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Abstract An experimental study of the phase and amplitude observations of sub-ionospheric very low

and low frequency (VLF/LF) signals is performed to analyze the response of the lower ionosphere during

the 21 August 2017 total solar eclipse in the United States of America. Three different sub-ionospheric

wave paths are investigated. The length of the paths varies from 2,200 to 6,400 km, and the signal

frequencies are 21.4, 25.2, and 40.75 kHz. The two paths cross the region of the total eclipse, and the third

path is in the region of 40–60% of obscuration. None of the signals reveal any noticeable amplitude changes

during the eclipse, while negative phase anomalies (from −33◦ to −95◦) are detected for all three paths. It

is shown that the effective reflection height of the ionosphere in low and middle latitudes is increased by

about 3–5 km during the eclipse. Estimation of the electron density change in the lower ionosphere caused

by the eclipse, using linear recombination law, shows that the average decrease is by 2.1 to 4.5 times.

1. Introduction

The total solar eclipse on 21 August 2017, named the “Great American Eclipse,” was observed within a

narrow band (117 km) across the middle part of the United States from the Pacific to the Atlantic coasts

(Figure 1). The first external contact of the penumbral shadow with Earth (point P1 in Figure 1) occurred at

15:46:51 UT to the north-east from the Hawaiian Islands and the last external contact (point P4 in Figure 1)

took place at 21:04:23 UT near the northern coast of Brasilia. The total eclipse began at 16:48:36 UT and

lasted until 20:02:34 UT.

The maximum eclipse had a duration of 160 s and occurred at the location with coordinates: 37◦N 87.7◦W

starting at 18:26:40 UT. The partial solar eclipse was visible over a region thousands of kilometers wide from

Canada to South America and partially in northwestern Europe and in the Chukchi Peninsula in Asia.

Solar eclipses give us unique possibility to study physical and chemical ionospheric processes when the solar

radiation changes abruptly. They are also known to produce a decrease in the electron density in the iono-

sphere, a decrease in electron and ion temperature and a change in ionic composition in outer ionosphere

(Rishbeth, 1968).

One of the few experimental techniques, which can be used to monitor ionization perturbations within

lower ionosphere, is very low and low frequency (VLF/LF) radio wave probing. Such electromagnetic waves

propagate in the lower ionosphere-Earth waveguide due to the reflection from the upper boundary (lower

ionosphere at altitudes of ≈ 70 km in daytime and ≈ 90 km at nighttime) to the lower boundary (Earth

surface) (Wait & Spices, 1964). Because of this, these waves inherently contain information about the reflec-

tion region of the ionosphere and its variability. The propagation of sub-ionospheric VLF signals over

distances of thousands of kilometers enables remote sensing over large regions of the upper atmosphere in

which ionospheric modifications lead to changes in the received amplitude and phase.

After the pioneering studies of Bracewell (1952), numerous observations of the phase and amplitude vari-

ations of sub-ionospheric signals in different frequency bands (10–60 kHz) during the solar eclipses were
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Figure 1. Solar eclipse on 21 August 2017 (https://eclipse.gsfc.nasa.gov/SEplot/SEplot2001/SE2017Aug21T.GIF).
Double dark blue line shows the position of total eclipse. Light blue lines show positions of partial eclipses. Green lines
indicate the time of the eclipse.

performed in the 1960s. These researchers examined a number of VLF transmitter signals along paths of dif-

ferent distances and orientations (Crary& Schneible, 1965;Hoy, 1969; Kamra&Varshneya, 1967; Kaufmann

& Schaal, 1968).

In particular, these studies detailed the phase and amplitude perturbations associated with total or partial

solar eclipses. It was found that the most effective method to monitor the variations of propagation charac-

teristics is analysis of phase changes. Over paths of 1,000 to 10,000 km the amplitude was typically found to

increase by about 1 dB, and the phase decreased by about 40◦. Increases in the effective reflection height of

the ionosphere were estimated to be between 6 and 11 km. Many authors (Gupta et al., 1980; Lynn, 1981;

Mendes Da Costa et al., 1995; Reeve & Rycroft, 1972) suggested that ionospheric effects related to the solar

eclipse depend on both the length of the path and the signal frequency.

