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a b s t r a c t

We outline the smart manufacturing challenges for formulated products, which are typically multicom-

ponent, structured, and multiphase. These challenges predominate in the food, pharmaceuticals, agricul-

tural and specialty chemicals, energy storage and energetic materials, and consumer goods industries,

and are driven by fast-changing customer demand and, in some cases, a tight regulatory framework.

This paper discusses progress in smart manufacturing—namely, digitalization and the use of large data-

sets with predictive models and solution-finding algorithms—in these industries. While some progress

has been achieved, there is a strong need for more demonstration of model-based tools on realistic prob-

lems in order to demonstrate their benefits and highlight any systemic weaknesses.

� 2019 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and

Higher Education Press Limited Company. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

1.1. Characteristics of this industry and its products

Formulated products such as food, pharmaceuticals, agricul-

tural and specialty chemicals, energy storage and energetic mate-

rials, and consumer goods are among the largest and most

dynamic businesses in the UK manufacturing sector, bringing sales

and exports in excess of 168 billion GBP to the UK economy each

year. The UK food industry sector alone employs over 3.8 million

people [1], and the UK pharmaceutical industry also has a large

share in the UK manufacturing sector and employs a workforce

of approximately 73,000 [2]. Within Europe, of the 507 billion

EUR trade in chemicals (excluding pharmaceuticals), 13.6% (68 bil-

lion EUR) is in consumer chemicals [3]. A further 258 billion EUR is

in pharmaceuticals [4], so the chemical and pharmaceutical indus-

tries make up a major sector of the UK and EU economies. This

industrial makeup is characteristic of advanced economies, and

we can expect the manufacture of these products to grow in devel-

oping economies in order to cope with increasing demand.

In contrast to bulk chemicals, formulated products are often

multicomponent. These are structured, multiphase products (i.e.,

granules, tablets, emulsions, and suspensions) whose performance

characteristics—critical quality attributes (CQAs)—are just as

dependent on the product structure as they are on the chemical

composition. Such products have a complex performance designed

in, for example, the controlled-released profile of a pharmaceutical

tablet. The structure of the products allows for apparently incom-

patible CQAs to be achieved, such as a water-dispersible herbicide

granule that is strong enough to resist attrition and dust formation

during handling, but disperses ‘‘instantaneously” to a stable dis-

persion when mixed with water on the farm. This tension between

physical and chemical stability during handling, transportation,

and storage, with ‘‘instability” (i.e., dispersion, dissolution, reac-

tion, etc.) on delivery, is a common characteristic of formulated

products. To meet increasingly demanding performance criteria,

products are becoming more complex in nature and are often

designed and marketed in conjunction with the delivery device,

such as a coffee pod and espresso machine (see Fig. 1) [5].

Formulated product manufacture can also be comparedwith the

industrial engineering of more traditionally made products. An air-

craft wing made from composite materials is highly complex, with

important structures on many length scales. A manufacturing plant

may produce dozens of aircraft wings each year, and their lifetime is

decades. Adetergent granule is also a complex structure. Amanufac-

turingplantmakes billions of granules eachday, and their lifetime in

use is seconds to minutes. Thus, formulated products need to com-

bine the most sophisticated tools of process engineering and product

engineering in their design and manufacture (see Fig. 2).
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1.2. Smart process manufacturing

Smart manufacturing refers to the goal of using data, models,

algorithms, and computer control to optimize the whole supply

chain in the production of manufactured products. Smart manufac-

turing is a stated priority of most major economies, including the

US, China, and the EU. Smart process manufacturing is the applica-

tion of this approach to process manufacturing [6,7]. It is also often

referred to as Industry 4.0. Timely data and massively connected

systems are important, but to make the most use of data, it is nec-

essary to have models and algorithms.

The smart manufacturing revolution is said to have three

phases: ① Factory and enterprise integration and plant-wide opti-

mization, ② the exploitation of manufacturing intelligence, and ③

the creation of disruptive business models.

The challenges for smart process manufacturing have been set

out by Bogle [6]. In particular, these have been framed in terms

of the need for ① flexibility and uncertainty; ② responsiveness

and agility;③ robustness and security;④ selling molecules, struc-

tured products, or function; and ⑤ modeling and mathematics.

Smart manufacturing capability is particularly needed in a

number of process sectors that produce formulated products. Con-

sumer goods need to be very responsive to customer demand (in

the same way as the food industry), so their manufacture must

be quickly adjusted to product and volume changes, which are very

dependent on changing consumer demand. The pharmaceutical

industry has historically had to be less responsive as healthcare

requirements are more regular, but there are many pressures on

healthcare providers, with drug-purchasing budgets—often by

national agencies—requiring greater efficiency and less inventory.

