening and closing procedures (Figure 8e).

Table III summarizes the relative error through comparison of

the 3000th cycle for each valve-durometer combination. The

average (mean ± SD) percentage shift across all durometers

was 28.9 ± 10.8% and 5.5 ± 4.9% for the pinch valve and

ECV respectively, which was statistically significant (p <

0.05) under a Student’s t-test.

B. Valves Comparison

In addition to evaluating the level and influence of plastic

deformation in dry valve tubing, the ECV with a linearly vary-

ing compression profile was also compared with its optimized

equivalent and a wet valve alternative (in-line solenoid valve).

Each valve was tested using the same experimental setup as

for cyclic loading tests (Figure 5) over 10 repeats at a cycle

actuation rate of 5 steps-per-second while position and flow-

rate data were recorded.

The volumetric flow-rate characteristics as a function of

valve position for the linearly varying and optimized ECV

designs are shown in Figure 9. For comparison, the desired and

expected position vs flow-rate linear response of the optimized

ECV are also presented.

The linearly varying ECV demonstrates a non-linear re-

lationship between flow and position which leads to poor

flow-rate resolution of the valve within the working range.

This results in 90% of the maximum flow-rate being reached

within the first 16.2 degrees (equivalent to 18 steps), while

the remaining 263.7 degrees (293 steps) are used to control

only the final 10% of the flow-rate range. The optimized ECV

profile instead shows a response with more even flow-rate

changes across the entire position range. Measured data from

the optimized profile ECV, however, differs from the expected

output and maintains a significant level of hysteresis.

Figure 10 makes direct comparison of the valve position vs

flow-rate response for the four valves: pinch valve, solenoid

valve, linearly varying and optimized ECV. The poor resolu-

tion of pinch and solenoid valve is evident, with the flow-

rate saturating after 50% of the respective valve ranges. The

dynamic influence of the step resolution is also clear; as

large flow-rate jumps are recognizable throughout the working

range. Conversely, the optimized profile ECV maintains a

smooth increasing flow-rate across the full range of valve

positions, however, demonstrates a similar level of variability

to the pinch valve across 10 repeats.

V. CASE STUDY - THE HYDROJET

With improved linearity and resolution (Figure 10), and

reduced variation in valve position vs flow-rate characteris-

tics under repeated actuation (Figure 8), it is important to

understand the impact of using an optimized ECV on the

controllability of an application-specific actuator. To this end,

this section demonstrates the optimized ECV applied to a

flow-rate controlled soft manipulator. Example designs were

fabricated to suit the HydroJet endoscopic capsule device.

A. The HydroJet Platform

The HydroJet system [16], [17], [8], shown in Figure 11,

consists primarily of a disposable capsule attached to the

end of a soft multi-lumen catheter, which is used to carry

pressurized water from the control system to the capsule.

The flow-rate of the three pressure lines has previously been

controlled independently through electronic actuation of a line-

specific pinch valves (MPPV-2, Resolution Air, USA), [8]. As

illustrated in Figure 11, three nozzles, placed on the capsule’s

body at an even 120◦ spacing, facilitate ejection of pressurized

water; thereby inducing movement in the capsule as a result

of the generated jet thrust T

T = ρ · V̇ 2 ·

(

1

Aout

−
1

Ain

)

(8)

where ρ is the density of water, V̇ is the volumetric flow-

rate, Ain and Aout are geometric parameters of the nozzles,

inlet and outlet sections respectively.

Due to the soft and flexible nature of the device, even

modest fluctuations in flow-rate can lead to significant po-

sition and orientation variation. This therefore, precludes the

implementation of autonomous or semi-autonomous control

strategies, and increases the demand on the operator. The

optimized ECV design was therefore evaluated within the

context of the HydroJet application, under direct comparison to

pinch and solenoid valves. However, the design methodology

and assessment techniques presented may be extended to any

device requiring the sanitary control of fluid flow.

Alongside repeatability, flow-rate resolution is also crucial

in the actuation of the HydroJet system. The possibility to

fine tune the flow-rate, and consequently the jet thrusts, allows

for smooth trajectories between desired positions and delivers

stable anatomy visualization during a gastroscopy procedure.

To test the influence of the three valves on the performance

of the HydroJet, a single jet bending test was performed by

controlling its flow-rate (see the video in the multimedia ex-

tension). Sinusoidal command profiles at different frequencies

were selected to simulate open-loop valve control. For each

valve, a sinusoidal command with a fixed frequency of either

0.05 Hz, 0.1 Hz or 0.2 Hz was supplied to its controller

while the flow-rate and tip pose were measured using an

ultrasonic flowmeter (see Section IV) and magnetic tracker

(Aurora Electromagnetic Tracking System, NDI), respectively.

Each valve-frequency combination was tested over 10 cycles.
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Figure 9. Flow-rate characteristics of the ECV generated by a linearly varying
compression profile (blue) and using the optimized profile (orange). The
desired response used for optimization (green) and the expected output based
on the optimized profile attained (red) are also shown.

