
Spatial and Temporal Characteristics of Summer Precipitation over Central
Europe in a Suite of High-Resolution Climate Models

PETTER LIND, DAVID LINDSTEDT, AND ERIK KJELLSTRÖM

Swedish Meteorological and Hydrological Institute, Norrk€oping, and Department of Meteorology, Sweden

Stockholm University, Stockholm, Sweden

COLIN JONES

National Centre for Atmospheric Science, University of Leeds, Leeds, United Kingdom, and Swedish

Meteorological and Hydrological Institute, Norrk€oping, Sweden

(Manuscript received 3 July 2015, in final form 29 December 2015)

ABSTRACT

High-impact, locally intense rainfall episodes represent a major socioeconomic problem for societies

worldwide, and at the same time these events are notoriously difficult to simulate properly in climate models.

Here, the authors investigate how horizontal resolution and model formulation influence this issue by ap-

plying the HIRLAM–ALADIN Regional Mesoscale Operational NWP in Europe (HARMONIE) Climate

(HCLIM) regional model with three different setups: two using convection parameterization at 15- and

6.25-km horizontal resolution (the latter within the ‘‘gray zone’’ scale), with lateral boundary conditions

provided by ERA-Interim and integrated over a pan-European domain, and one with explicit convection at

2-km resolution (HCLIM2) over the Alpine region driven by the 15-kmmodel. Seven summer seasons were

sampled and validated against two high-resolution observational datasets. All HCLIM versions un-

derestimate the number of dry days and hours by 20%–40% and overestimate precipitation over the Alpine

ridge. Also, only modest added value was found for gray-zone resolution. However, the single most im-

portant outcome is the substantial added value in HCLIM2 compared to the coarser model versions at

subdaily time scales. It better captures the local-to-regional spatial patterns of precipitation reflecting a

more realistic representation of the local and mesoscale dynamics. Further, the duration and spatial fre-

quency of precipitation events, as well as extremes, are closer to observations. These characteristics are key

ingredients in heavy rainfall events and associated flash floods, and the outstanding results using HCLIM

in a convection-permitting setting are convincing and encourage further use of the model to study changes

in such events in changing climates.

1. Introduction

In August 2002 central Europe experienced an ex-

treme rainfall episode where a number of flash floods led

to record-breaking rainfall amounts (locally up to

300mm in 24h), caused several rivers to overflow, and

resulted in huge economical loss and a significant num-

ber of fatalities (Ulbrich et al. 2003). In the past, central

Europe has frequently been affected by similar pre-

cipitation events, often with large socioeconomic im-

pacts (Rotunno and Ferretti 2001; Kundzewicz et al.

2005; Frei et al. 2000; Ruiz-Villanueva et al. 2012). There

is also evidence that precipitation extremes have be-

come more common over recent decades (van den

Besselaar et al. 2012), and, despite large intermodel

differences, there is suggestion of increases in the fre-

quency and/or intensity of extreme precipitation events

in Europe in the future, both on daily (e.g., Feldmann

et al. 2013; Lenderink and vanMeijgaard 2010; Frei et al.

2006; Ban et al. 2015) and subdaily time scales (e.g., Ban

et al. 2015; Kendon et al. 2014). Estimates of future

changes in extremes of multihourly precipitation sums

are critical for risk and impact assessment of changes in

frequency of flash floods and major flooding events.
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A correct representation of these heavy rainfall events is

an important (but not sufficient) condition to have con-

fidence in projections for the future.

The concept of flash floods is underpinned by a simple

but important statement; the heaviest precipitation oc-

curs where the rainfall rate is the highest for the longest

time. Numerical experiments and analysis of observed

episodes of heavy rainfall in central Europe reveal a

number of common key ingredients. The dynamical

and thermodynamical interactions from synoptic to

local scales have been just right to enable sufficient

moisture convergence and vertical updrafts and hence

condensation and rainfall, as well as constraining con-

vective systems to become quasi-stationary (Doswell

et al. 1996; Lin et al. 2001). In addition, airflow–

orography interactions may modify the development

of precipitation-producing storms in critical ways by

influencing the low-level stability and convergence

patterns (Rotunno and Ferretti 2001). The main char-

acteristics of a flash flood constitute a challenge for

weather and climate models, as it requires an accurate

representation of the local environment and storm

dynamics.

A well-known source of error for the simulation of

precipitation in numerical models is the parameterization

of convection (Molinari and Dudek 1992; Hohenegger

and Stevens 2013; O’Gorman and Schneider 2009). In-

dividual moist convective updrafts and downdrafts have

horizontal dimensions on the order of 0.1–10km. Their

role in restabilizing the lower atmosphere through pro-

duction of clouds and precipitation are critical for a cor-

rect and physically sound representation of weather and

climate. In large-scale models with mesh-grid sizes of

O(100) km the statistical effects of convection on the grid

scale are parameterized, but because of this, the con-

vection scheme usually struggles to capture local and

regional interactions (e.g., orographically forced convec-

tion in steep topography) as well as the detailed temporal

evolution of convection at subdaily time scales (e.g., Dai

and Trenberth 2004; Dai 2006; Bechtold et al. 2004).

Similar problems are seen also in regional climatemodels

(RCMs) with parameterized convection (Liang 2004;

Brockhaus et al. 2008). Generally, as the grid mesh be-

comes finer, the realism of precipitation patterns and in-

tensities improves in models (e.g., Rauscher et al. 2010;

Sharma and Huang 2012; Prein et al. 2016; Gao et al.

2006); however, there are still errors in subdaily pre-

cipitation statistics even at resolutions of approximately

10km in models with an active convection scheme

(Walther et al. 2013). Originally designed for coarser

grids, convection schemes at approximately 10km begin

to violate the underlying statistical assumptions on which

they are based; most importantly, the assumption of scale

separation is no longer valid. At even finer resolution,

entering the so-called ‘‘gray zone’’ resolution of ap-

proximately 3–10km, the issues of double counting con-

vective precipitation (parameterized and resolved) and

excessive gridpoint stabilization (Gerard 2007; Gerard

et al. 2009) further degrade the model convective pre-

cipitation response.