Clilverd et al. (2001) studied in detail ionospheric effects during the total solar eclipse observed in Europe

on 11 August 1999. The analysis of the amplitude and phase of four VLF transmitters in the frequency range

16–24 kHz was performed for 19 paths of different distances (from 90 to 14,510 km). Positive amplitude

changes were observed on short paths, that is, less than 2,000 km, while negative amplitude changes were

observed on longer paths, that is, more than 10,000 km. Negative phase changes were observed on most

paths andwere therefore independent of path length. The typical changes observedwere 3 dB and 50◦. These

ROZHNOI ET AL. 2
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Figure 2. Relative positions of the receivers and transmitters together with the obscuration's degree (the last information t has been taken from: https://www.
timeanddate.com/eclipse/solar/2017-august-21). The positions of the receivers in Birr, Ireland (BIR) and Orange, CA, USA (CHA) are shown by green circles.
The positions of transmitters NPM (21.4 kHz), NML (25.2 kHz), and NAU (40.75 kHz) are shown by red triangles.

experimental results have been successfullymodeled by taking into account chemical processes in the lower

ionosphere.

In more recent works (see, e.g., De et al., 2011, 2011; Guha et al., 2010) the eclipse's effects on the equato-

rial lower ionosphere were reported for the total solar eclipse on 22 July 2009. The signals from different

transmitters were registered in India. Analysis of the data confirmed that phase is a more sensitive charac-

teristic than amplitude. It was found that during the eclipse, the effective reflection height of the ionosphere

increased by 3 km.

In our previous work (Solovieva et al., 2016) we considered the amplitude and phase variations of VLF/LF

signals (20–45 kHz) received in Moscow, Graz (Austria), and Sheffield (UK) during the total solar eclipse

on 20 March 2015, in North West Europe. Four long paths crossed the 90–100% obscuration region, and the

amplitude and phase anomalies were detected for all four paths. Negative phase anomalies varied from−75◦

to−90◦, and the amplitude anomalies were both positive and negative. They did not exceed 5 dB. It was also

found that the effective height of the ionosphere varied from 6.5 to 11 km during the eclipse.

Unlike previous works we found that the solar eclipse affected neither the signal frequency nor path length.

Further experimental measurements of the ionospheric parameters at the time of solar eclipses are needed

to understand this behavior and the characteristics of the ionosphere.

In the current work we use phase and amplitude observations of sub-ionospheric VLF/LF signals to

analyze the response of the lower ionosphere to the Great American Eclipse on 21 August 2017. This

eclipse has been analyzed in detail by Cohen et al. (2018) using observations from 11 VLF/LF receivers

across the continental United States. Results of the analysis have shown increase in amplitude up to 5

dB during eclipse together with decrease in phase ≈ 10 − 50◦. No quantitative analysis of the iono-

spheric conditions during eclipse was made. Another work also presents the analysis of VLF signal

during this eclipse (Moore & Burch, 2018). These authors observed both amplitude and phase on many
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Figure 3. Results of the analysis for wave path NPM-CHA. Top panel
shows X-ray flux measured with the GOES 14 satellite in the wavelength
range of 0.1–0.8 nm. Middle panel shows the amplitude variations on 21
August 2017 (red) and its monthly averaged values (black). Bottom panel
shows phase variations on 21 August 2017 (red) and its monthly averaged
values (black). Gray rectangles along the time axes show period when a
large part of the path has been obscured.

middle length VLF paths from NLM transmitter. They reported a change

in amplitude of ≈ 1 − 6 dB and a change in phase from −10◦ to −50◦.

