
This is a repository copy of Towards image-based animal tracking in natural environments 
using a freely moving camera.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/154514/

Version: Accepted Version

Article:

Haalck, L., Mangan, M. orcid.org/0000-0002-0293-8874, Webb, B. et al. (1 more author) 
(2020) Towards image-based animal tracking in natural environments using a freely 
moving camera. Journal of Neuroscience Methods, 330. 108455. ISSN 0165-0270 

https://doi.org/10.1016/j.jneumeth.2019.108455

Article available under the terms of the CC-BY-NC-ND licence 
(https://creativecommons.org/licenses/by-nc-nd/4.0/).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Towards Image-based Animal Tracking in Natural

Environments Using a Freely Moving Camera

Lars Haalcka, Michael Manganb, Barbara Webbc, Benjamin Rissea,∗

aFaculty of Mathematics and Computer Science, University of Münster, Münster, Germany
bDepartment of Computer Science, University of Sheffield, Sheffield, United Kingdom

cSchool of Informatics, University of Edinburgh, Edinburgh, United Kingdom

Abstract

Background:

Image-based tracking of individual animals can provide rich data to underpin

breakthroughs in biological and medical research, but few if any existing meth-

ods extend to tracking unconstrained natural behaviour in the field.

New method:

We have developed a visual tracking system for animals filmed with a freely

moving hand-held or drone-operated camera in their natural environment. This

exploits a global inference method for detecting motion of an animal against

a cluttered background. Trajectories are then generated by a novel video key-

frame selection scheme in combination with a geometrically constrained image

stitching algorithm, resulting in a two-dimensional panorama image of the en-

vironment on which the dense animal path is displayed.

Results:

By introducing a minimal and plausible set of constraints regarding the camera

orientation and movement, we demonstrate that both per-frame animal posi-

tions and overall trajectories can be extracted with reasonable accuracy, for a

range of different animals, environments and imaging modalities.

Comparison:
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Our method requires only a single uncalibrated camera, does not require mark-

ing or training data to detect the animal, and makes no prior assumptions about

appearance of the target or background. In particular it can detect targets oc-

cupying fewer than 20 pixels in the image, and deal with poor contrast, highly

dynamic lighting and frequent occlusion.

Conclusion:

Our algorithm produces highly informative qualitative trajectories embedded in

a panorama of the environment. The results are still subject to rotational drift

and additional scaling routines would be needed to obtain absolute real-world

coordinates. It nevertheless provides a flexible and easy-to-use system to obtain

rich data on natural animal behaviour in the field.

Keywords: animal tracking; visual tracking; outdoor field experiments;

panorama stitching; projective geometry

1. Introduction

Recent advances in automatic image-based tracking of individually behaving

animals have enabled the collection of rich datasets underpinning breakthroughs

in biological and medical research [1]. Parallel improvements in imaging tech-

nology, computational power and computer vision algorithms have supported5

implementation of novel tracking systems for behavioural analysis of organisms

ranging from tiny insects (e.g. Drosophila melanogaster) to larger vertebrates

(e.g. mice; for a review see [2]). Yet, such systems have been largely developed

for controlled laboratory conditions and struggle to generalise to real-world sit-

uations [3] preventing tracking of animals in their natural environments [1]. The10

importance of in-field behavioural analysis arises in many contexts, including

the influence of fertilisers on navigation capabilities [4], the impact of factory

farming on animals regulating greenhouse gas emissions [5], and the threats of

light pollution on biodiversity in general [6]. Most behavioural quantifications

for these studies are still done manually; the need for novel automatic method-15

ologies is emphasised in multiple publications [1, 7, 8, 9].
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Challenges of in-field tracking include (but are not limited to): potentially

very small or varying animal sizes; changing animal appearances; clutter and

occlusions; limited number of recordings; varying illumination and shadows;

and an unknown, potentially unlimited, environment and spatial range through20

which the animal may move [1]. Addressing these challenges requires a robust

detection and tracking algorithm which relies on as few constraints as possible.

For example, a freely moving camera is required to capture animal paths in

arbitrarily sized environments. Existing machine learning methods for detection

may not be applicable due to a lack of training data (few recordings) or low25

resolution of the animal in the video image preventing effective discriminative

correlation [10]. Finally, long trajectories extracted from a moving camera will

inevitably suffer from drift and thus error accumulation [11].

