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Abstract

Current work on multimodal machine trans-

lation (MMT) has suggested that the vi-

sual modality is either unnecessary or only

marginally beneficial. We posit that this is

a consequence of the very simple, short and

repetitive sentences used in the only available

dataset for the task (Multi30K), rendering the

source text sufficient as context. In the general

case, however, we believe that it is possible to

combine visual and textual information in or-

der to ground translations. In this paper we

probe the contribution of the visual modality

to state-of-the-art MMT models by conducting

a systematic analysis where we partially de-

prive the models from source-side textual con-

text. Our results show that under limited tex-

tual context, models are capable of leveraging

the visual input to generate better translations.

This contradicts the current belief that MMT

models disregard the visual modality because

of either the quality of the image features or

the way they are integrated into the model.

1 Introduction

Multimodal Machine Translation (MMT) aims

at designing better translation systems which

take into account auxiliary inputs such as im-

ages. Initially organized as a shared task within

the First Conference on Machine Translation

(WMT16) (Specia et al., 2016), MMT has so far

been studied using the Multi30K dataset (Elliott

et al., 2016), a multilingual extension of Flickr30K

(Young et al., 2014) with translations of the En-

glish image descriptions into German, French and

Czech (Elliott et al., 2017; Barrault et al., 2018).

The three editions of the shared task have seen

many exciting approaches that can be broadly cat-

egorized as follows: (i) multimodal attention us-

ing convolutional features (Caglayan et al., 2016;

Calixto et al., 2016; Libovický and Helcl, 2017;

Helcl et al., 2018) (ii) cross-modal interactions

with spatially-unaware global features (Calixto

and Liu, 2017; Ma et al., 2017; Caglayan et al.,

2017a; Madhyastha et al., 2017) and (iii) the in-

tegration of regional features from object detec-

tion networks (Huang et al., 2016; Grönroos et al.,

2018). Nevertheless, the conclusion about the con-

tribution of the visual modality is still unclear:

Grönroos et al. (2018) consider their multimodal

gains “modest” and attribute the largest gain to

the usage of external parallel corpora. Lala et al.

(2018) observe that their multimodal word-sense

disambiguation approach is not significantly dif-

ferent than the monomodal counterpart. The orga-

nizers of the latest edition of the shared task con-

cluded that the multimodal integration schemes

explored so far resulted in marginal changes in

terms of automatic metrics and human evaluation

(Barrault et al., 2018). In a similar vein, Elliott

(2018) demonstrated that MMT models can trans-

late without significant performance losses even in

the presence of features from unrelated images.

These empirical findings seem to indicate that

images are ignored by the models and hint at the

fact that this is due to representation or modeling

limitations. We conjecture that the most plausi-

ble reason for the linguistic dominance is that – at

least in Multi30K – the source text is sufficient to

perform the translation, eventually preventing the

visual information from intervening in the learn-

ing process. To investigate this hypothesis, we

introduce several input degradation regimes (Sec-

tion 2) and revisit state-of-the-art MMT models

(Section 3) to assess their behavior under degraded

regimes. We further probe the visual sensitivity by

deliberately feeding features from unrelated im-

ages. Our results (Section 4) show that MMT

models successfully exploit the visual modality

when the linguistic context is scarce, but indeed

tend to be less sensitive to this modality when ex-

posed to complete sentences.
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2 Input Degradation

In this section we propose several degradations

to the input language modality to simulate condi-

tions where sentences may miss crucial informa-

tion. We denote a set of translation pairs by D and

indicate degraded variants with subscripts. Both

the training and the test sets are degraded.

Color Deprivation. We consistently replace

source words that refer to colors with a special to-

ken [v] (DC in Table 1). Our hypothesis is that a

monomodal system will have to rely on source-

side contextual information and biases, while a

multimodal architecture could potentially capital-

ize on color information extracted by exploiting

the image and thus obtain better performance.

This affects 3.3% and 3.1% of the words in the

training and the test set, respectively.

Entity Masking. The Flickr30K dataset, from

which Multi30K is derived, has also been ex-

tended with coreference chains to tag mentions of

visually depictable entities in image descriptions

(Plummer et al., 2015). We use these to mask out

the head nouns in the source sentences (DN in Ta-

ble 1). This affects 26.2% of the words in both

the training and the test set. We hypothesize that a

multimodal system should heavily rely on the im-

ages to infer the missing parts.