2. Data Description and Analysis

For analysis of sub-ionospheric VLF/LF perturbations caused by the

Great Solar Eclipse we used measurements of ground-based UltraMSK

receiving stations installed at the Chapman University, Orange, CA,

USA (CHA) and Birr, Ireland (BIR). These receivers have been devel-

oped by Dr James Brundell, University of Otago, New Zealand. They

can simultaneously record both the phase and amplitude of MSK (Min-

imum Shift Key) modulated signals in the frequency range 10–50 kHz

from several VLF/LF transmitters. MSK signals have fixed frequencies

in a narrow band of 200 Hz around the main frequency with adequate

phase stability. The receiver station consists of a VLF antenna with a

preamplifier, GPS receiver with a GPS antenna for accurate signal timing,

an analog-to-digital converter, and a computer with specialized software.

The receiver can record signals with time resolutions ranging from 50ms

to 60 s. More details are available at http://ultramsk.com/. For our pur-

pose we use a sampling frequency of 20 s. The locations of the receivers

and transmitters are shown in Figure 2. Three of them were used in the

present study: NML (LaMoure, NorthDakota, USA), NPM (Pearl Harbor,

Hawaii, USA), and NAU (Aguadu, Puerto Rico).

Unfortunately, during this solar eclipse, the most powerful transmitter

(NAA, Cutler, Maine, frequency 24 kHz) was inactive. Additionally, we

did not use the phase measurements of the NLK (24.8 kHz) and NAU

(40.75 kHz) signals in CHA station because of unstable phase reception

in this station. The NML and NLK signals were not received in Birr, and

NPM signals were too weak for reliable analysis.

Therefore we selected only three sub-ionospheric paths, namely NPM-CHA, NML-CHA, andNAU-BIR (see

Figure 2). The location of transmitter-receiver pairs enabled us to monitor the region from Hawaii, through

North America, and on to Puerto Rico.

The results of the analysis are shown in Figures 3–5. In comparison to our previous study (Solovieva

et al., 2016) none of the signals received during the eclipse revealed any noticeable changes in the ampli-

tude. Figure 3 shows the amplitude and phase variations on 21 August 2017 (in red color) and the monthly

averaged values (in black color). Small decrease (about 1 dB) of the NPM signal amplitude can be seen in

Figure 3. Note, the decrease in the amplitude is within the standard deviation of the signal for quiet days. For

the two other paths the amplitudes of signals are rather noisy, and it is impossible to identify any effects. Next

we describe the results of the analysis on the three different paths, NPM-CHA, NML-CHA, and NAU-BIR,

separately.

First we consider the NPM-CHA path which has an approximate length of about 4,000 km and is in the

region of 40–60% of obscuration (see Figure 1). On this path the observed partial phase of the total eclipse

started at 15:46 UT. From Figure 3 (bottom panel), it can be seen that just after 17:00 UT the eclipse reached

the receiver (this period is shown by the gray rectangle along the time axis). At 18:00 UT (at the time of the

solar X-ray flare of C3 class was registered by geostationary satellite the GOES 14) the whole path was sunlit.

Both in the phase and amplitude of signal the effect of the solar flare is clearly visible. Thereafter, signal

returns to its normal level. The maximum phase decrease in the NPM-CHA path was observed between

17:00 and 17:15 UT when practically the whole path was obscured and the phase deviated from its normal

level by 33◦.

The next wave path, MML-CHA, which is actually on the total eclipse path, has a length of about 2,200

km. Results of the analysis for this particular path are shown in Figure 4. The top panel corresponds to the

measured X-ray flux detected by GOES 14 satellite in the wavelength range of 0.1–0.8 nm. The bottom panel

ROZHNOI ET AL. 4
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Figure 4. Results of the amplitude and phase analysis for wave path
NML-CHA. Explanations are the same as in Figure 3.

shows phase variations on 21 August 2017 (red) and its monthly averaged

values (black). It is important to note that the NML transmitter for this is

located in the region of 80% obscuration and the CHA receiver is in the

area of 60% of obscuration. For this path the eclipse reached the receiver

and transmitter at 17:30 and 18:00 UT, respectively. The gray rectangle

along the time axis marks this interval (see Figure 4). The signal crossed

the region of 90–100% obscuration at approximately 17:45–17:50 UT. This

is at the same time as we can see the maximum drop in the phase of

VLF signal. The recorded phase change is about −35◦, and it took only

20 min for a full phase recovery. The effect from the solar flare at 18 UT

is not noticeable in this signal. The amplitude oscillates chaotically. The

oscillations are inside dispersion boundaries.