In convection-permitting models (1–4-km mesh size)

there is a much better description of precipitation pro-

cesses, such as the initiation and organization of convec-

tion, orographic enhancement, and small-scale storm

characteristics (Prein et al. 2015). In numerical weather

prediction (NWP), convection-permittingmodels (CPMs)

are now routinely delivering significantly improved

accuracy in quantitative precipitation forecasts (e.g.,

Weusthoff et al. 2010; Lean et al. 2008; Roberts et al.

2009; Roberts and Lean 2008). In particular, Roberts

and Lean (2008) showed that the spatial frequency of

precipitation was significantly improved in kilometer-

scale simulations compared to coarser ones, particu-

larly for localized, heavy precipitation events. In an

excellent review on the use of CPMs in the climate

modeling community, Prein et al. (2015) discuss at

length the success in improving the simulation of

various aspects of precipitation and other meteoro-

logical variables referencing a multitude of studies.

Recently, Kendon et al. (2012) demonstrated an im-

proved representation of duration and spatial extent

of precipitation extremes in a convection-permitting

climate model (CPCM) compared to a coarser-scale

RCM. Using the same model simulations, but focusing

on the statistical behavior of precipitation extremes,

Chan et al. (2014) showed that the CPCMwas superior

to the coarser model in representing summer hourly

and multihourly precipitation extremes. Furthermore,

the typical deficiencies of a too-early onset and decay

of diurnal convective precipitation, as well as too-low

peak intensities, in RCMs with parameterized con-

vection have been shown in several studies to be sig-

nificantly reduced when using CPCMs (Prein et al.

2013; Ban et al. 2014).

Here, we sample a set of summer seasons over Europe

and the Alps using different setups with a new regional

climate model, the HIRLAM–ALADIN Regional Me-

soscale Operational NWP in Europe (HARMONIE)

Climate (Lindstedt et al. 2015). Three model configu-

rations were applied; two were integrated at 15- and

6.25-km horizontal resolution using a convection scheme

particularly designed for resolutions within the gray zone.

The third setup employs a physics package designed for

convection-permitting resolutions and is run at 2-km

resolution. With this suite of simulations, we aim to in-

vestigate the quality of eachmodel version in terms of the
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spatial and temporal characteristics of summer pre-

cipitation in the Alpine region on daily and subdaily time

scales. Specifically, does the 2-km model behave differ-

ently concerning precipitation extremes and capture in-

tensities, durations, and frequencies of precipitation

spells better than the coarser models using a convective

parameterization? Also, do we benefit from using

HARMONIE at 6.25-km resolution compared to 15km

(i.e., is there added value already at this intermediate

resolution compared to its coarser version)?

2. Experiment setup

a. Models

HARMONIE is a seamless NWP model framework

developed jointly between several European national

meteorological services. The model system provides

flexibility as it contains a suite of different physics

packages, each adapted for different horizontal resolu-

tions. Here we have applied two different model setups

using the cy37h1.2 climatemodel version ofHARMONIE

(HCLIM): 1) a setup with the ALARO physics [a

transitional step between ALADIN and Applications

of Research to Operations at Mesoscale (AROME);

Gerard 2007; Gerard et al. 2009; Piriou et al. 2007]

applying the Modular Multiscale Microphysics and

Transport (3MT) (Piriou et al. 2007; Gerard et al. 2009)

convection parameterization (CP) scheme, applied at

two horizontal resolutions, 15 and 6.25 km (HCLIM15

and HCLIM6, respectively); and 2) a setup with the

AROME physics package (Seity et al. 2011). AROME

is specifically developed to be run at convection-

permitting resolutions resolving deep convection ex-

plicitly and is here applied to a resolution of 2 km

(HCLIM2).

In HARMONIE, irrespective of physics package, the

ALADIN–NH provides the nonhydrostatic dynamical

core (Bénard et al. 2010), solving the fully compressible

Euler equations using a two time level, semi-implicit,

semi-Lagrangian discretization on an Arakawa A grid.

Here, HCLIM15 and HCLIM6, with ALARO physics,

used the hydrostatic version of the dynamical core. The

surface parameterization framework is surface external-

isée (SURFEX) (Masson et al. 2013), originating from

the Interactions between Soil, Biosphere, and Atmo-

sphere (ISBA) surface scheme (Noilhan and Planton

1989). Amore thorough description of SURFEX is found

in Le Moigne et al. (2012).

Differences between ALARO and AROME appear

primarily in the atmospheric physics. In ALARO, ra-

diation is parameterized using the two-stream scheme

developed by Ritter and Geleyn (1992) with optical

cloud properties following Ma�sek (2005). Deep convec-

tion in ALARO is not explicitly resolved and uses the

3MT parameterization scheme. In standard parameteri-

zations, separate schemes are used for deep convection

and for ‘‘nonconvective’’ (i.e., resolved large scale)

clouds, with microphysical conversion to precipitation

treated separately in each scheme. However, at ever-

higher resolution, the risk of double counting convective

processes (both through resolved and parameterized

parts) increases, and 3MT handles this by formally sep-

arating the two different contributions (Lindstedt et al.

2015). The microphysical processes handle five prognos-

tic water phases, where autoconversion and evaporation

are computed level by level (Gerard et al. 2009). The

turbulence parameterization is a pseudoprognostic tur-

bulent kinetic energy (pTKE) scheme, which is an ex-

tension of the Louis-type vertical diffusion scheme

(Louis 1979).

AROME parameterizes radiation using a two-stream

approximation in model columns and the effects of

surface slopes accounted for. Shortwave and longwave

spectral computations follow Fouquart and Bonnel

(1980) and Mlawer et al. (1997), respectively, and cloud

optical properties for liquid clouds are derived from

Morcrette and Fouquart (1986) and from Ebert and

Curry (1992) for ice clouds. AROME uses a mixed-

phase microphysics scheme, the ICE3 scheme (Pinty

and Jabouille 1998), wherein cloud water and ice as well

as rain, snow, and graupel are prognostic variables. Hail

is assumed to behave as large graupel particles. The

turbulence parameterization was developed by Cuxart

et al. (2000) and is based on a prognostic TKE equation

combined with a diagnostic mixing length L.