An ideal image-based tracking system for biologists should be applicable to

a diversity of species, not require any animal tagging or marking, and function30

within a wide range of environments and experimental conditions. Furthermore,

it should be mostly automated, simple to use, and inexpensive [1]. For practi-

cality in field studies, it would be desirable if only a monocular freely moving

hand-held or drone-operated camera was required to record the movement of the

animal. Ideally, no additional sensor information (such as inertial measurements35

from an accelerometer, distance sensing from line of flight or stereo) should be

needed, and camera calibration should not be a requirement if it is desired to

enable processing of already existing videos and handle arbitrary zooms during

recordings.

In this work we introduce a general visual tracking approach for animals40

moving freely in their natural environments recorded with a freely moving cam-

era. The system has two parts: (1) a universal detection mechanism to localise

the position of the animal in each video frame and (2) a tracking mechanism to

extract camera motion-compensated animal trajectories over time. Building on

our robust and globally optimised detection framework [12] we are able to lo-45

calise even tiny and low contrast objects like insects in cluttered high-resolution

images. We extend this system using a novel video key-frame selection mech-
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anisms to extract a subset of frames to generate a 2D panoramic image of the

underlying scene. Subsequently, geometrically constrained dense animal trajec-

tories are projected into the panorama to visualise the entire track. For our50

real world experiments we chose small insects (ants, dung beetles and woodlice)

recorded with different hand-held devices, and also tested the method on a video

of mammals (wild dogs) recorded by a drone in Africa.

1.1. Related Work

To date behavioural quantifications of animals in natural environments have55

mainly been done using non-visual techniques like telemetry [7]. These methods

have limited applicability due to the need to tag the animals with sensors,

which is possible only for a fraction of species [8]; and tags may crucially affect

the behaviour [13]. Furthermore, telemetry has a limited temporal resolution

and hence does not easily reveal the animal’s actions, nor does it provide any60

information about the surrounding environment [1] which is often crucial for

interpreting behaviour.

In contrast, image-based tracking enables high temporal resolution and pro-

vides the visual context. Computer vision and machine learning have lately

achieved remarkable tracking accuracies in many contexts including medicine,65

surveillance and autonomous navigation. Particularly, deep learning algorithms

have improved the accuracy of visual object tracking, as reflected in the yearly

visual object tracking (VOT) evaluation of more than 50 different tracking sys-

tems [14]. Top performing algorithms rely on correlation filtering, using convolu-

tional neural networks (CNNs) as feature extractors, and examples of successful70

application to animal tracking include automatic detection of marine species in

aerial imagery [15] and identification of individual animals in crowded collectives

under laboratory conditions [16] (a more complete survey of animal tracking can

be found in [1]).

However, correlation filtering approaches require a minimum target resolu-75

tion and fail for instances of small animals occupying only a few pixels [17].

In addition, it has recently been shown that increased background heterogene-
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ity and amplified coupling between a few animals and the background drasti-

cally degrade the performance of state-of-the-art machine learning based track-

ers [18]. As a consequence, a key animal tracking scenario remains relatively80

unaddressed, namely, visual tracking of animals in their natural habitat [1].

2. Methods

We address the problem of tracking animals in their natural habitat by using

a novel tracking strategy that imposes only four constraints on the video capture:

(1) The animal has to move in more than 50% of the frames and the motion has85

to be roughly equally distributed over the video sequence; (2) the frame rate has

to be fast enough to ensure relatively small displacements between consecutive

frames (no more than a few body lengths); (3) the background has to have

enough distinctive texture to allow feature-based image warping; and (4) the

imaging plane of the camera should be kept parallel to the ground (i.e. bird’s90

eye view) and the distance to the ground should not vary strongly. Note that

a violation of the last constraint will not prevent our algorithm from tracking

but will result in scaling issues in the final trajectory (see below). Our method

imposes no constraints on the animal’s size or appearance, nor on the appearance

of the environment, and does not require any labelling or learning. The resulting95

system is robust against varying illumination, shadows, clutter and occlusions,

and can be directly applied to already existing videos, as no camera calibration

is required. Given a moving camera, the algorithm will automatically select

whichever animal has the dominant motion with respect to the entire video, so

that no manual initialisation is required. A single animal will thus be tracked100

consistently and motion cues from other animals or distracting items will be

reliably discarded.

