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Abstract: Anthropogenic eutrophication has caused widespread environmental problems in

freshwater lakes, reducing biodiversity and disrupting the classic pelagic food chain. Increasing our

understanding of the exact role of nutrients and physicochemical variables on microbial dynamics,

and subsequent microalgal and cyanobacterial blooms, has involved numerous studies ranging

from replicate microcosm-based studies through to temporal studies of real lake data. In a previous

experimental microcosm study, we utilised metaproteomics to investigate the functional changes

of a microalgal-bacterial community under oligotrophic and eutrophic nutrient levels. Here, we

analyse the time series data from this experiment with a combination of typically used univariate

analyses and a more modern multivariate approach, structural equation modelling. Our aim was

to test, using these modern methods, whether physicochemical variables and nutrient dynamics

acted additively, synergistically, or antagonistically on the specific biotic community used in the

microcosms. We found that nutrients (nitrogen and phosphorus) and temperature acted additively on

the interactions between the microalgae and bacteria present, with the temperature effects elevated in

the eutrophic conditions we applied. The data suggests that there may be no synergistic interaction

between nutrients and temperature in the tested microcosms. Our approach demonstrates how the

application of multivariate methods to existing datasets, in our case from nutrient-enriched freshwater

microcosms, enables new information to be extracted, enhancing interpretations as well as allowing

more reliable comparisons to similar published studies.

Keywords: algal-bacterial interactions; ecosystem function; eutrophication; microcosm; structural

equation modelling

1. Introduction

Nutrient enrichment, referred to as eutrophication, can lead to blooms of eukaryotic microalgae or

cyanobacteria and associated shifts in the number of trophic levels supported and the diversity of species

in lakes and ponds [1]. Understanding the effect of eutrophication on freshwater ecosystems requires an

analysis of factors both internal and external to the system, as well as the complex interactions among

them. Research into the process of eutrophication is typically centred on a univariate assessment of a

subset of indicator variables, including nutrient concentrations, physicochemical factors, and biological

characteristics. These studies have regularly identified increasing nutrient concentrations as a key factor

responsible for promoting blooms [2,3]. However, more recent studies indicate that physicochemical
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factors, such as temperature, are also a key factor in microalgal bloom promotion [4–6]. Thus, there is

no consensus regarding the relative importance of nutrient concentrations and physicochemical factors

in bloom promotion.

A feature of this historical research is the use of statistical tools such as correlation and multiple

linear regression. For example, Muylaert et al. (2000) used multiple regression to study variation of

the phytoplankton community in a freshwater tidal estuary. Phytoplankton dynamics were shown to

be controlled by varying irradiance, temperature, and salinity. However more than 40% of species

variation remained unexplained [7]. Rigosi et al. (2014), in an analysis of over 1000 USA lakes, used

correlations and multiple linear regression to assess how cyanobacterial biovolume and chlorophyll a

responded to nutrient availability and temperature [8]. Although a full interpretation of the dataset was

not possible, the results suggested that in most cases the interaction between nutrient and temperature

was additive rather than synergistic. In a later study, Bhattacharya and Osburn (2017) utilised

an innovative mix of multiple regression and fluorescence spectroscopy to predict phytoplankton

dynamics in a freshwater river network. While it was shown to be a fast and cost-effective method to

study large river ecosystems, the models failed to explain more than 50% of the variance in the data [9].

These are just a few examples that illustrate shortcomings of traditional analyses. These models

often lack explanatory power, cannot separate correlation from causation, and may reveal an incomplete

picture because they fail to capture potential interactions among nutrients, physicochemistry, and the

biotic community. Therefore, a multivariate tool with multiple predictor and response variables that

captures simultaneous covariation among variables is needed. Structural equation modelling (SEM)

can provide such a tool. These have the added advantage of being applicable to existing time-series or

spatially resolved data sets, whether these are relatively small microcosms studies or aquatic samples

taken from lakes from different sites over many years.

Path analysis is a widely used technique for proposing and testing plausible sets of causal relations

among three or more observed variables. As a multivariate technique, it deals explicitly with multiple

testing and calculates partial correlations between all variables, controlling for all others [10]. Path

analysis does not intend to discover causes but to determine the feasibility of a series of informed

hypotheses (i.e., causal paths) based on pre-existing knowledge of the system. By aiming to explain,

and not predict, these model structures can avoid the correlation/causation fallacy [11].