A suite of seven summers have been simulated: 1998,

2000, 2002, 2004, 2006, 2007, and 2010. All simulations

were initialized in May of each year and run until the

end of August, with May omitted from subsequent

analysis. HCLIM15 and HCLIM6 were applied over a

domain covering Europe (3003 320 and 7203 800 grid

boxes, respectively). Lateral boundary conditions are

provided by ERA-Interim (Dee et al. 2011) every 6 h.

HCLIM15 was then downscaled by HCLIM2 over a

domain covering the Alpine region (see Fig. 1), con-

sisting of 480 3 360 grid boxes. In this downscaling the

lateral boundaries were provided by HCLIM15 every

3 h. All HCLIM simulations have 65 levels in the

vertical.

b. Area of investigation

The black rectangle in the left panel in Fig. 1 depicts

the investigated area in this study, which covers the

nested domain of HCLIM2. For analysis of subdaily

precipitation, only Switzerland was considered (Fig. 1,
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right panel), as suitable observations were only available

for this area. Within the HCLIM2 domain, the most

prominent characteristic is the arc-shaped mountain

range of the European Alps with an average height of

approximately 2500m, a length of 800 km, and a width

ranging from about 100 to 300 km. The ridge is inter-

sected by a series of deep valleys, dividing the range into

major mountain massifs. The mountain range has a

significant influence on the large-scale atmospheric flow

and on the generation of local to mesoscale circulation

patterns, acting as a triggering mechanism for convec-

tion. With this topographical diversity, as well as its

proximity to several large-scale climate regimes (e.g.,

Mediterranean and European continental climates), this

area is bothmeteorologically interesting and a challenge

to simulate correctly.

c. Evaluation data

To account for the large spatial and temporal vari-

ability in precipitation, it is often necessary to include

multiple observations in model evaluation. In this study

we use a number of observational datasets that fulfill

the conditions of having sufficient spatial coverage and

high-enough temporal resolution to investigate the sta-

tistical behavior of convective precipitation in HCLIM

on hourly to daily time scales.

European Reanalysis and Observations for Monitor-

ing project (EURO4M) Alpine precipitation grid data-

set (APGD) (EURO4M-APGD, hereafter EURO4M;

Isotta et al. 2014) is a gridded dataset covering the Alps

and adjacent forelands. It consists of rain gauge data

from an average of 5500 daily measurements, covering

the time period 1971–2008. A distance–angular weight-

ing method was used to interpolate point measurements

to daily time scale on a 5-km regular grid. Scales that

are effectively resolved are coarser, depend on station

density, and vary both in time and space. Interstation

spacing sets an approximate lower limit of the effective

resolution for daily totals, and in high-density areas this

is around 10–15km (Isotta et al. 2014). The smoothing

effect from the interpolation and the inherent un-

certainties in gauge measurements affect the quality of

the end product. Although gauge undercatch is most

prominent in winter (Adam and Lettenmeier 2003), the

localized and intermittent nature of convective pre-

cipitation in summer causes systematic biases in the

observations (Isotta et al. 2014; Rubel and Hantel 2001).

Generally, in EURO4M, high intensities are under-

estimated and low intensities overestimated (Isotta

et al. 2014).

To investigate hourly precipitation the RdisaggH

dataset is used (Wüest et al. 2010). Combining weather

FIG. 1. (left) The domains used for the dynamical downscaling of HCLIM. The pan-Europe outer domain is used for HCLIM15 and

HCLIM6, while the inner domain marked by the black box is used for HCLIM2. The blue polygon depicts the domain of the EURO4M

observational dataset. Color scale represents model orography (m) originating from HCLIM6. (right) Map of Switzerland. The

rectangles depict the western (red) and eastern (blue) segments used in section 4a. (Zonal means are calculated before they are plotted

in Fig. 4.)

3504 JOURNAL OF CL IMATE VOLUME 29



radar and daily precipitation totals, it consists of hourly

precipitation estimates on a 1-km mesh grid over Swit-

zerland for the years 2004–10. The method involves

disaggregating rain gauge data using radar, and, there-

fore, the advantage of the high temporal resolution of

radar can be utilized while reducing the impact of its

quantitative biases. Validation, through a systematic

comparison of RdisaggH at the location of 72 rain gauge

stations in Switzerland, shows that errors in intensity

and frequency are smaller than 25%, with larger errors

in regions with deep valleys due to shielding of the radar

beam (Wüest et al. 2010).

3. Methodology

To assess the realism of the simulated precipitation

distribution and spell duration, a number of statistical

methods have been adopted. Generally, statistical

analysis of daily and subdaily precipitation, whereby a

significant part may or may not consist of zero values

(i.e., dry days, hours, etc.), commonly involves thresh-

olding the data. This subselection of data can have a

significant impact on the resulting analysis (changing

sample sizes) and therefore should be considered care-

fully. HCLIM demonstrates a clear underestimation of

dry days and hours in the Alpine region. Compared to

EURO4M (RdisaggH) HCLIM2, HCLIM6, and

HCLIM15 underestimate the fraction of dry days

(hours) by 35%, 19%, and 23% (20%, 29%, and 41%)

over the Alpine region (Switzerland), respectively. The

too-frequent wet hours and days are spatially mostly

associated with the steep topography of the Alps. This

indicates that HCLIM, both with and without convec-

tion parameterization, too easily triggers precipitation-

producing processes in interaction with this strong

surface forcing. However, a definite explanation for

this deficiency demands a more in-depth analysis that is

beyond the scope of this study. Keeping in mind these

biases, the statistical methods used in this study will

mainly focus on when it actually rains, hence using,

unless otherwise stated, thresholds to extract wet days

or hours. We employ thresholds of 1mmday21 and

0.1mmh21 for definition of wet events.