In the future, as the promise of personalized medicine becomes

more realistic, there will be a need for much more responsive man-

ufacturing for specific patients or patient groups, which will often

be small groups. The pharmaceutical industry is also expecting to

bring new products faster to market in order to give them a com-

petitive edge and to have very rapid response in producing vacci-

nes for epidemics/pandemics. There may also be a more

changeable regulatory environment and faster response to chang-

ing product quality requirement, as well as possibly greater regu-

lation of manufacturing operations.

This paper addresses the challenges for the smart process man-

ufacturing of formulated products, focusing on the five challenge

areas listed above in turn. First, however, we outline the current

situation and some new developments arising from the research

community.

2. Current situation

A great deal of factory and enterprise integration and plant-

wide optimization has taken place in the chemical and oil indus-

tries, but for formulated products, this trend seems to be less well

advanced. The need for faster response has driven technical strat-

egy towards better supply chain optimization. However, plant con-

trol and optimization are more challenging due to the more

complex products—often in the solid phase—and the use of unit

operations that are less well characterized for the wide range of

products being manufactured [8].

The process industry is undergoing a major change to embrace

manufacturing intelligence, driven by the need for more tightly

integrated supply chains on the basis of consumer demand. This

is particularly true for formulated products.

Maier [9] reported to the UK Government in 2017 with ‘‘a set

of proposals that will equip the UK with the means to fully

embrace the next industrial revolution.” In particular, he pro-

posed ‘‘adoption of state-of-the-art digital simulation tools,” ‘‘a

product paradigm away from the ‘make and test’ to a more pre-

dictive digital framework,” and the need for new infrastructure

and skills to achieve these goals. He highlighted the need for

integrated manufacturing capability for efficiency and

responsiveness.

Maier highlights a number of barriers to the introduction of dig-

italization in the pharmaceutical industry, namely:

� Regulatory environment;

� Lack of skills in digital design and mathematical process

models;

� Lack of skills in digital technologies;

� Capital, development, and regulatory costs to make the

change.

Introducing disruptive technologies such as integrated continu-

ous end-to-end manufacturing with the aid of high-quality models

can allow the on-shoring of pharmaceutical manufacturing [10].

Digital technology in new and existing production facilities

improves manufacturing productivity by 30%–35%. Smart packag-

ing, which allows the adoption of an adaptive supply chain model,

can reduce lead times by 45%–55%.

Opportunities for digitalization involving the application of

model-based methodologies and tools of process systems engi-

neering (PSE) to the pharmaceutical industry include:

� Accelerated scale-up, design, and modeling of new manufac-

turing processes;

� Boosting manufacturing productivity through automation and

predictive process control;

� Smart packaging and optimized supply chains;

� Novel diagnostics, patient monitoring, and modeling.

For new medicines, flexible production facilities that can man-

ufacture both clinical and commercial supply are needed (i.e.,

scale-up and -down production rates in the same facility).

Fig. 2. Manufacturing formulated products—the nexus between process and

product engineering. PSE: process system engineering.

Fig. 1. Increasing sophistication of formulated products.

2 J. Litster, I.D.L. Bogle / Engineering xxx (xxxx) xxx

Please cite this article as: J. Litster and I. D. L. Bogle, Smart process manufacturing for formulated products, Engineering, https://doi.org/10.1016/j.

eng.2019.02.014



The Industry 4.0 and smart manufacturing paradigms embrace

the use of artificial intelligence, machine learning, and big data

approaches, although research in these fields is relatively new.

Ning and You [11] recently presented a new approach for data-

driven stochastic robust optimization using machine learning. A

number of works have been published presenting data-driven

approaches to the optimization of process systems [12–15]. Jordan

and Mitchell [16] present more general trends and prospects for

machine learning.

The final element of smart manufacturing is the development

of disruptive business models. From a historical standpoint, the

pharmaceutical industry has moved from discovery-driven com-

panies to manufacturers of generics and consumer goods, as

companies and manufacturers struggle to find new blockbuster

drugs. The advent of personalized medicine challenges many

things about both the business model and the regulatory model,

with the advent of smaller batches for small groups of patients

where there will not be large groups for safety and efficacy

testing.