Progressive Masking. A progressively de-

graded variant Dk replaces all but the first k

tokens of source sentences with [v] . Unlike

the color deprivation and entity masking, mask-

ing out suffixes does not guarantee systematic

removal of visual context, but rather simulates

an increasingly low-resource scenario. Overall,

we form 16 degraded variants Dk (Table 1)

where k ∈ {0, 2, . . . , 30}. We stop at D30 since

99.8% of the sentences in Multi30K are shorter

than 30 words with an average sentence length

of 12 words. D0 – where the only remaining

information is the source sentence length – is an

interesting case from two perspectives: a neural

machine translation (NMT) model trained on

it resembles a target language model, while an

MMT model becomes an image captioner with

access to “expected length information”.

Visual Sensitivity. Inspired by Elliott (2018),

we experiment with incongruent decoding in order

to understand how sensitive the multimodal sys-

tems are to the visual modality. This is achieved

D a lady in a blue dress singing

DC a lady in a [v] dress singing

DN a [v] in a blue [v] singing

D4 a lady in a [v] [v] [v]

D2 a lady [v] [v] [v] [v] [v]

D0 [v] [v] [v] [v] [v] [v] [v]

Table 1: An example of the proposed input degradation

schemes: D is the original sentence.

by explicitly violating the test-time semantic con-

gruence across modalities. Specifically, we feed

the visual features in reverse sample order to

break image-sentence alignments. Consequently,

a model capable of integrating the visual modality

would likely deteriorate in terms of metrics.

3 Experimental Setup

Dataset. We conduct experiments on the

English→French part of Multi30K. The models

are trained on the concatenation of the train and

val sets (30K sentences) whereas test2016 (dev)

and test2017 (test) are used for early-stopping

and model evaluation, respectively. For entity

masking, we revert to the default Flickr30K splits

and perform the model evaluation on test2016,

since test2017 is not annotated for entities. We

use word-level vocabularies of 9,951 English and

11,216 French words. We use Moses (Koehn

et al., 2007) scripts to lowercase, normalize and

tokenize the sentences with hyphen splitting. The

hyphens are stitched back prior to evaluation.

Visual Features. We use a ResNet-50 CNN (He

et al., 2016) trained on ImageNet (Deng et al.,

2009) as image encoder. Prior to feature extrac-

tion, we center and standardize the images using

ImageNet statistics, resize the shortest edge to 256

pixels and take a center crop of size 256x256. We

extract spatial features of size 2048x8x8 from the

final convolutional layer and apply L2 normaliza-

tion along the depth dimension (Caglayan et al.,

2018). For the non-attentive model, we use the

2048-dimensional global average pooled version

(pool5) of the above convolutional features.

Models. Our baseline NMT is an attentive

model (Bahdanau et al., 2014) with a 2-layer bidi-

rectional GRU encoder (Cho et al., 2014) and a

2-layer conditional GRU decoder (Sennrich et al.,

2017). The second layer of the decoder receives

the output of the attention layer as input.



D DC

NMT 70.6 ± 0.5 68.4 ± 0.1

INIT 70.7 ± 0.2 68.9 ± 0.1

HIER 70.9 ± 0.3 69.0 ± 0.3

DIRECT 70.9 ± 0.2 68.8 ± 0.3

Table 2: Baseline and color-deprivation METEOR

scores: bold systems are significantly different from the

NMT system within the same column (p-value ≤ 0.03).

For the MMT model, we explore the basic

multimodal attention (DIRECT) (Caglayan et al.,

2016) and its hierarchical (HIER) extension (Li-

bovický and Helcl, 2017). The former linearly

projects the concatenation of textual and visual

context vectors to obtain the multimodal context

vector, while the latter replaces the concatena-

tion with another attention layer. Finally, we

also experiment with encoder-decoder initializa-

tion (INIT) (Calixto and Liu, 2017; Caglayan

et al., 2017a) where we initialize both the encoder

and the decoder using a non-linear transformation

of the pool5 features.

Hyperparameters. The encoder and decoder

GRUs have 400 hidden units and are initialized

with 0 except the multimodal INIT system. All

embeddings are 200-dimensional and the decoder

embeddings are tied (Press and Wolf, 2016). A

dropout of 0.4 and 0.5 is applied on source embed-

dings and encoder/decoder outputs, respectively

(Srivastava et al., 2014). The weights are decayed

with a factor of 1e−5. We use ADAM (Kingma

and Ba, 2014) with a learning rate of 4e−4 and

mini-batches of 64 samples. The gradients are

clipped if the total norm exceeds 1 (Pascanu et al.,

2013). The training is early-stopped if dev set ME-

TEOR (Denkowski and Lavie, 2014) does not im-

prove for ten epochs. All experiments are con-

ducted with nmtpytorch1 (Caglayan et al., 2017b).