a. Fractions skill score

Roberts and Lean (2008) introduced a method, called

fractions skill score (FSS), that fits into the neighbor-

hood verification category. This will be a short overview

of the method, and for a detailed description the reader

is referred to Roberts and Lean (2008). The main pur-

pose of FSS is to provide an objective way to assess how

the skill in high-resolution numerical models varies with

spatial scale. FSS gives information on realism in terms

of spatial frequency and, furthermore, the smallest

spatial scale where the simulations can be considered

skillful. The computation of FSS is performed in a two-

step operation: First, a threshold is applied to grid points

of model data and observations, converting them into

binary fields (1 above threshold, 0 otherwise). Second,

the fraction of pixels exceeding the threshold within a

specified neighborhood of each grid point is then com-

pared between model and observations. This set of op-

erations is repeated for a number of thresholds and

neighborhoods, ranging in sizes from a single pixel to the

entire domain. Values of FSS can range from 0, corre-

sponding to no skill, to 1, perfect skill. FSS typically

increases from a minimum value for gridpoint scales to

larger values as the neighborhood area gets larger, as-

ymptotically reaching its maximum value for large

neighborhoods. The maximum value would be 1 if no

bias were present in the model; otherwise it asymptotes

to a lower value. Roberts and Lean (2008) defined a

smallest neighborhood size for which a sufficient skill is

achieved—when FSSu 5 0.51 fo/2 is obtained, where fo
is the observed wet area fraction in the domain. The skill

of a random forecast that has the same fractional cov-

erage of precipitation over the whole domain as obser-

vations is given by FSSr5 fo and sets a minimum level of

skill. The FSS calculation is performed for every time

step chosen (e.g., hourly). Prior to this, both observa-

tions and model data must be interpolated to the same

grid configuration. Here, we aggregate all data on to the

coarsest 15-km grid, and the domain is limited to the

RdisaggH coverage (i.e., the area of Switzerland).

b. Event duration analysis

A more complete analysis would encompass a tem-

poral aspect as well. Therefore, we include an analysis to

address the realism of the simulated precipitation in

terms of the duration of precipitation spells, mainly

following the methodology of Kendon et al. (2012). All

grid points covered by both models and RdisaggH ob-

servations, the area of Switzerland, are considered. We

use all seven summers of model data and all RdisaggH

data, even though there is not a complete overlap be-

tween these. A sensitivity test by using only overlapping

data did not alter the results significantly, and we chose

to use as much data as possible to increase the statistical

robustness. All data are aggregated to the HCLIM15

grid prior to analysis.

For each grid pixel, events are identified as occur-

rences of precipitation above a certain threshold. The

duration of an event consists of the number of coherent

hours of precipitation above the threshold. During a

spell, the intensity of precipitation varies, and it varies

differently depending on the nature of the process,
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comparing for example a localized convective rainfall

event and a warm frontal passage. To assess this, we

record the peak intensity of each identified event.

Further on, percentile thresholds are used in the anal-

ysis, thereby avoiding the effect of possible biases in

model data. In particular, to focus on the upper tail of

the precipitation distributions, a number of high per-

centiles are used and are calculated for all grid points

and all hours (wet plus dry) within the domain for

models and observations separately. The statistics as-

sembled through this methodology provide the basis for

the computation of probability distributions of spell

duration and intensity.

The significance of model–observation differences are

assessed using a block bootstrap method (Efron and

Tibshirani 1993). Autocorrelation of the data is consid-

ered by the use of blocks, and here the block size is set to

the number of hours per summer season. For each pixel

500 resamplings are generated, and all these surrogate

time series undergo the same statistical analysis as de-

scribed above, resulting in 500 probability distributions

for duration and peak intensities. From this we can

calculate 500 differences between model and observa-

tions (or between different model versions). If the 99%

confidence interval of these differences does not include

zero, the difference is considered statistically significant

at the 1% level.

c. Statistical analysis of hourly extremes

By the very nature of extremes, the rarity of events

makes the robustness of a direct analysis of them weak,

and one needs to apply statistical methods and models

specifically designed for the tail behavior of distribu-

tions. In this study we employ the peak-over-threshold

(PoT) method, which exclusively describes the charac-

teristics of precipitation events that exceeds a high-

enough threshold (Coles 2001). PoT has recently been

applied in several studies of extreme precipitation at

daily and subdaily time scales (e.g., Früh et al. 2010;

Feldmann et al. 2013; Chan et al. 2014). The well-known

asymptotic three-parameter generalized Pareto distri-

bution (GPD) (Hosking and Wallis 1987) is used to

describe the behavior of the PoT events, and the asso-

ciated parameter estimation is performed using the

method of L moments (Hosking 1990). The latter is the

preferred method of estimation for small data samples,

as is the case here, over other methods like maximum

likelihood (Hosking andWallis 1987). GPDs are defined

by a, k, and j, which represent the scale (describing the

dispersion), the shape (analogous to skewness), and the

location (equivalent to the threshold for exceedances),

respectively. The cumulative distribution function is

then given by the following:

F
(k,j,a)

(x)5

12

�
11

k(x2 j)

a

�21/k

, k 6¼ 0

12 exp

�
2
(x2 j)

a

�
, k5 0

.

8>>>><
>>>>:

(1)

Use of PoT entails the sampling of data that exceed a

predefined threshold, a limit that should be high enough

to ensure that the assumptions of the statistical model

are justified and low enough to capture a reasonable

number of events. Recent literature suggest the use of a

(wet) percentile threshold in the range of 90%–95%

(e.g., Chan et al. 2014; Feldmann et al. 2013; Tomassini

and Jacob 2009), and we deploy in this study the 95th

percentile of wet values (.0.1mm). The underlying pre-

cipitation data are highly susceptible to serial correlation,

and to make sure that only distinct events are used, we

apply an automatic declustering technique developed by

Ferro and Segers (2003). Also, to increase robustness, the

PoT analysis is applied to pooled grid points; the nearest

neighbors of each grid point (i.e., a total of nine grid

points) are included in all separate calculations. We do

this under the assumption that the threshold of the actual

grid point is valid for all of the pooled members. How-

ever, in areas with very strong spatial gradients in pre-

cipitation (climatologically) this assumption may not be

completely valid.