Many of these barriers and opportunities are also relevant to

the broader range of formulated products. For example, the agro-

chemicals industry is also changing, with tighter environmental

and safety constraints, and with better biological understanding

resulting in more targeted product dosage and delivery. This shift

could result in a need for small local manufacturing close to

demand. The developing world has different needs: The biological

requirements are different, the environmental challenges are sev-

ere, and the economic pressures make it necessary to cut costs

and waste.

In the following sections, we consider each of the five aspects of

smart process manufacturing outlined by Bogle [6]. We discuss dri-

vers for change for the formulated product industries, examine

progress using PSE techniques and others, and highlight potential

challenges and opportunities.

3. ‘‘Who knows?: Flexibility and uncertainty

3.1. Drivers for change

While the chemical industry mostly produces chemical feed-

stocks—which are the building blocks for other manufactured

products in the construction, transport, aerospace, energy, and

other key industries—many formulated products are produced for

almost immediate use, notably in consumer goods and pharmaceu-

ticals. Customer demand must drive the manufacture of consumer

products. The pharmaceutical industry is currently less driven by

immediate demand, but personalized medicine may change that

in the future.

Global markets are more closely linked than ever before; yet

regulations vary between jurisdictions. This requires manufactur-

ers either to ensure that their products satisfy the regulations in

all the markets they serve, or to be able to adjust their manufactur-

ing processes to manufacture to the appropriate standard. Of

course, this also means that if any regulatory changes are made,

it is important for manufacturers to respond quickly. Similarly, it

is increasingly important to be able to respond quickly and effi-

ciently to quality concerns and changes demanded by the

consumer.

In pharmaceutical dosage form manufacturing, very small

amounts of material are needed for phase I, II, and III clinical trials

during the development and registration of a new drug and formu-

lation. This formulation then needs to be scaled up to the develop-

ment and then manufacturing scales, and must often be

transferred and validated in different manufacturing sites around

the world. It is a real challenge to maintain the product CQAs dur-

ing this process. While chemistry is relatively easy to scale, struc-

ture (on length scales from nanometers to millimeters) does not

scale well using traditional chemical engineering approaches.

Being able to scale up and scale down during the development pro-

cess is critical.

Speed to market is also critical for new pharmaceutical prod-

ucts, whose value reduces dramatically once they come off patent.

A delay of six months due to issues in the development and scaling

of the manufacturing process could result in lost revenue of mil-

lions of GBP [9].

To extend the patent life of pharmaceutical products, new

dosage forms (immediate release, controlled release, etc.) may be

introduced. Flexibility in manufacturing facilities to allow different

dosage forms—or dosage forms with different performance charac-

teristics—is very necessary.

A significant future requirement is the promise of personalized

medicines. The explosion in genetic and metabolic information

about individuals and small groups of patients with specific condi-

tions is leading to the possibility of medicines being tailored for

small groups of patients or even for individuals. Clearly, there are

very significant challenges in this endeavor. The manufacturing

expense is one small part; more significant is the expense of ensur-

ing the safety and efficacy of a drug that has not had extensive tri-

als. This will be a significant challenge to the regulatory framework

for new medicines, although the technical capability is being

developed. The capability to manufacture and deliver in a timely

way also needs to be developed.

3.2. Smart manufacturing progress and challenges

The pharmaceutical industry has particularly tight constraints

to innovation in product and process design [17]. Regulatory

restrictions have made flexible manufacturing constrained, except

within tightly constrained operating windows. Efforts have been

made to define these windows and to expand them while still

retaining regulatory permission [18]. To obtain more generalizable

and robust operating conditions, there have been developments in

the more comprehensive design of experiments to determine the

most appropriate set of operating conditions [19]. Reconfigurable

manufacturing capability has provided scope for more flexible

manufacturing, although much of it is limited by the extent of

the manual operational change that is required. Finally, there has

been a move from batch operations to continuous operations in

the specialties areas, which has provided some efficiencies and a

degree of flexibility, albeit with the limitations of changeover

periods.

Uncertainty also poses considerable challenges, with changes in

demand, raw material supply, and regulatory conditions all result-

ing in uncertainty in manufacturing schedules. Systems engineer-

ing approaches for this problem have been well studied. Some

recent contributions showing the power and scope of these meth-

ods can be found in Refs. [15,20–22].