4 Results

We train all systems three times each with dif-

ferent random initialization in order to perform

significance testing with multeval (Clark et al.,

2011). Throughout the section, we always report

the mean over three runs (and the standard devi-

ation) of the considered metrics. We decode the

translations with a beam size of 12.

1github.com/lium-lst/nmtpytorch
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Figure 1: Entity masking: all masked MMT models are

significantly better than the masked NMT (dashed). In-

congruent decoding severely worsens all systems. The

vanilla NMT baseline is 75.92.

We first present test2017 METEOR scores for

the baseline NMT and MMT systems, when

trained on the full dataset D (Table 2). The first

column indicates that, although MMT models per-

form slightly better on average, they are not sig-

nificantly better than the baseline NMT. We now

introduce and discuss the results obtained under

the proposed degradation schemes. Please refer to

Table 5 and the appendix for qualitative examples.

4.1 Color Deprivation

Unlike the inconclusive results for D, we observe

that all MMT models are significantly better than

NMT when color deprivation is applied (DC in Ta-

ble 2). If we further focus on the subset of the

test set subjected to color deprivation (247 sen-

tences), the gain increases to 1.6 METEOR for

HIER. For the latter subset, we also computed the

average color accuracy per sentence and found that

the attentive models are 12% better than the NMT

(32.5→44.5) whereas the INIT model only brings

4% (32.5→36.5) improvement. This shows that

more complex MMT models are better at integrat-

ing visual information to perform better.

4.2 Entity Masking

The gains are much more prominent with entity

masking, where the degradation occurs at a larger

scale: Attentive MMT models show up to 4.2 ME-

TEOR improvement over NMT (Figure 1). We ob-

served a large performance drop with incongruent

decoding, suggesting that the visual modality is

2Since entity masking uses Flickr30K splits (Section 3)
rather than our splits, the scores are not comparable to those
from other experiments in this paper.

github.com/lium-lst/nmtpytorch
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Figure 2: Baseline MMT (top) translates the misspelled

“son” while the masked MMT (bottom) correctly pro-

duces “enfant” (child) by focusing on the image.

+ Gain (↓ Incongruence Drop)

INIT HIER DIRECT

Czech +1.4 (↓ 2.9) +1.7 (↓ 3.5) +1.7 (↓ 4.1)

German +2.1 (↓ 4.7) +2.5 (↓ 5.9) +2.7 (↓ 6.5)

French +3.4 (↓ 6.5) +3.9 (↓ 9.0) +4.2 (↓ 9.7)

Table 3: Entity masking results across three languages:

all MMT models perform significantly better than their

NMT counterparts (p-value ≤ 0.01). The incongruence

drop applies on top of the MMT score.

now much more important than previously demon-

strated (Elliott, 2018). A comparison of attention

maps produced by the baseline and masked MMT

models reveals that the attention weights are more

consistent in the latter. An interesting example is

given in Figure 2 where the masked MMT model

attends to the correct region of the image and suc-

cessfully translates a dropped word that was oth-

erwise a spelling mistake (“son”→“song”).

Czech and German. In order to understand

whether the above observations are also consis-

tent across different languages, we extend the en-

tity masking experiments to German and Czech

parts of Multi30K. Table 3 shows the gain of each

MMT system with respect to the NMT model and

the subsequent drop caused by incongruent decod-

ing3. First, we see that the multimodal benefits

clearly hold for German and Czech, although the

gains are lower than for French4. Second, when

we compute the average drop from using incon-

gruent images across all languages, we see how

conservative the INIT system is (↓ 4.7) compared

3For example, the INIT system for French (Figure 1) sur-
passes the baseline (50.5) by reaching 53.9 (+3.4), which
ends up at 47.4 (↓ 6.5) after incongruent decoding.

4This is probably due to the morphological richness of DE
and CS which is suboptimally handled by word-level MT.
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Figure 3: Multimodal gain in absolute METEOR for

progressive masking: the thick gray curve indicates the

percentage of non-masked words in the training set.

D4 D6 D12 D20 D

DIRECT 32.3 42.2 64.5 70.1 70.9

Incongruent Dec. ↓ 6.4 ↓ 5.5 ↓ 1.4 ↓ 0.7 ↓ 0.7

Blinding ↓ 3.9 ↓ 2.9 ↓ 0.4 ↓ 0.5 ↓ 0.3

NMT ↓ 3.7 ↓ 2.6 ↓ 0.6 ↓ 0.2 ↓ 0.3

Table 4: The impact of incongruent decoding for pro-

gressive masking: all METEOR differences are against

the DIRECT model. The blinded systems are both

trained and decoded using incongruent features.

to HIER (↓ 6.1) and DIRECT (↓ 6.8). This raises a

follow-up question as to whether the hidden state

initialization eventually loses its impact through-

out the recurrence where, as a consequence, the

only modality processed is the text.