4. Results and discussion

a. Spatial distribution and frequency analysis

Figures 2 and 3 present the spatial distribution of daily

and hourly precipitation statistics over the Alps and

Switzerland, respectively. Although HCLIM is gener-

ally able to represent the overall spatial distribution of

summermean daily precipitation, including the complex

variability within the Alps massifs, it clearly over-

estimates precipitation in mountainous areas, especially

in HCLIM2, which has a strong correlation between wet

biases and topographic features. A summer wet bias in

the Alps compared to EURO4M has been seen in other

RCMs and CPCMs (e.g., Ban et al. 2014), although not

as large as in HCLIM. The wet biases over the Alpine

peaks and crests are mostly due to too-frequent pre-

cipitation events as clearly seen for hourly precipitation

statistics over Switzerland (Fig. 3, top) comparing

models to RdisaggH observations. It is most notable in

HCLIM6 and HCLIM15, while, interestingly, they

concurrently underestimate the mean wet hour intensity

(Fig. 3, middle). In the southern Alpine regions fewer

wet hours are observed, which is relatively well simu-

lated by HCLIM2, but in HCLIM6 and HCLIM15 this

is highly overestimated apart from southern Ticino.
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Interestingly, the observed mean intensity of wet hours

has a distinct maximum in the Ticino area; thus this area

is exposed to few but quite vigorous rain spell events

(Isotta et al. 2014). This is also supported by considering

the fraction of total precipitation received from in-

tensities in the upper part of the distribution (Fig. 3,

bottom). This combined characteristic is much better

simulated in HCLIM2 compared to the other HCLIM

versions. In the northernmost part, on the other hand,

HCLIM2 underestimates the frequency but over-

estimates the intensity of events, while in HCLIM6 and

HCLIM15 it is the other way around. Note that in the

southeastern and to some extent in the southwestern

part of Switzerland, the quality of RdisaggH observa-

tions is relatively low, primarily because of low radar

data coverage and radar beam shielding effects due to

steep topography (Wüest et al. 2010), and the in-

terpretation of results in these areas should be done with

caution.

One major benefit of increased model resolution is

expected to occur in mountainous regions as the finer-

mesh grid provides a more detailed representation of

orography and hence of surface forcing. In Fig. 4 this

expected behavior is further explored. The rate of

precipitation as a function of altitude (Fig. 4, top) in

observations and HCLIM shows that RdisaggH and

HCLIM2 exhibit qualitatively similar behavior for daily

amounts with an increase in rates up to around 1000m.

However, there is a clear underestimation of HCLIM6

and HCLIM15 for these lower-lying areas (see also

Fig. 2). Above this altitude, the patterns diverge; in all

versions of HCLIM the rates continues to increase until

about 2000m, while EURO4M reaches a maximum

just below about 1500m and then starts to decrease. It

is worth mentioning that at the higher elevations,

EURO4M most likely underestimates precipitation

amounts because of a lack of observations (Isotta et al.

2014). AlthoughHCLIM2 has distinctly larger absolute

values, it does capture the overall decrease at higher

altitudes in closer agreement with EURO4M than the

coarser simulations. Over Switzerland, for the hourly

precipitation rates, the dependence on altitude is also

remarkably similar between RdisaggH and HCLIM2.

Differences between HCLIM6 and HCLIM15 are

generally small.

The observed trans-Alpine character of hourly aver-

ages (Fig. 4, bottom) exhibits a shielding effect in both

the eastern and western parts, manifest as minimum

values at or close to shallow valleys within the Alpine

crest areas. This is well captured by the models. On the

northern slopes there is an observed increase in pre-

cipitation rate followed by decreases in the flat areas

FIG. 2. The summer [June–August (JJA)] season mean daily precipitation from the HCLIM simulations and

EURO4M. All data are on their original resolution grids.
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farther north, a pattern that is broadly seen also in

HCLIM; however, HCLIM2 shows greater realism than

HCLIM6. Note the strong increase in precipitation from

the crest and southward, an area frequently subjected to

heavy precipitation events in the mesoscale during

summer and fall (Isotta et al. 2014; Frei and Schär 1998),
again well captured by HCLIM2 but weak and erratic

in HCLIM6.

Frequency–intensity distributions of daily and hourly

precipitation totals are presented in Fig. 5. Only wet days

and hours are considered in the analysis. On daily time

scales, HCLIM shows good agreement with EURO4M.

HCLIM2 overestimates the moderate-to-strong events

(;20–40mmday21), while HCLIM6 and HCLIM15 un-

derestimate these. For the very extreme events, there

is a good resemblance between HCLIM and EURO4M,

most clearly seen in the inset figure, showing only the

highest intensities, with models and observations on

their native grid. Here, HCLIM6 shows an exceptionally

close agreement with EURO4M, as does HCLIM2 but

not to the same extent, while HCLIM15 systematically

underestimates the probabilities. For the hourly esti-

mates, the results are markedly different. The resolution

and explicit or nonexplicit convection dependencies

become evident. With outstanding accuracy, HCLIM2

matches RdisaggH over almost the complete spectrum

of intensities, whereas HCLIM6 and HCLIM15 already

have statistically significant (as depicted by the 95%

confidence interval) lower probabilities for moderate

intensities and then continuously lower probabilities for

successively stronger intensities. HCLIM6 does, how-

ever, perform somewhat better than HCLIM15, which

signifies some added value from the increased model

resolution.

The results so far confirm the commonly stated con-

clusion frommultiple other studies that RCMs at meso-g

horizontal resolution with convection parameterization

schemes may be able to reproduce observed frequency–

intensity distributions of daily accumulated precipitation;

however, on the subdaily time scales, they are gener-

ally outperformed by CPCMs (e.g., Ban et al. 2014;

Fosser et al. 2015). Precipitation extremes and associ-

ated high-impact events such as flash floods most often

involve convective processes with life time spans of a

few hours (Ulbrich et al. 2003; Doswell et al. 1996).

This highlights the importance of the subdaily time

evolution of precipitation, especially during summer

with rainfall of predominantly convective origin, and

FIG. 3. Precipitation statistics over Switzerland. (left)–(right) RdisaggH, HCLIM2, HCLIM6, and HCLIM15 using the following sta-

tistics: (top) wet hour frequency (fraction), (middle) mean wet hour intensity (mmh21), and (bottom) fraction of precipitation from hours

with moderate-to-high intensity ($75th percentile on wet hours; fraction). All data are kept at their respective horizontal resolutions.
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how it is represented in climate models (Kendon et al.

2012). It is important to note that there is generally

better agreement between HCLIM2 and RdisaggH on

hourly time scales than on daily time scales (where

RdisaggH is in agreement with EURO4M; not shown),

suggesting that analysis is sensitive to thresholding of data.