As illustrated in Figure 1 (A) the algorithm assumes a birds-eye camera

(image plane is parallel to the ground) hovering above the animal of interest.

Assuming constant height (z), the camera can be moved in the x,y directions105

and rotated around its optical axis (i.e. z axis; cf. constraint 4). In our first
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processing step we extract the motion of the camera between consecutive frames

using ORB features [19] in combination with a robust estimator (i.e. RANSAC)

to calculate the full perspective transformation Ht
t+1 between frames at t + 1

and t (called f(t+1) and f(t); cf. constraint 3; Figure 1 (B)). These consecutive110

transformations and ORB features are subsequently used in the detection and

tracking routines as described below.

Figure 1: Overview of our imaging and tracking system. (A) Recordings are made using a

hand-held camera assuming translations along the x and y and rotation around the z direction.

(B) The algorithm estimates the camera motion between consecutive frames. (C) For the

animal detection the camera motion is removed and the remaining motion is used as an

indicator for potential animal positions (i.e. unaries). (D) Per-frame locations are extracted

from the unaries using global optimisation [12]. (E) In parallel a sparse set of key-frames

are extracted based on a heuristically constrained forward search. (F) These key-frames are

used to generate a panorama. (G) Finally, in-frame detections from the entire sequence are

projected into the panorama to generate a dense animal trajectory (given in yellow).

2.1. Detection

We can warp the camera position at f(t+1) on the position at f(t) by using

a perspective transformation Ht
t+1 resulting in a new virtual frame

f̃(t+ 1) = Ht
t+1 · f(t+ 1).

The virtual frame f̃ at time t+ 1 appears to be at the same location as its ref-

erence frame f(t) giving the impression that the camera is stationary between115

these images. Therefore, frame differencing between f(t) and f̃(t + 1) can be

used to extract the remaining motion which consists of the animal motion and
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noise u(t) = |f(t) − f̃(t + 1)| (cf. constraint 1). The difference image u(t)

(called a unary) is a 2D heat map where bright pixels indicate the remaining

motion (Figure 1 (C)). These cues are treated as observed variables which are120

combined with a smooth motion model (cf. constraint 2) to formulate an infer-

ence problem. Smooth motion is implemented by using small (i.e. low variance)

2D Gaussian distributions centred at the hypothetical animal position at time

t, called pairwise potentials. Both the unaries and the pairwise potentials are

combined in a ‘factor graph’ which is a graphical representation of the under-125

lying inference problem. Animal detections are then calculated by extracting

the maximum value over all unaries where consecutive unaries are smoothly

connected by the pairwise potentials. This is globally optimised by using the

max-sum algorithm (for details of the detection algorithm see [12]). As a result

we get detections pt ∈ {(x, y)|x, y ∈ N} (t = 1, ..., T ; T is the total number130

of frames) specifying the (x, y) position of the animal in each frame t in pixel

coordinates (Figure 1 (D)).

2.2. Tracking

Detections only specify 2D animal positions in the respective frame coordi-

nate system, so in order to extract movement trajectories, the detections have to135

be warped relative to a single reference frame by reusing the image transforma-

tions. However, the concatenated use of consecutive transformations over long

sequences will inevitably accumulate an error (i.e., drift) and result in tracks

with a decreasing accuracy over time [11]. Therefore, we use a three-stage pro-

cedure to extract panorama images featuring the animal track with manageable140

drift: (1) key-frame selection (Figure 1 (E)), (2) panorama generation (Figure 1

(F)) and (3) animal trajectory projection (Figure 1 (G)).