In pharmaceutical products for oral dosage forms, there is a

major move toward continuous manufacturing. In many cases, this

allows scale-out in time—rather than scale-up in volume—to over-

come the scale-up issues described above. Development batches

can be produced while running a facility for a few minutes to a

few hours. Full-scale manufacturing may be achieved using identi-

cal equipment that is run continuously for tens to hundreds of

hours. This approach is possible because of the small production

capacities required, which are typically in the tens to hundreds

of kilograms. This luxury is not available to other formulated pro-

duct industry sectors, where production rates of hundreds of kilo-

grams to tonnes per day are required at full-scale production

[23,24].

J. Litster, I.D.L. Bogle / Engineering xxx (xxxx) xxx 3

Please cite this article as: J. Litster and I. D. L. Bogle, Smart process manufacturing for formulated products, Engineering, https://doi.org/10.1016/j.

eng.2019.02.014



4. ‘‘I want it now!: Responsiveness and agility

4.1. Drivers for change

Aligned to the uncertainty of predicting future markets is the

need to respond quickly to changes once they are known. Con-

sumer goods requirements can change very quickly, as they are

driven by quality, fashion, and—of course—price. The food industry

works by tracking customer preferences to help predict regular

customer expectations and changes in demand as they occur. In

particular, supermarket chains retain big datasets of customer

information that they can mine to detect changes and speed of

change, so that they can change purchasing and distribution to

respond to demand. Consumer goods must also be responsive to

customer demand and can do so without major regulatory restric-

tions. Wealthier countries are already becoming more demanding

and as the economies of developing countries strengthen, we can

expect even greater demands.

4.2. Smart manufacturing progress and challenges

One way this situation has been addressed in the past is to

develop worldwide supply chains with alternative suppliers of

parts of the product in order to ensure that the product can be

made regardless of local conditions. The limiting extension is to

outsource all aspects of manufacturing for risk management,

although this means complete reliance on third parties.

Many industries have moved to just-in-time manufacturing.

This type of manufacturing is common in the parts manufacturing

industry (e.g., computers and automobiles). Some formulated

products are just mixtures, where this method might be applica-

ble; however, where there are sophisticated manufacturing

requirements, just-in-time manufacturing would be difficult.

A great deal of research has been done on developing supply

chain optimization methodologies for high-value low-volume pro-

duct industries [25–28] and for the manufacturing of consumer-

centric products [29]. These techniques have great potential for

improving the responsiveness of the supply chain. Maier [9] out-

lined some of the enabling technologies that are required: smart

plant equipment, sensor networks, high-throughput testing, vir-

tual reality simulation and modeling tools, wireless connectivity,

artificial intelligence, and so forth. Some of these technologies

are mature, while others require more development and testing.

However, integration of the tools for product delivery requires con-

siderably more development through simulation and pilot-scale

testing before the tools will be ready for implementation and their

full benefits delivered.

5. ‘‘Can you guarantee it?: Robustness and security

5.1. Drivers for change

Quality—and its reliable delivery—is a major driver for change.

Pharmaceutical and food products must be physically, chemically,

and biologically stable during handling and storage. Stability and

shelf life are critical attributes. Failure in this regard can be catas-

trophic, with potential for the injury or death of customers/pa-

tients in worst-case scenarios. The recall of products due to

stability failure is extremely damaging to any company. Although

the consequences of failure are less catastrophic, many consumer

goods rely on robust stability and long-term shelf life. For example,

the caking of powdered products and the separation of emulsified

liquid products can render those products valueless.

Breakdown of product stability occurs over long timescales—

from days to months to years—and is often related to the tails

of the distribution of the properties of the material; that is, the

single largest flaw may lead to the brittle failure of a compact,

or a single nucleation site may lead to unwanted crystallization

of an amorphous drug product. These effects make stability very

difficult to predict from simple measurements made during man-

ufacturing and product release. Increasing the fidelity of predic-

tive models for product quality and stability will lead to their

use in the integrated monitoring and control of whole supply

chains.

It is still common to predict the point or mean values of pro-

duct quality. Measurements and models really must be able to

cater to variable distributions in order to ensure consistent qual-

ity within individual units, as well as in batches or continuous

lines of product. Modeling methods have long been able to cater

to product distributions using population balance methods. Nev-

ertheless, they require more sophisticated solution techniques

when integrated with large-scale models, and will require more

data to ensure accuracy. We will then be in a position to use

these models for predictive dynamic performance and to include

them in the optimization of whole supply chains in order to

ensure reliable delivery of high-quality products following

disturbances.

The need for such responsiveness is growing. Consumers expect

timely delivery of high-quality products even during major health

scares and consumer goods shortages, which can be affected by

outsourced manufacturing and transportation through interna-

tional trouble spots.