Finally we analyze the phase and amplitude changes along the NAU-BIR

path (Figure 5). This path has a length of about 6,400 km and crosses

the region with 90–100% obscuration. This rather long path has a

sub-meridional orientation and it is obscured for a relatively short period

of time, that is, between 19:10 UT till 19:40 UT. The maximum decrease

in the phase is observed during the maximum obscuration around 19:30

UT. The phase decrease of 95◦ is more than for the other two paths,

NPM-CHA andMML-CHA. This could be related to the greater length of

NAU-BIR path, the different orientation of the geomagnetic field or, most

probably, the higher LF signal frequency. In this case the phase recovered

about 1 hr after the signal dropping. The amplitude oscillates chaotically

and, therefore, it is difficult to identify effects caused by the eclipse. The

oscillations are inside dispersion boundaries.

It should be also mentioned that the magnetic activity was rather low during 21 August (Dst < −20 nT).

Therefore, the observed anomalies in the VLF signals cannot be attributed or explained by influence of the

geomagnetic environment.

Our explanation of the effect of the solar eclipse on phase of VLF/LF signals is as follows. It is known that

ionization of the ionosphere strongly depends on the solar activity. Ultraviolet and X-ray radiation dominate

the ionization processes during the day but disappear above solar eclipse region. As a result, the ionization of

Figure 5. Results of the amplitude and phase analysis for wave path
NAU-BIR. Explanations are the same as in Figure 3.

the D region significantly decreases. This process leads to an increase of

the effective reflection height of the ionosphere. As the transmitted sig-

nals propagate within the Earth-ionosphere waveguide, the propagation

paths of the VLF/LF signals increase in length, and this is responsible

for the observed phase delay of the sub-ionospheric signals. The phase

delay due to an increase in reflection height can be determined as (Pant

& Mahra, 1994)

Δ𝜑 = 2𝜋
d

𝜆

(

1

2a
+

𝜆2

16h3

)

Δh, (1)

where d is distance between transmitter and receiver in km, 𝜆 is wave-

length of signal in km, a is radius of the Earth, h is the reflection height,

and Δh is increase in reflection height. From this it follows that the

increase in reflection height is

Δh =
Δ𝜑

2𝜋 d

𝜆

(

1

2a
+

𝜆2

16h3

) . (2)

Using the obtained experimental values of Δ𝜑 and by taking as h =

70 km, we found that Δh for path NPM-CHA was 2.67 km, for path

NML-CHA it was ≈ 5.1 km, and for path NAU-BIR the increase in
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reflection height was ≈ 3.4 km. These results are in a good agreement with the data obtained previously by

De et al. (2011) and Guha et al. (2010) for low latitudes.

3. Estimates of Electron Density Change

Due to the relatively short lifetime of the ions in the lower ionosphere, a steady-state computation of the

electron density provides an adequate description over a wide range of conditions, so that electron density

Ne can be considered to be the result of an equilibrium between ion production rate, q, and effective electron

loss. There exist two approaches regarding the electron loss in the D region, whichwe consider now, namely,

the quadratic recombination law (Chernogor et al., 2019) and the linear recombination law (Belikovich

et al., 2006). Introducing the ratio (eclipse obscuration) S1∕S0, where S1, S0 are the shaded part of the

Sun's disk and the area of the Sun's disk, respectively; one may estimate the ion production rate as q1 =

q0
(

1 − S1∕S0
)

, where q1, q0 are the disturbed ionization rate and the ionization rate in the absence of an

eclipse, respectively.