Key-frame selection. We first extract panorama images covering the ground

plane of the entire video sequence based on a strongly reduced subset of all

available frames, called key-frames f(τi) with τi ∈ Ikey ⊂ {1, 2, ..., T}. The key-145

frame selection is implemented as a forward search algorithm using two opposing
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heuristics: a requirement for sufficient frame-to-frame overlap; and a require-

ment for a small total number of key-frames. The former heuristic ensures a

good coverage of the underlying scene whereas the latter aims to reduce accumu-

lative drift and computing load. Given an already selected key-frame f(τi−1) we150

use a window of size 50 to search for an appropriate successor f(τi). Within this

window the overlap is quantified by the total number of shared ORB matches

assuming uniform feature point distributions. As demonstrated in Figure 2 (or-

ange plot) this quantity usually decreases with an increasing successor index

τi but not monotonically due to the overall quality of the extractable features155

of frame f(τi). However, the direct successor f(τi−1 + 1) will inevitably have

most matches so that the second heuristic has to ensure larger shifts between

f(τi−1) and f(τi) leading to smaller sets Ikey. The shift is calculated as the L2

norm of the median shift over all matched feature points (Figure 2 blue plot)

and constrained by a lower and upper bound tlower and tupper. Given a video160

resolution N × M , let m = min(N,M). We then calculate tlower = 1
4
m and

tupper = 3
4
m providing a minimal shift of at least 25% and a maximal shift of at

most 75% (dashed lines in Figure 2). If both heuristics are applied the chosen

key-frame f(τi) in boundaries [tlower, tupper] is the frame with highest amount of

geometrically verified matches and becomes the next reference frame (Figure 2165

green line). If no frames in the current window satisfy the shift constraint the

last frame of the current window is selected as the new key-frame.

Panorama generation. The resultant key-frames are used to generate a panorama

image covering the entire video. By using the matches determined during key-

frame selection we calculate the transformation T
τi+1

τi mapping key-frame f(τi)170

to key-frame f(τi+1). Unfortunately, standard panorama extraction algorithms

cannot directly be used for mainly two reasons: Firstly, most panorama genera-

tion algorithms assume a rotation around their optical centre of the camera [20].

In our imaging scenario, the camera scans across the environment (characterised

by translational motion parallel to the ground). Secondly, panoramas from175

videos inevitably suffer from accumulative drift since thousands of frames need
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Figure 2: Key-frame selection algorithm. Using a forward search of 50 consecutive frames we

quantify the Euclidean distance (L2 norm in blue) of the shifted median feature point move-

ment based on the perspective transformations from the camera motion estimation (distance

in pixel and constrained by a lower and upper boundary given as dashed lines called tlower

and tupper). In addition, we keep track of the number of shared features from the reference

frame to the 50 successors (number of shared matches given in orange). The next key-frame is

determined by estimating the best trade-off between distance travelled and number of matches

(green line).

to be warped [11]. The potential directions of drift correlate with the degree

of freedom (DoF) of the used transformation T
τi+1

τi , whereas the DoF directly

correlates with camera motion (cf. Figure 3). Assuming camera motion in all

directions (translation and rotation) affine and projective transformations are180

required (the latter also incorporates perspective geometric changes which re-

sult from the 2D projection of the 3D environment). Even if only the sparse set

of key-frames is used, affine transformations suffer severely from scale drift and

projective transformations often collapse due to perspective drift (Figure 3 (C)

and (D)). Furthermore, both transformations induce shearing of the flat sur-185

face geometry. However, assuming the camera plane is parallel to the ground,

such shearing can only be induced by rotations around the y and x axis. By

eliminating these rotations, the transformation T
τi+1

τi is reduced to a similarity

transformation. As visible in Figure 3 (B) neither shearing nor perspective arte-

facts perturb the resultant panorama. However, translations along the z axis190

(i.e. changing the distance between the image and ground plane) induce scale

drift.
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We therefore restrict our transformation model as described by constraint

(4) above, that is, we assume there are only translations along the x and y

axis, and only rotations around the z axis. Thus T
τi+1

τi can be implemented195

as an isometry (Figure 3 (A)). The panorama P is thus calculated by warping

consecutive pairs of key-frames from τi, τi+1 ∈ Ikey using the isometry T
τi+1

τi

followed by plain image stitching (we do not use advanced blending in order to

identify image borders for quality checks).