Traditional path analysis models are somewhat restrictive due to their reliance on single indicators

(e.g., NO3
−). SEM improves upon this by allowing the incorporation of multivariate indicator variables

(i.e., latent variables). Latent variables refer to variables that cannot be directly inferred by single

indicators (i.e., nutrients) and require multiple indicators to capture their essence. Latent variables also

provide the opportunity to statistically test ideas about how groups of variables might co-vary together

and structure relationships among variables and function. Given the importance and complexity of

phytoplankton dynamics, SEM has become an increasingly popular tool to study these phenomena.

For example, in recent years, SEM has been successfully used to determine the drivers of diatom

diazotroph associations in western tropical north Atlantic blooms [12], test hypotheses regarding the

impact of climate factors on algal assemblages in a shallow temperate estuary [13], and explore the

biotic and abiotic variables that contributed to the establishment of Ceratium furcoides in a shallow

eutrophic reservoir [14].

In this study, we utilise SEM, in a proof-of-concept, to explain the dynamics between

physicochemical variables, nutrient dynamics, and a microbial community in specific freshwater

microcosms. In a previous study, the authors designed freshwater microcosm experiments and

applied metaproteomics to investigate the functional changes to algal and bacterial communities,

over time, in oligotrophic and eutrophic conditions [15]. Here we apply SEM to the time series

from Russo et al. (2016), along with more traditional univariate correlation analyses used in the past.

Our aim was to determine the relative importance of bottom-up (NO3
−, PO4

3−, and NH4
+) and

physicochemical controls (temperature, dissolved oxygen (DO), and pH) in driving the dynamics
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of freshwater microbial groups (eukaryotic microalgae, cyanobacteria, and bacteria) under low

(oligotrophic) and high (eutrophic) nutrient treatments.

We formulate the structural equation model with a hypothesis that three multivariate, “latent”,

variables are central to disentangling the importance of bottom-up vs. physiochemical processes:

Nutrients, Physicochemistry and Biotic Interactions (Figure 1A). This path-analytic framework allows

evaluation of various hypotheses about the presence and absence of interactions among latent variables,

potential direct and indirect interactions among them, and the variance, covariance, and correlation

among components of the latent variables.

ƺ ƺ

ƺ

Figure 1. Structural equation models showing proposed relationships between latent variables

physicochemistry, nutrients, and biotic. Rectangles represent directly measured variables (e.g., DO).

Ovals represent latent variables (e.g., biotic). In model (A) a full ecosystem model, incorporating all

measured variables, is proposed. Models (B,C) were proposed to test the effect of the strength and

importance of the removed latent variables.
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This study specifically answered the following questions which were not evaluated in the

previous metaproteomics study: (1) How do the univariate relationships found in the experimental

microbial system compare to previous studies? (2) Do nutrients and physicochemistry act additively,

synergistically, or antagonistically to influence the biological component of the microbial community?

and (3) Does the nature of the relationships among nutrients, physicochemistry, and biological

components of the system vary with nutrient enrichment?

2. Materials and Methods

2.1. Experimental Design and Sampling

This study is a reanalysis of a previously published time series dataset [15], therefore, only a brief

explanation of the experimental design and sampling regime is provided. Briefly, 30 L were housed

in controlled environment facilities at the Arthur Willis Environmental Centre at the University of

Sheffield, U.K. and filled with 15 L of oligotrophic artificial freshwater growth medium (for detailed

composition see Table A1). These were kept under 100 µmol m−2 s−1 with a 12:12 light dark cycle

and no mixing. A microbial community sourced from water samples collected at Weston Park Lake,

Sheffield (53◦22′56.849” N, 1◦29′21.235” W) was filtered with a 200 micron fine mesh cloth and utilised

to inoculate the microcosms. This was done to remove all non-microbial grazers. The filtered sample

was cultured for five days in the conditions described to allow acclimation to the controlled conditions.