Therefore, in case of the quadratic recombination law q = 𝛼n2, where n is the electron density, we obtain

n1
n0

=

√

𝛼0

𝛼1

(

1 −
S1
S0

)

, (3)

where 𝛼0, 𝛼1 are the recombination coefficient in the absence of an eclipse and disturbed recombination

coefficient, and n0, n1 are the undisturbed and disturbed electron density, respectively. On the other hand,

in case of the linear recombination law q = 𝛾n one obtains

n1
n0

=
𝛾0

𝛾1

(

1 −
S1
S0

)

. (4)

Now we use the calculated obscurations (https://eclipse.gsfc.nasa.gov/SEgoogle/SEgoogle2001/

SE2017Aug21Tgoogle.html) for the three different paths. For the path NML-CHA the ratio S1∕S0 varies

from 0.56 to 1, with an average value equal to 0.78. Putting in our estimates 𝛼0 ≈ 𝛼1, 𝛾0 ≈ 𝛾1 we obtain

from equation (3) n1∕n0 ≈ 0.47 and from equation (4) n1∕n0 ≈ 0.22. This corresponds to Δn∕n0 = 0.53 in

the former case and to Δn∕n0 = 0.78 in the latter case. Accordingly, the average decrease of the electron

density along the path is 2.1 and 4.5 times.

Let us estimate the electron density change during the eclipse in another way. For that we assume a linear

profile of the electron density in the vicinity of the radio wave reflection height. This yields the following

expression

Δn

n0
=
n1 − n0
n0

=
Δh

H
, (5)

where Δh is the change of the reflection height due to the eclipse, and H is the characteristic scale of the

electron density profile. The change in the reflection height can be determined from equation (2). For this

path, using equation (2), Δh ≈ 5.1 km with H = 6.5 km (Whitten & Poppoff, 1971), and equation (5) gives

Δn∕n0 = 0.78. This corresponds well to our previous estimate with the linear recombination rate.

Likewise, assuming linear recombination rates for paths NPM-CHA and NAU-BIR the average S1∕S0 ratio

for these paths is 0.4 and 0.53, respectively. So, again using equation (4) we obtain n1∕n0 ≈ 0.60 for the

first path which corresponds to Δn∕n0 = 0.40 and n1∕n0 ≈ 0.47 for the second path which corresponds to

Δn∕n0 = 0.53.

On the other hand, we may estimate the quantity Δn∕n0 using equation (5). Taking calculated value Δh for

the path NPM-CHA asΔh ≈ 2.67 km and for the path NAU-BIR asΔh ≈ 3.4 kmwithH = 6.5 kmwe obtain

from equation (5) that Δn∕n0 = 0.41, Δn∕n0 = 0.53 for these paths, respectively. These values are in good

agreement with our previous estimates assuming a linear recombination rate.

4. Conclusions

In this work we present VLF/LF observations of the phase and amplitude of three sub-ionospheric wave

paths during the total solar eclipse of 21 August 2017. The length of these paths varied from 2,200 to 6,400
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km, signal frequencies were 21.4, 25.2, and 40.75 kHz, and obscuration along the paths was different. Two

sub-ionospheric paths crossed the total eclipse path, and the third path was in the region of 40–60% of

obscuration. We found that for all three paths there was no noticeable influence on amplitude; however,

the phase revealed a significant decrease during the eclipse. For the two signals transmitted from NPM and

NML transmitters which both had frequencies close to 20 kHz the negative phase anomalies were −33◦ and

−35◦, correspondingly, which is in good agreement with the experimental results, obtained by Cohen et al.

(2018) and Moore and Burch (2018) for the American paths. Note that the anomalies lasted longer for the

longer path. The strongest decrease in phase was found for the wave path NAU-BIR (−95◦). For the same

path the time duration of anomalies also lasted the longest.

These results, again, confirm that the effect of solar eclipses aremore distinct in the phase of VLF/LF signals

(Guha et al., 2010; Hoy, 1969; Kaufmann & Schaal, 1968). Although previous works have reported very

small (≈ 1 dB) amplitude variations during solar eclipses such variations in our measurements are invisible

against background oscillations, that is, they are comparable with measurement error.

It was also found that the effective reflection height of the ionosphere in low andmiddle latitudes increased

by about 3–5 km during the eclipse. An estimation of the electron density change in the lower ionosphere

during the eclipse was made using two different assumptions regarding the electron loss in the D region,

that is, the quadratic recombination law and the linear recombination law. The values obtainedwere in good

agreement and showed that the average decrease was between 2.1 to 4.5 times.
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