Figure 3: Trade-off between empirical stability and theoretical accuracy as additional degrees

of freedom are included in panorama generation (clutter scenario from Table 1; compare to

Figure 5 (A)). (A) Isometry assumes only translation along the x and y axis and rotation

around the z-axis (for a downward-facing camera). (B) Similarity also compensates for trans-

lation along the z-axis (note however the scale drift at the top side of the panorama). (C)

Affine and (D) perspective transformations allow all axis translations and rotations, but the

reconstructions tend to collapse for longer videos due to drift-induced instabilities. Thus for

practical purposes, Isometry (A) and Similarity (B) yield better results, although theoretically

less accurate.

Trajectory projection. The final step is to combine the detections pt speci-200

fying the (x, y) position of the animal in frame coordinates at time t, and

the panorama image P generated using isometries T
τi+1

τi for consecutive key-

frames at time τi and τi+1 and transformations Ht+1
t for all consecutive frames
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t ∈ {1, ..., T}. In order to project the animal trajectory into the panorama, all

in-frame positions pt need to be transformed relative to the first reference frame205

f(1). Given the key-frame transformations T
τi+1

τi , a sparse trajectory can be

calculated by

p̃τj =

(

j−1
∏

i=1

T τi+1

τi

)

· pτj (1)

where p̃τj is the warped animal position in the panorama P at key-frame τj

and
(
∏

T
τi+1

τi

)

accumulates all isometries multiplicatively. The resultant sparse

trajectory is given in Figure 4 (cyan track). However, in order to have a more210

regular and dense trajectory, all animal detections pi need to be projected onto

the panorama. This is done by using dense isometries T t+1
t for all consecutive

frames and again warping animal detections by multiplicative forward projec-

tions

p̃t =

(

t−1
∏

i=1

T i+1
i

)

· pt (2)

Note that due to the increase in multiplications the cumulative error caused by215

drift is also increased. The resultant animal positions {p1, p̃2, p̃3, ..., p̃T } are the

final dense and regular trajectory until the last frame T in coordinates of the

reference frame f(1) as shown by the yellow track in Figure 4.

Figure 4: Trajectory projection example (clutter scenario from Table 1; see also Figure 5 (A)).

The cyan line represents the sparse trajectory based on the key-frames only and the yellow

line represents the dense track from all frames.
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3. Results

We evaluated our tracking algorithm using 6 different videos featuring strongly220

varying imaging and environmental conditions. The overall characteristics of

these videos are given in Table 1. The column titled Time states the approxi-

mate total running time (in minutes) to process the respective video on a ma-

chine with a 14 core processor (Intel i9-7940X) and no GPU.

Video Frames Key-frames Resolution Animal size Time

clutter 2500 138 (5.52%) 1920× 1040 44 ≈ 34

occluded 750 45 (6%) 1920× 1040 36 ≈ 10

beetle 3357 117 (3.49%) 2704× 1440 56 ≈ 63

mobile 600 17 (2.83%) 1920× 1080 13 ≈ 8

nightvision 840 28 (3.33%) 1920× 1080 98 ≈ 13

drone 1677 63 (3.76%) 960× 720 82 ≈ 21

Table 1: Evaluation dataset overview. Six different videos featuring different animals and

environments and captured with different cameras are used for evaluation. Resolution and

animal size (diameter) is given in pixels. Key-frames are given in absolute numbers and relative

to the number of frames. Computation time is given in minutes. ‘clutter’ and ‘occluded’ were

recorded using a camcorder, ‘beetle’ was recorded using a GoPro, ‘mobile’ was recorded using a

mobile phone, ‘nightvision’ was recorded using a night vision camera and ‘drone’ was captured

by a drone operated camera.

The ‘clutter’ video shows an ant navigating in highly cluttered terrain in-225

cluding occlusions and moving shadows. The ‘occluded’ video features a very

small ant (36 pixel diameter in a 1920× 1040 video) which is occluded in more

than 100 frames in a very irregular and dynamic environment. In contrast, the

‘beetle’ video features an easy to recognise dung beetle target, without clutter

or occlusion, but is compromised by the moving shadow of the camera operator,230

wide angle recording, abrupt camera motions and a dung ball being moved by

the beetle. The ‘mobile’ video shows a woodlouse recorded with a mobile phone

in an urban environment. This video has very low animal resolution (13 pixels

in a full HD video) in combination with a very low animal-background contrast
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and strong jitter. The ‘nightvision’ video is recorded using a high resolution235