Subsequently, each 15 L media was inoculated with 2.5 L of this sample. Two nutrient treatments

were applied to the microcosms: (1) non-enriched growth medium to simulate oligotrophic conditions

(NO3
− = 0.42 mg L−1 and PO4

3− = 0.03 mg L−1) and (2) NO3
− and PO4

3−-enriched growth medium

(NO3
− = 4.20 mg L−1 and PO4

3− = 0.31 mg L−1) to simulate eutrophic conditions. The nutrients were

added as NH4Cl, KH2PO4, and K2PO4 (Appendix A) and levels chosen were based on the oligotrophic

and eutrophic ranges according to several international freshwater lake standards [15]. Over the course

of the experiment DO, pH, and temperature were measured at 12:00 and 18:00 daily with a Professional

Plus Quatro (YSI, Yellow Springs, OH, USA). For the daily estimation of NO3
−, PO4

3−, and NH4
+,

15 mL aliquots were collected, filtered (0.45 µm), and stored until measurement. NO3
− and NH4

+ were

measured with a Dionex ICS-3000 ion chromatograph (Thermo Fisher Scientific, Sunnyvale, CA, USA).

PO4
3− concentrations were estimated according to protocols defined by the International Standards

Organization (ISO 6878:2004) [16]. Chlorophyll a and phycocyanin fluorescence were measured daily

with the AlgaeTorch (bbe Moldaenke GmbH, Schwentinental, Germany). Total heterotrophic bacteria

were measured using culturable heterotrophic bacteria as a proxy [17]. Aliquots of 100 µL were plated,

in triplicate, on R2A agar (Oxoid, Basingstoke, UK) and incubated for 24 h at 38 ◦C. Colony forming

units (CFU mL−1) were counted using OpenCFU software [18].

2.2. Pairwise Correlations among Variables

In order to compare the data to previous published studies, where pairwise relationships were

made, the Pearson correlation coefficients among all of the variables were estimated. p-values were

adjusted with a Bonferroni correction to account for multiple testing and, after correction, differences

were deemed significant for p < 0.001.

2.3. Quantifying Direct and Indirect Effects among Functional Biology, Nutrients, and Physicochemistry

SEM was employed to formally test the hypothesis that the latent variables of nutrients and

physicochemistry act additively on the biotic community latent variable. The effort simultaneously

estimates the strength and direction of covariation among the latent variables, and the covariation

among component variables. First, a baseline causal model that allows relationships among nutrients,

physicochemistry, and the biotic community during the process of eutrophication was constructed.

The baseline model (Figure 1A) is comprised of three latent variables. The physicochemical latent

variable is comprised of pH, temperature, and DO. The nutrient latent variable is comprised of NH4
+,
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NO3
−, and PO4

3−. The biotic latent variable is comprised of colony forming bacterial units (CFU

mL−1), and microalgal and cyanobacterial concentrations (µg L−1). The baseline model allowed the

estimation of direct and indirect effects among all latent variables. It also allowed the estimation of

variance and covariance among contributing variables within the latent variables (Figure 1A). Two

additional models were also specified to evaluate, against Figure 1A, the effect of each of the nutrients

and physicochemistry latent variables on the biotic community. The models removed either the latent

variable nutrients or physicochemistry (Figure 1B,C). Comparing each reduced model to the full

model (Figure 1A) tests the hypotheses regarding the strength and importance of the removed latent

variable. The structural equation models were fit in the R Statistical Programming Environment [19]

by employing the package “lavaan” [20]; all variables were scaled to one standard deviation prior

to analysis.

3. Results

This study used time series data from Russo et al. (2016) [15]. To support the application of SEM

to these data we report them in Appendix A (Figure A1).

3.1. Pairwise Correlations among Variables

As in more traditional studies, we made Pearson correlations among variables (we note that

cross−correlation analysis is more appropriate for time-series data, but this is rarely used in previous

work) [21]. A total of 12 of the 54 pairwise correlations, between physicochemical, nutrient, and biotic

variables (Table 1), were significant, after Bonferroni correction, at p < 0.001. In the oligotrophic treatment,

heterotrophic bacterial concentrations have negative correlations with PO4
3− (r = −0.44) and microalgal

(r = −0.45) concentrations. In the eutrophic treatment, heterotrophic bacterial concentrations have negative

correlations with NO3
− (r = −0.46) and PO4

3− (r = −0.45) concentrations. Microalgal concentrations

have positive correlations, in both the oligotrophic and eutrophic treatments, with DO (r = 0.56 and 0.49,

respectively) and pH (r = 0.58 and 0.55, respectively). In addition, microalgal concentrations have a

positive correlation with cyanobacterial concentrations in the eutrophic treatment (r = 0.61). Microalgal

concentrations have no significant correlations with NH4
+, NO3

−, or PO4
3− concentrations in either

treatments. Cyanobacterial concentrations have a positive correlation with DO (r = 0.65), pH (r = 0.74),

and temperature (r = 0.50) in the eutrophic treatment. Cyanobacterial concentrations have no significant

correlations with NH4
+, NO3

−, or PO4
3− concentrations in either treatment.