Figure 12a shows the tip angle response over two cycles at

each frequency for the three valves.

The desired bending angle was evaluated starting from the

sinusoidal command fed to the valve and the assumption of

quadratic relation between volumetric flow-rate and bending

angle. Then, the valve command was re-scaled in the range

Figure 10. Volumetric flow-rate characteristics generated by the solenoid
valve (blue), pinch valve (green) and ECV (red), linearly varying ECV (yel-
low), evaluated as the median (dark curves), maximum and minimum values
(shaded area) over 10 repetitions for both opening and closing procedures.

between 0◦ and the maximum bending angle achieved for the

valve under test (approximately 70◦) when the flow-rate is

maximum.

The ECV output shows smoother tip movements across all

frequencies when compared to the solenoid and pinch valve.

Overall, the ECV allows the tip to follow the desired pattern
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Figure 11. The HydroJet System consisting of a disposable capsule (nozzles
unit and cover) that contains an electromagnetic sensor. The low-stiffness of
the tether allows the capsule to move as a result of the thrust (T) generated
by the water jets.

with higher accuracy for all the applied commands (median

errors 5.3%, 3.1% and 4.8% for the three proposed signal

frequencies), as shown in Figure 12b. Comparative median

errors are significantly higher for the pinch valve (32.5%,

29.7% and 33.6%) and solenoid valve (16.2%, 15.6% and

17.5%) respectively.

The magnitude of the flow-rate variation, and consequently

the change in bending angle, resulting from opening or closing

the valve one step at a time, is presented in Figure 13a.

For solenoid and pinch valve, approximately 75% of the

fluctuations stay below 5% of flow-rate variation; however

more extreme values are present and reach maxima of 19.2%

and 14.2%, respectively. Conversely, the ECV shows flow-

rate variations generally smaller than 1%, with extreme values

remaining under 4%. The effect of these flow-rate variations

on the jet thrust produced and therefore on the capsule bending

angles (α) is shown in Figure 13b. In the supplementary

video, the amplitude of the oscillatory movement of the

HydroJet capsule is presented for each valve; using a contour

plot to locate the oscillations along the capsule trajectory.

Congruently with the previous results, the smoother flow-rate

profile produced by the ECV translate into higher actuation

accuracy and an absence of oscillations.

VI. DISCUSSION

The reduced plastic deformation (Figure 6) and change in

position vs flow-rate characteristics after repeated operation

(Figure 7) realized by the ECV represent improved open-loop

performance relative to the pinch valve. Although significant

hysteresis is present in the flow characteristic, this is largely

invariant with cyclic operation and may therefore be accounted

for with an appropriate valve model. In contrast, the pinch

valve shows a reducing but varying level of hysteresis, which

amplifies complexity in generating a suitable valve model.

The reduced levels of plastic deformation were realized

through increased contact area between the tubing and valve

housing and the moving compression point, intrinsic to the

ECV design. Although improvements may be possible with

modification to the pinch valve contact area, it is not feasible

to introduce a moving contact point within its existing design.

Tubing durometer has also been shown to influence flow

characteristics during cyclic operation (Figure 8). Using the

pinch valve shows larger drift across the cycle range tested

when compared to the ECV, as summarized in Table III. These

characteristics make selection of a suitable tube durometer

for the valves challenging, particularly for the pinch valve.

However, with consideration of both precision and accuracy,

the results indicate that a tube durometer of 55A is most

suitable for use with the ECV while 50A is least suitable.

With reduced flow-rate drift, it becomes feasible to use the

valve for applications requiring a varying test duration. In the

presented study, a duration of 3000 cycles was selected in

relation to the case study described in Section V. This was

chosen considering two factors: the maximum speed at which

the ECV can be operated and an estimation of the time of

completion for a gastroscopy procedure. Given that the current

maximum speed without motor stall is 1000 steps/s (from

completely closed to completely open in 0.333s) and a worst-

case scenario gastroscopy procedural time of 30 minutes [18],

the ECV will be able to perform a maximum of ≈ 2700,

approximated to 3000, cycles during each procedure.

Through optimization of the ECV design (Subsection IV-B),

a more linear flow-rate response with improved resolution

was produced, as shown in Figure 10. Although effective,

the optimized ECV still shows error with respect to the

desired profile. Factors that are likely to contribute to this

are: accuracy and precision of the manufacturing process used

to generate the profile, profile-tubing alignment, imperfect

fitting of measured data used for the optimization process

and changes in the flow-rate regime which have not been

considered in this work. For applications requiring even higher

levels of flow control precision, these factors may be improved

incrementally.

For the presented case study in Section V, implementing

the optimized ECV shows reduced variation in flow-rate

and bending angle error (Figure 13). This results from the

improved linearity and resolution of the ECV with respect

to the solenoid and pinch vales; which show abrupt changes

in flow-rate during opening and closing (Figure 10). In the

supplementary video, these differences may be seen in terms

of oscillatory movement of the HydroJet tip. Although this

is one specific test case, achieving improved performance in

open-loop sanitary flow control may be beneficial to a wide

range of future applications, particularly in the field of soft

medical robotics.