night vision camera to image nocturnal ants resulting in noisy images (due to

high ISO settings) and false colours. Finally, the ‘drone’ video is recorded using

a drone and features multiple targets (wild dogs) in a visually sparse environ-

ment (the animal which appears in the centre of the image in most frames was

automatically selected as the tracking target).240

In ’clutter’, ’occluded’, ’mobile’, ’nightvision’ and ’drone’ video we kept the

image plane approximately parallel to the ground (bird’s eye view), but the

’drone’ video violates the constant height assumption of constraint 4 by changing

the drone’s altitude in the middle of the recordings. Furthermore, the ’beetle’

video includes severe rapid rotations and translations in all directions, thus also245

violating constraint 4. We note that constraint 2 was not crucial in any of

these videos since the standard frame rates of 30 to 60 fps are usually sufficient

to ensure small displacements of the animal between consecutive frames. As a

consequence we could use a fixed sigma value for the 2D Gaussian potentials that

weight the expected displacement in consecutive frames, equivalent to several250

body lengths of the animal.

Furthermore, the displacement between consecutive frames is only weighted

by 2D Gaussian potentials and we used a fixed sigma value covering several

body lengths of all animals.

Since the overall goal of our study was to identify the constraints, possibilities255

and limitations of in-field animal tracking using a freely moving camera our

evaluation comprises qualitative and quantitative results. A detailed evaluation

of the detection accuracy is given elsewhere [12]. Therefore, we focus on the

panorama and trajectory generation here.

3.1. Qualitative evaluation260

An overview of the qualitative results is given in Figure 5 (white arrows

and ’start’ and ’end’ markers indicate the movement direction of the animal).

The panorama stitching algorithm managed to generate realistic background

pictures for all scenarios The most artefacts are seen in the beetle video, which
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is mainly caused by violating constraint 4: erratic motion can be recognised in265

all directions. In addition, the extreme wide angle of the GoPro camera induces

stitching artefacts. It is notable that in videos covering long distances (clutter,

nightvision and drone) our algorithm extracted accurate panoramas based on a

strongly reduced set of key-frames (Table 1). Sparse trajectories (blue lines in

Figure 5) indicate the exact animal positions for the keyframes in the resultant270

panorama. In contrast, dense trajectories (yellow lines in Figure 5) show more

motion details and are sampled more regularly. In four of six scenarios the

drift of the dense track, relative to the sparse track, remains within reasonable

bounds for the majority of the track. Only in the beetle and the drone scenario

a stronger divergence can be observed over time (see quantitative evaluation275

below). Note that the drift of the dense trajectory increases towards the end of

the movement path in all scenarios.

3.2. Quantitative evaluation

An in-depth evaluation of the detection accuracy can be found in [12], in

which we used a publicly available (Small Target within Natural Scenes; STNS)280

dataset [21] to benchmark our algorithm. In summary, we measured the detec-

tion accuracy as the distance of the detection to the manually specified target

position in normalised animal lengths. The average distance of the detection to

the centre of mass was below 0.36 animal lengths in the STNS dataset and the

first and third quantile is 0.27 and 0.52 respectively [12].285

Given these highly accurate detections in each frame and qualitatively rea-

sonable panoramas we will here focus on the accuracy of the dense track in

comparison to the sparse tracks. Dense trajectories resulting from consecutive

frames (cf. Equation 2) are more useful for behavioural quantifications since

they represent regular position estimates in contrast to the key-frame based290

sparse estimations (cf. Equation 1). However, due to the higher number of

multiplicative isometry transformations there is also more translational and ro-

tational drift. Therefore, we quantify the drift as the Euclidean distance between

the sparse animal positions and the dense positions over time (Figure 6). In the
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Figure 5: Qualitative evaluation. Panoramas including the sparse (cyan) and dense (yellow)

trajectories for all test videos (cf. Table 1): (A) clutter; (B) occluded; (C) beetle; (D)

mobile; (E) nightvision; and (F) drone. Insets show a close-up of the trajectory segment

indicated by the white rectangle. Arrows indicate the movement direction.
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occluded, mobile and night vision scenario the drift remains within reasonable295

boundaries. Since the length of the sparse and dense tracks do not differ strongly

the rotational drift induces most of the error as also visible in the beetle sce-

nario in Figure 5 (C). The occluded video manages to maintain low drift until

key-frame 22 and starts to diverge after this frame. Due to error propagation

of a single erroneous rotation the error will inevitably increase over time. For300

the recordings that adhere most closely to our four constraints (occluded, mo-

bile and nightvision) the resultant panoramas and dense trajectories appear to

provide a good estimate of the actual behaviour.