3.2. SEM Analysis: Quantifying Direct and Indirect Effects among Latent Variables Biotic, Nutrients, and
Physicochemistry

In the full SEM model, in both the oligotrophic and eutrophic treatments, the partial correlation

between physicochemistry and nutrients was not significant (p = 0.654 and p = 0.987, respectively),

indicating independent and thus additive effects of these two variables upon the biological variables

and an absence of any indirect effects.

Comparing the full model to each of the reduced models, each omitting one of the latent

variables, indicated that both nutrients and physicochemistry explained a significant component

of variation in microbial dynamics in the experimental aquatic system; this was true for both the

oligotrophic and eutrophic treatments (Table 2). Several patterns emerge from the full model comprising

inter-relationships among biotic, nutrients, and physicochemistry (Figure 2; asterisks indicate significant

values). In both the oligotrophic and eutrophic treatments, the latent variable biotic is more strongly

influenced by physicochemistry than by nutrients and the effect of physicochemistry increases in

strength with eutrophication (ρxy (partial correlation coefficient) = 0.56 (p = 0.046) in the oligotrophic

treatment; ρxy = 0.83 (p < 0.001) in the eutrophic treatment). In contrast, the influence of the nutrient

variables decreases from ρxy = 0.36 (p = 0.063) in the oligotrophic treatment to ρxy = 0.26 (p = 0.009) in

the eutrophic treatment.
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Table 1. Correlation matrix of measured variables. The asterisks indicate significant values after

Bonferroni correction (p < 0.001).

Variable 1 Variable 2 Oligotrophic Eutrophic

Bacteria

NO3
−

−0.40 −0.46 *

PO4
3− −0.44 * −0.45 *

NH4
+ 0.22 0.36

Temp. 0.27 −0.03
DO −0.08 0.00
pH 0.02 −0.15

Microalgae

NO3
− 0.38 0.20

PO4
3− 0.40 0.21

NH4
+

−0.31 −0.37
Temp. 0.17 0.29

DO 0.56 * 0.49 *
pH 0.58 * 0.55 *

Cyanobacteria

NO3
− 0.06 0.14

PO4
3− 0.06 0.17

NH4
+

−0.23 −0.41
Temp. 0.37 0.50 *

DO 0.33 0.65 *
pH 0.41 0.74 *

Temperature
NO3

− 0.08 0.19

PO4
3− 0.07 0.16

NH4
+

−0.37 −0.48 *

DO

NO3
−

−0.19 −0.33

PO4
3− −0.13 −0.31

NH4
+

−0.06 −0.22

pH
NO3

− 0.04 0.03

PO4
3− 0.10 0.00

NH4
+

−0.36 −0.57 *

Table 2. SEM model comparison, reporting outcome of likelihood ratio test between full and reduced

models. (A) Full ecosystem model. (B) Reduced model excluding the latent variable nutrients. (C)

Reduced model excluding the latent variable water quality.

Model
Comparison

Condition DF Difference χ
2 Difference p-Value

A vs. B
Oligotrophic 16 71.558 <0.001

Eutrophic 16 73.305 <0.001

A vs. C
Oligotrophic 16 46.881 <0.001

Eutrophic 17 76.334 <0.001
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Figure 2. Structural equation models showing proposed relationships between latent variables

physicochemistry, nutrients and biotic: (A) oligotrophic and (B) eutrophic treatments. The numbers in

circles correspond to errors. All other numbers correspond to the standardised path coefficients. The

asterisks indicate significant values (p < 0.05).
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4. Discussion

This study aimed to determine the relative importance of nutrient concentrations and

physicochemical factors in explaining the variation observed in bacterial, microalgal, and cyanobacterial

concentrations over time under oligotrophic and eutrophic conditions, in our specific microcosms.