4.3 Progressive Masking

Finally, we discuss the results of the progressive

masking experiments for French. Figure 3 clearly

shows that as the sentences are progressively de-

graded, all MMT systems are able to leverage the

visual modality. At the dashed red line – where

the multimodal task becomes image captioning –

MMT models improve over the language-model

counterpart by ∼7 METEOR. Further qualitative

examples show that the systems perform surpris-

ingly well by producing visually plausible sen-

tences (see Table 5 and the Appendix).

To get a sense of the visual sensitivity, we pick

the DIRECT models trained on four degraded vari-

ants and perform incongruent decoding. We no-

tice that as the amount of linguistic information

increases, the gap narrows down: the MMT sys-

tem gradually becomes less perplexed by the in-

congruence or, put in other words, less sensitive to

the visual modality (Table 4).



SRC: an older woman in [v][v][v][v][v][v][v][v][v][v][v]

NMT: une femme âgée avec un t-shirt blanc et des lunettes de soleil est assise sur un banc

(an older woman with a white t-shirt and sunglasses is sitting on a bank)

MMT: une femme âgée en maillot de bain rose est assise sur un rocher au bord de l’eau

(an older woman with a pink swimsuit is sitting on a rock at the seaside)

REF: une femme âgée en bikini bronze sur un rocher au bord de l’océan

(an older woman in bikini is tanning on a rock at the edge of the ocean)

SRC: a young [v] in [v] holding a tennis [v]

NMT: un jeune garçon en bleu tenant une raquette de tennis

(a young boy in blue holding a tennis racket)

MMT: une jeune femme en blanc tenant une raquette de tennis

REF: une jeune femme en blanc tenant une raquette de tennis

(a young girl in white holding a tennis racket)

SRC: little girl covering her face with a [v] towel

NMT: une petite fille couvrant son visage avec une serviette blanche

(a little girl covering her face with a white towel)

MMT: une petite fille couvrant son visage avec une serviette bleue

REF: une petite fille couvrant son visage avec une serviette bleue

(a little girl covering her face with a blue towel)

Table 5: Qualitative examples from progressive masking, entity masking and color deprivation, respectively. Un-

derlined and bold words highlight the bad and good lexical choices. MMT is an attentive system.

We then conduct a contrastive “blinding” exper-

iment where the DIRECT models are not only

fed with incongruent features at decoding time but

also trained with them from scratch. The results

suggest that the blinded models learn to ignore

the visual modality. In fact, their performance is

equivalent to NMT models.

5 Discussion and Conclusions

We presented an in-depth study on the potential

contribution of images for multimodal machine

translation. Specifically, we analysed the behav-

ior of state-of-the-art MMT models under several

degradation schemes in the Multi30K dataset, in

order to reveal and understand the impact of tex-

tual predominance. Our results show that the mod-

els explored are able to integrate the visual modal-

ity if the available modalities are complementary

rather than redundant. In the latter case, the pri-

mary modality (text) sufficient to accomplish the

task. This dominance effect corroborates the sem-

inal work of Colavita (1974) in Psychophysics

where it has been demonstrated that visual stimuli

dominate over the auditory stimuli when humans

are asked to perform a simple audiovisual discrim-

ination task. Our investigation using source degra-

dation also suggests that visual grounding can in-

crease the robustness of machine translation sys-

tems by mitigating input noise such as errors in

the source text. In the future, we would like to

devise models that can learn when and how to in-

tegrate multiple modalities by taking care of the

complementary and redundant aspects of them in

an intelligent way.
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A Qualitative Examples

SRC: a girl in [v] is sitting on a bench

NMT: pink

Init: pink

Hier: black

Direct: black

SRC: a man dressed in [v] talking to a girl

NMT: black

Init: black

Hier: white

Direct: white

SRC: a [v] dog sits under a [v] umbrella

NMT: brown / blue

Init: black / blue

Hier: black / blue

Direct: black / blue

SRC: a woman in a [v] top is dancing as a woman and boy in a [v] shirt watch

NMT: blue / blue

Init: blue / blue

Hier: red / red

Direct: red / red

SRC: three female dancers in [v] dresses are performing a dance routine

NMT: white

Init: white

Hier: white

Direct: blue

Table 6: Color deprivation examples from the English→French models: bold indicates correctly predicted cases.

The colors generated by the models are shown in English for the sake of clarity.