Figure 6: Drift evaluation. Drift between sparse and dense trajectories is given for each

key-frame (cf. Table 1). (A) Results for the occluded, mobile and nightvision scenario. (B)

Results for the clutter, beetle and drone scenario. Note the difference in scaling.

To show how the extracted tracks allow estimation of quantitative behavioural

features, we plot the velocity of the ant from the clutter video in Figure 7. The305

raw velocity is depicted in light blue and a smoothed velocity is drawn in dark

blue. The latter was calculated by extracting the mean over time using a slid-

ing window of size 50. Note that due to the use of isometries, unintended scale

shifts, resulting from translations in z direction, are not compensated and will

result in domain shifts of the velocity (constraint 4). However, stop phases and310

trends in velocity can easily be recognised.
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Figure 7: Velocity evaluation. Velocity for video clutter is given in pixel

frame
(cf. Table 1). The

light blue line indicates the raw measurements and dark blue represents the smoothed velocity

measure.

4. Discussion

Image-based tracking of animals in their natural environment is a challeng-

ing and as yet unsolved problem [1]. In particular, the complex appearance of

the fore- and background as well as frequent lighting and other disturbances315

prevent the usage of techniques developed for well controlled laboratory situ-

ations. We have developed a tracking prototype to support the extraction of

position information from videos of animals shot with a moving camera in the

field. Our algorithm imposes only four basic constraints, is not limited by the

appearance or resolution of the target and does not require any training. As a320

consequence, the algorithm is not limited to animals or natural environments

and can be applied to all kinds of moving objects and scenes (an examples of

correctly detected artificial objects in urban environments is given in [12]).

Whereas we have shown a reliable detection of in-frame positions is pos-

sible in many different situations [12] a reliable camera-motion compensated325

trajectory extraction remains an open challenge. Advanced trajectory gener-

ation is required to cope for the drift which will inevitably occur in case of

visual camera tracking [11]. Since no existing method is available to benchmark

our algorithms directly [1] we plan in future to use a motion capture system

(following the camera) to evaluate our algorithms in more detail.330

The focus of our study was to track a single small object in a potentially

cluttered environment using a moving camera. The animal size in the videos
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varied between 13 and 98 pixels, limiting the possibility to extract any infor-

mation other than overall position in the environment. Extending the method

to obtain pose information (for example see [22]) or to extract visually distinct335

features to support multi-animal tracking [16] would require filming in which

the animal occupied more pixels, but should otherwise be straightforward.

This preliminary study does not claim to produce reliable animal tracks in

real-world coordinates. For example, rotational drift will inevitably induce er-

rors over time resulting in incorrect heading directions and thus erroneous trajec-340

tories after wrong rotations. In addition, the isometries used here for panorama

generation discard rotations around the x and y axis as well as translations

along the z-axis. Moreover, the resultant trajectory is in camera coordinates

and only relative to the reference frames so that additional scaling routines are

required to achieve absolute real-world measurements.345

Nevertheless, we have made significant progress towards this goal. Since

tracking results are difficult to interpret (especially in situations in which a

moving camera is used) we implemented a rudimentary GUI to generate and

inspect trajectories manually. This allows errors in panoramas and dense tracks

to be easily spotted. Provided the constraints are not violated, our algorithm is350

capable of extracting insightful qualitative trajectories embedded in a panorama

showing the overall environment. We also note that our algorithm can directly

be applied to already existing videos from all kinds of imaging devices since

no additional hardware nor calibration is necessary. Our work has particular

relevance for insect researchers, as it is effective for tiny animals in complex355

environments, and overcomes the substantial limitations of telemetry [13, 8] for

insect monitoring. With additional research, we believe it will soon be possible

to offer biological researchers a complete, flexible, easy-to-use tool for tracking

of animals in their natural environments.
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