Presently, it is not clear how the interconnectivity of abiotic factors is affected by nutrient enrichment

and how nutrients and physicochemistry combine to drive ecosystem productivity [22]. Given that

changes in microalgal and cyanobacterial concentrations are the dominant indicator of eutrophication,

such an understanding is important for managing freshwater resources. While the results discussed

here are specific to the microcosm design and the composition of the microbial community, our

analysis demonstrates how the methodology and findings might be extrapolated to natural systems

and larger experiments.

Overall, nutrient concentrations and physicochemical factors were found to act additively on

the experimental biotic community of microalgae, cyanobacteria, and heterotrophic bacteria, and

physicochemical factors exerted a strong influence on both microalgal and cyanobacterial concentrations,

which became stronger in eutrophic conditions (Figure 2). In the following sections we scrutinise these

observations their ecological context.

4.1. Comparison of Observed Univariate Relationships with Previous Studies

Prior to the SEM analysis, one of the objectives was to assess whether the abstracted experimental

system still generated commonly found correlations among variables, whether or not these are correct

and capable of providing inference. For example, previous research indicates that microalgae and

cyanobacterial concentrations are expected to have a strong positive correlation with NO3
− and

PO4
3− [2]. General consensus is also that the magnitude and duration of the blooms increase with

increasing nutrient loads [2]. This provides an immediate assessment of how our microcosms compared

under nutrient enrichment. In our pairwise analysis of both experimental conditions (Table 1), NO3
−

and PO4
3− concentrations did not have a significant correlation with microalgal or cyanobacterial

concentrations in either of our treatments. However, two phases of exponential growth were observed

in the variation of microalgal and cyanobacterial concentrations. The latter exponential growth

phase coincides with the appearance of detectable NH4
+ concentrations (Figure A1I) following the

peak of bacterial abundance. This sudden increase in NH4
+ concentrations may be due to bacterial

mineralization, possibly promoted by an increase in organic nitrogen in the media following microbial

cell lysis. Overall, the lack of correlation between NO3
−/PO4

3− and microalgae/cyanobacteria could

be due to the fact that the microcosms in this study lacked the complexity of natural environments

where variations in parameters, such as water depth and stratification, and environmental gradients of

dissolved organic carbon and minerals can drive the timing of bloom events [23–25].

Due to the lack of correlation between phytoplankton and nutrients, we proceeded to

assess whether there were any significant correlations between microalgae or cyanobacteria and

physicochemical variables. The pairwise analysis (Table 1) showed a significant positive correlation

between cyanobacterial abundance and temperature was confirmed in the eutrophic treatment (r =

0.50). It has been shown previously that, under nutrient-enriched conditions, cyanobacterial species

are favoured, in detriment of green microalgae, with an increase in water temperature [6,25]. This

is also in line with recent limnological studies where a strong correlation between cyanobacterial

concentrations and temperature has been observed [26,27]. In freshwater ecosystems, temperature

drives cyanobacterial concentrations directly, through increased growth rates, and indirectly, through

its influence on hydrological processes.

4.2. Utilising SEM to Quantify Direct and Indirect Effects among Functional Biology, Nutrients, and
Physicochemistry

In this proof-of-concept study, SEM was successfully used to address a substantial multivariate

question: is the biological response to increasing nutrient enrichment an additive function of nutrients
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and physicochemistry, or does the effect of nutrient dynamics on the biotic community depend

on physicochemistry (i.e., is there an interaction between them). In the full model, in both the

oligotrophic and eutrophic treatments, the partial correlation between physicochemistry and nutrients

was not significant. This suggests that the effects are additive. This contrasts with recent literature

suggesting that the interaction between nutrient concentrations and physicochemical factors may

be synergistic [28,29]. This opinion may stem from an overrepresentation of studies that focus on

eutrophic environments where the interaction between temperature and nutrient is enhanced [8,27,30].

Furthermore, the independent strength and significance of nutrients and physicochemistry was

assessed by comparing this additive model to models without one or the other. This assessment,

capturing several components of the nutrient dynamics and physicochemical components, revealed

that nutrients and physicochemistry were both necessary to describe the dynamics of the biological

variables and their response to enrichment.