5.2. Smart manufacturing progress and challenges

Advanced control and robust scheduling are both now com-

monplace in these industries (e.g. see Ref. [30]). However, there

is rarely any automated communication between these two layers.

Links are often close in the consumer products industry, where

regulation is less tight. Van Vactor [31] discusses healthcare sys-

tem response to crises, which is of increasing concern (see also

Refs. [32,33]). Supply chain optimization could provide real

benefits.

In the pharmaceutical industry, product testing before release

is an essential regulatory requirement. It is traditionally per-

formed on a batch-by-batch basis, where a few tablets are tested

to represent a full batch. Modern continuous processing is mov-

ing toward real-time release, based on in-line process analytical

technologies (PAT) measurements. This improves robustness, as

often a much larger sample—or even all the tablets—are mea-

sured. For real-time release, high-quality in-line measurement

techniques, robust measurement, and product models are all

required [8].

6. ‘‘What do you want?: Selling molecules, structured products,

or function

6.1. Drivers for change

While the chemical industry—and, to a larger extent, the phar-

maceutical industry—are selling molecules, an important charac-

teristic of the consumer products industry is that the functional

requirements required of the products are fuzzy and depend on

the customer. Some of these requirements, such as feel, taste,

and shelf life, can be linked directly or indirectly to specific mea-

surable properties such as solubility, density, vapor pressure, and

opacity. But many either cannot be measured, or are dictated by

combinations of measurable and unmeasurable properties; or, in

some cases, are subjective and reliant on consumer choice and per-

ception. As societies become more affluent, they become more

demanding.
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6.2. Smart manufacturing progress and challenges

The ability to relate function to product structure and chemistry

requires product models as well as process models (Fig. 3). While the

development of process models for manufacturing remains a

strong area of research and development, product models are

much less studied. In some cases, these models can be quantitative

and based on a strong understanding of the physics of the formu-

lated product, such as models for attrition and breakage, dispersion

and dissolution, or stability of a colloidal suspension [5]. In other

cases, the models must by fuzzy or qualitative, especially those

built around consumer responses or demand.

Ideally, a reverse-engineering approach is required, starting

with a clear specification of the required functionality (perfor-

mance characteristics, CQAs) and working backward to product

structure, process, and formulation choice. Often, a clear statement

of the required functionality is difficult, particularly when it is

related to consumer perception.

Just-in-time manufacturing of consumer products will require

not just product, process, and supply chain models, but also models

for customer demand. Economics and psychology will dictate these

models, and will require much closer integration to produce the

benefits from smart manufacturing.

7. ‘‘Please help!: The enablers—modeling and mathematics

Developing process design and product design models for

formulated products is more challenging than doing so for bulk

chemicals. In the latter case, molecular modeling can often be used

to predict with confidence bulk thermodynamic properties

(solubility), and kinetic properties (viscosity) that can be used in

well-established process design models. In formulated products,

the functionality (performance characteristics) depend on the

structure at many intermediate length scales, from the nanoscale

roughness on individual particles, to micron- and millimeter-

scale properties (e.g., dispersed phase size distribution and shape

distribution, pore size and shape distribution and connectivity),

with component distributions overlaid at all these scales. For this

reason, fully a priori design models for formulated products are rare.

Other challenges for process and product models include:

(1) The models need to model the full distribution of product

attributes, as product failure is often associated with the tails of

the distributions, not the point value (mean)—for example, the

single largest flaw leading to brittle failure of a compact, a single

nucleation site leading to unwanted crystallization of an amor-

phous product, or just one tablet being present whose active

ingredient dosage is too high.

(2) Flow and handling of formulated processes is difficult; there

is a need to model and treat materials transfers as unit operations

in and of themselves, and segregation is common while mixing is

difficult. Spatial variations in composition, stresses, and tempera-

ture are less likely to be ignorable. Lumped parameter models

are rarely sufficient.

(3) Product turnover is high. New products and process designs

must often be done with a very small amount of material to test,

but design is very dependent on formulation material properties.

We are often data poor during process development—the opposite

of the big data challenge.

Kayrak-Talay and Litster [34] proposed three levels of modeling

of macroscopic process models for formulated products (Fig. 4).

The first level, when there is little or no mechanistic information,

requires statistical experiment designs with experiments across

all scales. Where there is some quantitative understanding of the

controlling mechanisms, models are built based on fewer experi-

ments and scale-up is performed using dimensionless groups.