VII. CONCLUSIONS

A novel design methodology for a sanitary fluid flow

control system has been presented and implemented. The ECV
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opening/closing the each valve one step at a time. Outliers policy: 3 · IQR.

offers a generic platform for application in pneumatic and

hydraulic systems where sanitary flow regulation is required

(e.g. medical applications). The valve is easy to fabricate

thanks to the simple principle of operation which relies on

off-the-shelf, machined and 3D printable components, even

if the machined parts demand the manufacturing process to

be sufficiently accurate. By exploiting a large and adaptable

compression profile, increased resolution and linearity may

be manufactured into the device; accounting for application

specific requirements. To this end, we have presented a device-

specific optimization strategy that shows improved linearity

when compared to a standard linearly-varying profile, and to

commercially available alternative valves. Through increasing

the tubing contact area under compression, a significant re-

duction in plastic deformation (up to about 96% reduction for

tube durometer 60A) and its associated influence on flow-rate

(up to 98% for tube durometer 65A) vs valve position was

shown across a range of tubing durometers. To demonstrate

the significance of these improvements on a real system, an

optimized profile ECV was compared with pinch and solenoid

valves for controlling the orientation of a water propelled

tethered capsule (the HydroJet). A significant overall reduction

in error with respect to the commanded behaviour has been

shown, with mitigation of oscillatory movements. Ultimately,

this allows for suitable open loop control of the orientation

of the tip, where the linearity of the ECV allows for close

following of the desired signal across frequencies.

The ECV has demonstrated the potential for a new sanitary

valve actuation method that could aid in delivering more pre-

cise open-loop flow control systems and facilitate development

of the next generation of medical soft robots.
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Simone Calò (S’17) received a B.S. and a M.S. de-
gree in Biomedical Engineering from Politecnico di
Milano, Milan, Italy, in 2013 and 2016, respectively.
In 2016 he began his Ph.D. studies in School of Elec-
tronic and Electrical Engineering at the University of
Leeds, Leeds, UK. He is a Member of the Science
and Technology of Robotics in Medicine (STORM)
Laboratory UK where he is primarily involved in
the development of low-cost technologies for gastric
cancer screening.

James H. Chandler received the M.Eng degree
in Mechanical engineering and Ph.D. degree in
Surgical Technologies from University of Leeds,
Leeds, UK, in 2011 and 2016 respectively. He
is currently a Research Fellow in the Institute of
Robotics, Autonomous Systems and Sensing, School
of Electronic and Electrical Engineering, University
of Leeds, Leeds, UK working on low-cost endo-
scopic technology for gastric cancer screening. His
research interests include soft robotic systems for
surgery, tissue mechanics and sensing technology for

identifying tissue disease.

Federico Campisano (S’14) received a B.S. in
electronic engineering and a M.S. degree in Biomed-
ical Engineering from Politecnico di Milano, Mi-
lan, Italy, in 2011 and 2014, respectively. Since
then, he has been working toward the Ph.D. degree
in mechanical engineering at Vanderbilt University,
Nashville, TN, USA. He is a Member of the Science
and Technology of Robotics in Medicine Laboratory
USA, and his research interests include medical
robotics, compliant continuum devices and new tech-
nologies for tissue palpation.

Keith L. Obstein earned his B.S. from Johns Hop-
kins University Whiting School of Engineering (Bal-
timore, MD), M.D. from Northwestern University
(Chicago, IL), and M.P.H. from Harvard University
School of Public Health (Boston, MA). He com-
pleted Internal Medicine residency at the Hospital
of the University of Pennsylvania (Philadelphia, PA)
and Gastroenterology (GI) fellowship at the Brigham
and Women’s Hospital (Boston, MA). Currently,
he is an Associate Professor of Medicine and of
Mechanical Engineering at Vanderbilt University

(Nashville, TN). He is also the Program Director of the Vanderbilt GI
Fellowship training program and Director of the Science and Technology
Of Robotics in Medicine (STORM) Lab USA at Vanderbilt. He is an active
clinician and conducts research in the areas of New Technologies, Robotics,
Device Development, Endoscopic Training, and Healthcare Quality Improve-
ment. Dr. Obstein is a Fellow of the American Society for Gastrointestinal
Endoscopy (FASGE), the American College of Gastroenterology (FACG), and
the American Gastroenterological Association (AGAF). He is board certified
in gastroenterology and serves on the ASGE Recognized Industry Associate
(ARIA) task force, the ASGE member engagement and diversity committee,
the ACG public relations committee, and is the Continuing Medical Education
(CME) special section editor of the journal Gastroenterology.

Pietro Valdastri (M’05, SM’13) received a Master’s
(Hons., Univ. Pisa, 2002) and Ph.D. (Biomed. Eng,
SSSA, 2006). He is Professor and Chair in Robotics
and Autonomous Systems at University of Leeds
and recipient of the Wolfson Research Merit Award
from the Royal Society. His research interests are
in robotic surgery, robotic endoscopy, design of
magnetic mechanisms and medical capsule robots.