Finally, in addition to this high-level, multivariate assessment of function, the partial correlation

coefficients from the SEM allowed a comparison of specific pairwise variable relationships, which have

been used extensively in the past. As noted above, no evidence was found for an interaction between

nutrients and physicochemistry. Furthermore, the direct effects (Figure 2) of nutrients (

 

ԃ weaker than physicochemistry (ԃ = = 0.36 Oligo;

 

ԃ weaker than physicochemistry (ԃ = = 0.26 Eutrophic) were much weaker than physicochemistry (

 

ԃ weaker than physicochemistry (ԃ = = 0.56 Oligo; 0.83 Eutrophic). This

generally agrees with both our dataset and published work that supports the ongoing hypothesis that,

in eutrophic conditions, physicochemistry may become a driver of phytoplankton abundance [8,27,30].

The application of an SEM-based analysis to the multiple, potentially direct and indirect

interactions, among several features of aquatic communities, provides a holistic approach to understand

ecosystem drivers. SEM allows for the inclusion of multiple dependent variables and biologically

meaningful collections of them, i.e., latent variables, to obtain a better overall picture of the system.

Additionally, as can be seen in this study, each path represents a potential causal hypothesis based on

pre-existing knowledge of the system. Therefore, by explicitly testing strong hypotheses (e.g., changes

in nutrient levels cause changes in the biotic component of the system), SEM avoids potential issues

such as autocorrelation. However, there are some shortcomings that need to be recognised. First,

the obtained datasets are relatively small; however, the fact that the conclusions are supported by

previously published work provided confidence in the explanatory power of the model. Second, some

of the parameters selected in this study do not act in a strictly unidirectional manner. For example, it

is known that both DO and pH will vary as a consequence of variation in community composition

(i.e., ratio between autotrophic and heterotrophic production) [22]. In terms of SEM analysis, this

bidirectionality has the potential to exacerbate the apparent correlation between the physicochemical

and biotic components. Overall, this study showed that although artificial microcosms have the

potential to be used as tools to develop novel hypotheses regarding natural phenomena, an SEM

approach enables more insightful comparisons using existing data sets. It also highlights directions for

further work, including increased data collection and more complex experimental setups (e.g., higher

trophic levels and environmental gradients), which are required in order to truly elucidate the network

of interactions established in the process of eutrophication.

5. Conclusions

This study aimed to demonstrate how SEM can be applied to existing ecology datasets to generate

new hypotheses and understanding of direct and indirect interactions between measured parameters.

Here, we explored the array of effects between physicochemistry and nutrient concentrations and

their influence on the microbial community, which, via productivity and nutrient recycling, define the

difference between low and high levels of nutrients (eutrophication) in our experimental system. The

results show that the dynamics of the experimental community in this study were weakly correlated to

nutrient enrichment and, in eutrophic conditions, physicochemical factors became superior predictors

of biological variables. Lastly, in line with recent studies, the model results showed that nutrients and

physicochemical factors have an independent but additive effect upon the biotic variables. Despite the
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results being comparable to previous studies, it is important to note that this study was undertaken in

artificial microcosms with a limited timeframe and a reduced number of overly simplistic variables.

All these factors can potentially influence the results of the study. Future work will move from artificial

to natural enclosures and expand the measured variables to provide a closer approximation of the

local environment.
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Appendix A

Table A1. Complete composition of artificial freshwater growth medium (mg L−1).

NaHCO3 192

MnCl2·4H2O 0.18

MgSO47H2O 115

KCl 0.45

H2SeO3 0.0016

Ca(NO3)24H2O 0.8

NH4Cl 1

KH2PO4 0.025

K2PO4 0.025

ZnSO4·7H2O 0.022

Na2EDTA.2H2O 0.5

H3BO3 0.114

FeSO4·7H2O 0.05

CuSO4·5H2O 0.016

CoCl2·6H2O 0.016

(NH4)6Mo7O24·4H2O 0.011
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ƺ ƺ

Figure A1. Time series of the measured variables in the oligotrophic and eutrophic treatments.

(A) microalgae, (B) cyanobacteria, (C) culturable heterotrophic bacteria, (D) DO, (E) pH, (F) temperature,

(G) NO3
−, (H) PO4

3−, and (I) NH4
+ concentrations. Legend is shown in the top left panel (triangles

indicate the oligotrophic treatment, circles indicate the eutrophic treatment, and crosses indicate the

control). Error bars show standard errors (n = 3). Data adapted from [15].
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