SRC: a [v] in a red [v] plays in the [v]

NMT: un garçon en t-shirt rouge joue dans la neige

(a boy in a red t-shirt plays in the snow)

MMT: un garçon en maillot de bain rouge joue dans l’eau

REF: un garçon en maillot de bain rouge joue dans l’eau

(a boy in a red swimsuit plays in the water)

SRC: a [v] drinks [v] outside on the [v]

NMT: un homme boit du vin dehors sur le trottoir

(a man drinks wine outside on the sidewalk)

MMT: un chien boit de l’eau dehors sur l’herbe

REF: un chien boit de l’eau dehors sur l’herbe

(a dog drinks water outside on the grass)

SRC: two [v] are driving on a [v]

NMT: deux hommes font du vélo sur une route

(two men riding bicycles on a road)

MMT: deux voitures roulent sur une piste

(two cars driving on a track/circuit)

REF: deux voitures roulent sur un circuit

SRC: a [v] turns on the [v] to pursue a flying [v]

NMT: un homme tourne sur la plage pour attraper un frisbee volant

(a man turns on the beach to catch a flying frisbee)

MMT: un chien tourne sur l’herbe pour attraper un frisbee volant

(a dog turns on the grass to catch a flying frisbee)

REF: un chien tourne sur l’herbe pour poursuivre une balle en l’air

(a dog turns on the grass to chase a ball in the air)

SRC: a [v] jumping [v] on a [v] near a parking [v]

NMT: un homme sautant à cheval sur une plage près d’un parking

(a man jumping on a beach near a parking lot)

MMT: une fille sautant à la corde sur un trottoir près d’un parking

REF: une fille sautant à la corde sur un trottoir près d’un parking

(a girl jumping rope on a sidewalk near a parking lot)

Table 7: Entity masking examples from the English→French models: underlined and bold words highlight bad and

good lexical choices, respectively. English translations are provided in parentheses. MMT is an attentive model.
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(b) Entity-masked MMT

Figure 4: Attention example from entity masking experiments: (a) Baseline MMT translates the misspelled “son”

(song → chanson) while (b) the masked MMT achieves a correct translation ([v]→ enfant) by exploiting the

visual modality.
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(b) Entity-masked MMT

Figure 5: Attention example from entity masking experiments where terrier, grass and fence are dropped from the

source sentence: (a) Baseline MMT is not able to shift attention from the salient dog to the grass and fence, (b) the

attention produced by the masked MMT first shifts to the background area while translating “on lush green [v]”

then focuses on the fence.



SRC: a child [v][v][v][v][v][v]

NMT: un enfant avec des lunettes de soleil en train de jouer au tennis

(a child with sunglasses playing tennis)

MMT: un enfant est debout dans un champ de fleurs

(a child is standing in field of flowers)

REF: un enfant dans un champ de tulipes

(a child in a field of tulips)

SRC: a jockey riding his [v][v]

NMT: un jockey sur son vélo

(a jockey on his bike)

MMT: un jockey sur son cheval

REF: un jockey sur son cheval

(a jockey on his horse)

SRC: girls are playing a [v][v][v]

NMT: des filles jouent à un jeu de cartes

(girls are playing a card game)

MMT: des filles jouent un match de football

REF: des filles jouent un match de football

(girls are playing a football match)

SRC: trees are in front [v][v][v][v][v]

NMT: des vélos sont devant un bâtiment en plein air

(bicycles are in front of an outdoor building)

MMT: des arbres sont devant la montagne

(trees are in front of the mountain)

REF: des arbres sont devant une grande montagne

(trees are in front of a big mountain)

SRC: a fishing net on the deck of a [v][v]

NMT: un filet de pêche sur la terrasse d’un bâtiment

(a fishing net on the terrace of a building)

MMT: un filet de pêche sur le pont d’un bateau

(a fishing net on the deck of a boat)

REF: un filet de pêche sur le pont d’un bateau rouge

(a fishing net on the deck of a red boat)

SRC: girls wave purple flags [v][v][v][v][v][v][v]

NMT: des filles en t-shirts violets sont assises sur des chaises dans une salle de classe

(girls in purple t-shirts are sitting on chairs in a classroom)

MMT: des filles en costumes violets dansent dans une rue en ville

(girls in purple costumes dance on a city street)

REF: des filles agitent des drapeaux violets tandis qu’elles défilent dans la rue

(girls wave purple flags as they parade down the street)

Table 8: English→French progressive masking examples: underlined and bold words highlight bad and good

lexical choices, respectively. English translations are provided in parentheses. MMT is an attentive model.