In addition, small hourly biases accumulate to larger (rel-

ative) values when aggregated to daily intensities (Fig. 3).

b. Extremes

How are hourly precipitation extremes represented in

HCLIM? Because of the inherent uncertainty associ-

ated with extremes (very low frequency) and the rela-

tively short-term simulations in this study, we address

this question by extending the basic validation (Figs. 3

and 5) with extreme value analysis, adopting the PoT

statistical model (section 3c). This provides amuchmore

complete analysis of the statistical distribution of ex-

treme rainfall events.

The parameters that define the extreme value distri-

butions over Switzerland in HCLIM and RdisaggH are

shown in Fig. 6. For brevity only HCLIM2 andHCLIM6

are included in the figure, showing analysis made on the

6-km grid resolution.An analysis performed on the 15-km

grid showed that HCLIM15, at best, showed similar but

mostly less accurate results than HCLIM6. The scale

a and shape k parameters are diagnostics of the dis-

persion (analog to standard deviation) and skewness

(thinness/thickness of the tail) of the distribution, re-

spectively (section 3c). The spatially averaged scale

parameter is somewhat overestimated in HCLIM2,

mostly resulting from the larger estimates in northern

Switzerland, but otherwise is in good agreement. Con-

versely, HCLIM6 has too ‘‘narrow’’ extreme value

FIG. 4. Precipitation rate dependency on height. (top) Precipitation rates have been binned into 200-m height intervals, and in each bin

themedian value is computed.At least 10 grid points need to exist in each bin. No prior horizontal aggregation has been performed for any

of the data. (bottom) North–south cross sections of hourly gridpoint-average precipitation over (left) western and (right) eastern Swit-

zerland (see Fig. 1 for the definition of the segments). In the bottom panels the orography fromHCLIM6 is shown, and here all data have

been interpolated onto the 6-km grid.
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distributions reflected in the lower estimates in most

parts of the domain. The highest values are observed in

Ticino, which is consistent with the few but vigorous

events seen in this area (Fig. 3). HCLIM2 is able to re-

produce this maximum but this is much lower in HCLIM6

(barely perceptible inHCLIM15; not shown).HCLIMhas

trouble reproducing the skewness; HCLIM2 has overall a

somewhat thin tail and HCLIM6 has better spatial mean

but larger regional differences. Interestingly, HCLIM2

(HCLIM6) underestimates (overestimates) the skewness

in Ticino. The threshold for exceedances (location, de-

fined here by the 95th percentile of wet hours) is well

captured by HCLIM2, with a similar spatial average as in

RdisaggH but for example too high estimates in the

north. In HCLIM6 the location is clearly underestimated

throughout the domain.

These parameters form the basis from which one may

extrapolate the behavior of extreme precipitation be-

yond the considered time scale. Return levels z, defined

as the (high) quantile value of the GPD distribution,

which is exceeded, on average, once every T years, the re-

turn period. Using the quantile function, which is the in-

verse of Eq. (1), and the estimated crossing rate l (i.e., the

expected number of events exceeding the threshold per

year or season), the return level is given by the following:

z(T j j,a,k)5
8<
:
j1

a

k
[(lT)k 2 1], k 6¼ 0

j1a ln(lT) , k5 0

, (2)

where j, a, and k are the GPD parameters. Estimates of

z as a function of log10(T) are shown in Fig. 7, the lines

representing the domain average values. We again only

consider HCLIM2 and HCLIM6 because HCLIM15 se-

verely underestimates all return levels (not shown). In

addition to hourly return levels, the data have been ag-

gregated in time to 6 and 12h, respectively, to investigate

the sensitivity to the temporal evolution of events (in a

statistical sense). As only seven seasons have been sam-

pled, the uncertainty for return levels of largeT is large. In

Fig. 7 return levels for T . 20 years have therefore been

shaded in dark gray to emphasize this uncertainty. For all

accumulations HCLIM underestimates the return levels

for the full range of recurrence intervals T—however,

with clear differences between HCLIM2 and HCLIM6.

At hourly accumulations, the former is rather close to

RdisaggH, especially for shorter return periods. Con-

versely, HCLIM6 significantly underestimates the return

levels across all return periods, which is due to the clearly

too-low values of the threshold j and scale a parameters

(Fig. 6). Despite this, in both model and observations

there is a similar quasi-linear increase of z with log(T),

reflecting the near-zero values of the shape parameter k

(Fig. 6). HCLIM2 has a lower mean value than HCLIM6

and RdisaggH and thus also has the smallest rate of in-

crease of zwith log(T). The slight underestimation in both

HCLIM2 and HCLIM6 in this rate of increase compared

to observations leads to negative biases becoming larger

for larger T.

Similar behavior is seen for the 6-h accumulations

(and also for 3-h accumulations, although hereHCLIM2

match RdisaggH almost perfectly for all T; not shown),

which indicates an insensitivity to accumulation periods

of a few hours. However, there is a sharp shift in the

results for 12-h accumulations. Both model versions

significantly underestimate the return levels and their

FIG. 5. Empirical probability distribution functions of (left) daily and (right) hourly accumulated precipitation rates. All data have been

interpolated to the 15-km grid, except in the inset plot where data are kept at their native grid resolution. The shading represents the 95%

confidence interval computed from a bootstrap calculation using 500 resamples. The Alps area is defined by the area of EURO4M (see

Fig. 1).
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rate of increase. A closer examination reveals that the

differences in z are mainly attributed to much higher

values in RdisaggH in the western part of Switzerland,

an area with relatively low frequency of rain spells, which

on average are moderate or weak (Fig. 3). Hence, the

nonextreme nature of precipitation in this area may not

be adequately described by the GP distribution. Chan

et al. (2014) performed a similar extreme value analysis

for the southern United Kingdom using a regional cli-

mate model at 12- and 1.5-km resolution, the latter

treating deep convection explicitly. In accordance with

our results, the high-resolution model outperformed the

RCM with CP and coarser grid in the summer season.