Eventually, it would be desirable to have fully predictive mathe-

matical models covering all physical phenomena, such that the

number of experiments required to validate the model and esti-

mate parameters is small and usually well characterized.

Predictive models need to be able to track the evolution of prop-

erty distributions. Where the product is discrete, therefore, they

are commonly presented in a population balance model frame-

work, although other approaches such as Monte Carlo simulations

are also used. These models may be coupled to continuum models

Fig. 3. Reverse engineering of formulated products; both the process model and the product model are important.
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for continuous phase (finite element models (FEM) and computa-

tional fluid dynamics (CFD)) or particle-scale simulations.

Where the process involves handling and delivering single-

particle processes (e.g., crystallization, grinding), predictive models

are well established. For processes that build structured products

(e.g., granulation, compaction), level 2 models have been used over

the last 15 years. However, robust predictive models are now being

reported (e.g., Refs. [35,36]). There are no processes for which we

can now say ‘‘we know nothing but we can vary the parameters.”

Nevertheless, much industrial practice relies on data-driven (level

1) models based on statistical experimental design.

These model frameworks and predictive models are now avail-

able in robust, commercial software packages such as gFormulate

(Process Systems Enterprise Ltd., UK) and ASPEN (Aspen Technol-

ogy, Inc., USA). The time is ripe to transition from the statistical

design of experiments to model-driven design of formulated prod-

ucts and processes (MoDD FoPP) [37,38]. In this paradigm, experi-

ments done during development are designed to provide necessary

inputs for the design model and to provide model validation. As the

process is scaled up, the model is used to establish the design and

operating space, and target experiments are used for process and

model validation. In MoDD FoPP, the model drives the experimen-

tal design, rather than vice versa.

In general, the models are not a priori fully predictive. The

workflow for obtaining key parameters and validating the model

is key. It is important to know which parameters to ① measure

independently, ② take from the literature, ③ estimate from

particle- or molecular-scale simulation, ④ guess (estimate), or ⑤

back fit from process experiments. At present, these decisions are

often heuristics and rely heavily on the expert modeler/practi-

tioner, in the same way that the operation of these processes in

industry used to rely heavily on the brain of the expert operator.

Robust general frameworks for MoDD FoPP workflows are still

required.

Models for operation to support model predictive control and

the real-time optimization of whole plants will be simpler, and

should ideally be reduced from design models that capture key

physics. Many of the design models are highly nonlinear, and the

risk of exceptional events is much higher than for fluid processing.

While approaches developed by the PSE community for bulk chem-

ical processing (oil and gas) may be transferrable, very few true

attempts have been made to test and validate these approaches

on real processing plants [39]. New approaches to model-based

control strategies and risk analysis may be required [8].

Models to support adaptive supply chains are also a major chal-

lenge, as they must balance the need for appropriate accuracy to

reflect robust operation for quality and safety with the complexity

of the dynamics of the supply chain in order to result in a compu-

tationally tractable problem. Supply chain models have tradition-

ally been based on very gross assumptions about scale and

performance, often only on fixed timespans of batch operations.

Flexibility for quality measures will require models to accommo-

date adaptive timings as well as operating conditions. It will also

require the comprehensive incorporation of dynamic models into

supply chain models, with appropriate solution techniques (for a

review, see Ref. [40]).

8. Conclusions

Much research progress has been achieved in the concepts,

methods, and tools for smart process manufacturing for formu-

lated products, building on progress in the oil and chemical sectors.

However, the formulated products sector is different in that the

products are more complex; the supply chains need to be more

responsive, as they are closer to the consumer; and the product

volumes tend to be smaller, creating larger unit costs. We consider

there to be a real need for greater use of mature model-based tools

to demonstrate proof of concept before a significant degree of take-

up can be expected.

For this to occur, there must still be progress on product mod-

els, better models for consumer demand, and greater integration

of all of these with model-based design, control, and optimization

in order to drive a culture change in industry. Manufacturers of for-

mulated products are very consumer-focused, and thus are acutely

aware of the need for optimized supply chains; however, at this

stage, they are skeptical of the ability of smart manufacturing to

deliver these. Of course, there are differences between the pharma-

ceutical, vaccine, soap, and fertilizer industries and their cus-

tomers; nevertheless, all will benefit from integrated

digitalization to enable them to be more responsive to their cus-

tomers in order to produce timely products with reliable high

quality.
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Fig. 4. Levels of sophistication for the design and scaling of formulated product processes.
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