Even though the convection-permitting model tended

to overestimate return levels, the coarser model had

difficulties representing the rate of increase of z with T

because of an overestimated shape parameter. Here,

HCLIM6 is actually able to realistically represent this

statistical behavior but struggles with the intensity of

extremes, thereby reducing the realism.

c. Spatial frequency of precipitation

Figure 8 depicts two-dimensional representations of

FSS over Switzerland, with threshold along the ordinate

FIG. 6. PoT-fitted parameters: (top) scale (mmh21), (middle) shape (dimensionless), and (bottom) location (mmh21) in (left) RdisaggH,

(center) HCLIM2, and (right) HCLIM6. See text for more details.
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and the horizontal scale on the abscissa. The typical

behavior, seen in the leftmost panel, is that FSS values

increase for larger horizontal scales and decrease for

higher thresholds.We choose to show results for 3-hourly

accumulations to increase the signal for the higher

thresholds; however, the main results do not change for

other accumulation times. It is evident from the figure

that at higher intensities, HCLIM2 has larger FSS values

(more reddish color on the right-hand sides), signifying

better spatial frequency of high-intensity events in

HCLIM2 compared to HCLIM6 and HCLIM15. It

should be noted that for the highest thresholds, the signal

is weak (i.e., few events), which undermines the ro-

bustness of the results. Furthermore, there is no clear

difference between HCLIM6 and HCLIM15, at least

on these spatial scales. Figure 9 presents FSS as a

function of horizontal scale for a few selected thresholds—

namely, 0.5, 2, and 5mmh21 and 15mm (3 h)21, re-

spectively. Already at the lowest threshold, HCLIM2

generates higher FSS than the coarser simulations, and

differences become increasingly evident the higher

the intensity threshold (although the significance of

the differences is, as mentioned, low for the higher-

intensity thresholds). For 2 and 5mmh21 intensity

limits, HCLIM2 reaches random skill faster than

HCLIM6 and HCLIM15, at approximately 15–30-km

smaller horizontal scales, and the upper skill is passed

at approximately 30–60-km shorter scales. For the

highest rate, upper skill is achieved at around 200 km

in HCLIM2, almost 150 km earlier than HCLIM6, not

being reached at all in HCLIM15. Similar results have

been achieved elsewhere; for example, in a suite of

CPCM and RCM simulations at 3–10-km resolutions

over the Alps region, Prein et al. (2013) showed that

the CPCMs performed better with higher FSS values

and skills reached for much smaller spatial scales than

the coarser RCMs.

It is worth reemphasizing that the FSS analysis does

not directly diagnose particular physical aspects of the

simulated precipitation processes such as areal extent

or intensity. However, another important property of

precipitation is the frequency of exceeding a critical

threshold, which can be interpreted as the probability

for a severe event, and in this respect FSS provides

valuable information. Furthermore, we have used ab-

solute threshold values in the analysis, and therefore,

positive results tend to bias toward higher-resolution

models for higher thresholds as they in general have

larger probabilities for occurrences of such events

(assuming no severe deficiencies in the model physics

such as the convection parameterization). Nonetheless,

the purpose of this study is to examine and quantify the

added value using a CPM version of HCLIM compared

to the version with parameterized convection, espe-

cially in terms of realism. Therefore, we find it prefer-

able in the FSS analysis to use absolute thresholds

instead of relative (percentile) thresholds. The results

show that HCLIM2 surpasses both skill limits faster

than HCLIM6 and HCLIM15, most evidently for

stronger-intensity thresholds; hence, there are strong

FIG. 7. Calculated return levels [Eq. (2)] as a function of return periods from the PoT analysis.

See text for more details.
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indications of a higher realism of the spatial frequency

of heavy rainfall events in HCLIM2.

d. Spell duration analysis

Apart from accurate spatial distributions (e.g., where

it rains), the temporal aspect of precipitation events is

also important, as the duration has large impact on the

total amount of accumulated precipitation at a specific

location. In this last section we explore the duration of

precipitation events over Switzerland in RdisaggH and

to what extent HCLIM can reproduce this temporal

characteristic. For this, an Eulerian framework is adop-

ted, whereby the duration of events is calculated for each

grid point separately. Figure 10 presents the probabilities

of rain spell durations for different percentile thresholds

used to define the start (and end) of an event. Each row

represents a probability distribution of spell durations

(x axis) for a given threshold (y axis). The leftmost panels

in Fig. 10 shows the observed probabilities for different

percentile thresholds (Fig. 10, top) and peak intensities

FIG. 8. FSS (colors and values) as a function of neighborhood size (spatial scale) and threshold [mm (3 h)21], computed over the domain

of Switzerland using RdisaggH as observations. (top left) HCLIM2 and differences between (top right) HCLIM2 and HCLIM6, (bottom

left) HCLIM2 and HCLIM15, and (bottom right) HCLIM6 and HCLIM15.
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(Fig. 10, bottom). Typically, for the highest percentile

thresholds, the duration of rainfall tends to be short,

probabilities decreasing quickly for durations of more

than a couple of hours. Intuitively, and what is also ob-

served, for lower thresholds there is an increase in the

probabilities for events to last longer (e.g., a larger chance

of neighboring time steps being included in a single rain

event). The observed dependency of peak intensity of

the complete rain spells (i.e., using a very low threshold

of 0.1mmh21) on the duration of events indicates that

low peak intensities are usually associated with short-

lived events, and moderate-to-strong peak intensities,

between approximately 2 and 10mmh21, are embedded

in spells with a greater range of durations; that is, even for

more persistent events (6–12h), the probabilities remain

relatively high. For the most intense peak values, there

are few events (Fig. 5) that are distributed evenly across

the event durations. The models have similar behavior,

but there are significant differences in the probability

distributions as seen in Fig. 10, especially for the coarser

HCLIM runs. The latter clearly underestimates the fre-

quency of very short 1–3-hourly events and overestimates

the longer-lasting spells. This deficiency is particularly

pronounced for the heaviest rain spells (percentiles$ 99th

percentile). Furthermore, HCLIM6 and HCLIM15

too frequently produce multihour rain spells with low

peak intensities and underestimate the occurrence of

short-duration low-to-moderate peak intensity events.

These kind of deficiencies have been noted in other

RCMs (e.g., Kendon et al. 2012) and is most probably

FIG. 9. FSS skill curves computed over Switzerland using RdisaggH observations and for a number of different precipitation intensity

thresholds. The colored lines show the medians of FSS. See text for definition and interpretation of FSSr and FSSu.
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related (at least in part) to the use of a convective pa-

rameterization. This bias pattern is consistent with

a problem seen in many climate models; the too early

onset of diurnally forced convection, prohibiting the

buildup of convective available potential energy and

often resulting in a lower late afternoon maximum in

convective precipitation rate than observed (e.g.,

Brockhaus et al. 2008; Kendon et al. 2012; Prein et al.

2013; Ban et al. 2014). For both the duration proba-

bilities and peak intensities, HCLIM6 shows better

agreement with observations than HCLIM15 (mostly sta-

tistically significant), most clearly for spell durations #6h

(Fig. 10, right panels). In stark contrast to these results,

HCLIM2 does a much better job at simulating the ob-

served characteristics, signified by the much smaller dif-

ferences in the probabilities compared to RdisaggH. This

largely resembles the results and conclusions of Kendon

et al. (2012), although for a different region and model.

HCLIM2 does show some overestimation of the occur-

rence of 1-hourly events for the higher percentiles and

slight underestimation for multihourly events, the differ-

ences being statistically significant. For the peak in-

tensities, HCLIM2 displays similar behavior to HCLIM6

but with a much reduced bias, and overall there is a

significant improvement in the use of HCLIM2 compared

to HCLIM6 and HCLIM15.

5. Conclusions

Accurate model projections of precipitation distribu-

tion, especially the frequency and intensity of wet ex-

tremes, still remain one of the largest challenges in the

climate model community. Commonly, models have er-

rors due to inadequate representation of local and re-

gional forcing and to unresolved processes important for

correct storm evolution. Recently, the introduction and

application of convection-permitting climate models

(CPCMs) at the kilometer-scale resolution has resulted

in a marked increase in accuracy and realism of small-

scale, convective precipitation events (e.g., Kendon et al.

2012; Prein et al. 2015; Ban et al. 2014) and its extremes

(e.g., Chan et al. 2014). However, it still is computa-

tionally very expensive to run these models, and the

experiments are usually confined to short time periods

and/or small domains using a singlemodel. In absence of

any large multi-CPCM ensembles to study uncertainties

and robustness associated with model differences, in-

troducing new CPCMs in separate experiments and

FIG. 10. Probability distributions (top) of spell durations for precipitation exceeding different percentile thresholds and (bottom) for

peak intensities given a threshold of 0.1mmh21 (after Kendon et al. 2012). Differences not statistically significant are shaded in gray, and

white means zero probability. Results are shown for (left) RdisaggH, (left center) HCLIM2 minus RdisaggH, (right center) HCLIM6

minus RdisaggH, and (right) HCLIM6 minus HCLIM15.
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testing for reproducibility of results adds important

information for future applications. Furthermore, the

question of cost versus benefit is becoming more and

more important to answer within the regional climate

modeling community.

In this study we have employed the HCLIM RCM

at various resolutions; at 15, 6.25, and 2km, respectively,

over the Alpine region. Seven summers have been

sampled and the validation of the intensities, durations,

and frequencies of precipitation spells have been studied

using high-resolution gridded observations, based on

synoptic as well as radar measurements. In contrast to

HCLIM2, HCLIM15 and HCLIM6 use a hydrostatic

dynamical core and convection parameterization. Our

results show HCLIM in general has some problems in

the simulation of precipitation distributions. For exam-

ple, HCLIM underestimates dry days and hours by ap-

proximately 20%–40%compared to observations,making

the statistical analysis sensitive to thresholding of the data.

Also, there is a clear overestimation of precipitation in

connection to theAlps crest areas. Despite these issues,

we conclude that HCLIM2 is able to represent spatial

and temporal (duration) characteristics of subdaily

precipitation, including extremes, with a considerable

larger realism than its coarser counterparts that uses a

convection parameterization scheme. For example, at

an intensity of 15mm (3 h)21, HCLIM2 attains a pre-

defined level of skill in the simulation of spatial fre-

quency of events at a horizontal scale 36% shorter than

HCLIM6, at 220 and 345 km, respectively. The in-

creased realism in HCLIM2 support findings in other

similar studies using CPCMs (e.g., Prein et al. 2013;

Ban et al. 2014; Kendon et al. 2012; Fosser et al. 2015;

Chan et al. 2014) and further points to a distinct ad-

vantage of using CPCMs in modeling of subdaily pre-

cipitation, particularly in regions where and seasons

when deep convection is dominant and also in areas

with strong topographical heterogeneity. These are all

characteristics that have been shown important in past

flash flood events in Europe (e.g., Ulbrich et al. 2003;

Lin et al. 2001). With respect to future projections of

extreme precipitation using CPCMs, it is worth pointing

out that these models, although skillful in representing

precipitation processes, are dependent on driving large-

scale models to provide good large-scale circulation

within which the CPCMs will operate.

With regards to the benefit of ‘‘gray zone’’ resolution,

no clear improvement has been shown here in HCLIM6

compared to HCLIM15. HCLIM6 does, however, show

larger probabilities for high-intensity events, statistically

significantly at hourly time scales, in better agreement

with observations. Furthermore, HCLIM6 statistically

significantly reduces biases in the duration and peak

intensity of rain spells, particularly for shorter 1–6-h

events, and also has a somewhat better skill in the

spatial frequency as shown by the FSS analysis. In sum-

mary, HCLIM6 shows an improvement compared to

HCLIM15—however, not always beyond uncertainties

associated with the analysis and not near the improve-

ment seen in HCLIM2. It is worthwhile to consider dif-

ferences in computational cost. HCLIM6 is about 5 times

more expensive asHCLIM15 to run; thus, it may bemore

reasonable to use a resolution of approximately 10–15km

on the scale of Europe, which is then downscaled by a

CPCM, skipping the intermediate resolution. Finally, the

use of a CP scheme in RCMs limits the models’ ability to

simulate convective events correctly. There are similar

issues in this version of HCLIM as well, even though

HCLIM uses a scale-independent (down to a few kilo-

meters) scheme. However, no clear conclusions in this

matter can really be drawn in this study, and further in-

vestigations are needed.
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