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Abstract

The Zinc Nickel single flow batteries (ZNBs) have gained increasing attention recently. Due

to the high variability of the intermittent renewable energy sources, load demands, and the

operating conditions, the state of charge (SoC) is not an ideal indicator to gauge the potential

cycling abilities. Alternatively, the peak power is more closely related to the instantaneous

power acceptance and deliverance, and its real-time estimation plays a key role in grid-based

energy storage systems. However, little has been done to comprehensively examine the

peak power delivery capability of Zinc Nickel single flow batteries (ZNBs). To fill this gap,

the recursive least square (RLS) method is first employed to achieve online battery model

identification and represent the impact of varying operation conditions. The state of charge

(SoC) is then estimated by the extended Kalman filter (EKF). With these preliminaries, a

novel peak power prediction method is developed based on rolling prediction horizon. Four

indices are proposed to capture the characteristics of the peak power capability over length-

varying prediction windows. Finally, the consequent impact of the electrode material and

applied flow rate on peak power deliverability are analysed qualitatively.

Keywords: online model identification, real-time estimation, peak power prediction, zinc
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1. Introduction

The redox flow batteries (RFBs) have been widely deployed as an energy storage system

in the utility grids worldwide at MWh scale to support the load levelling, power qual-

ity control, supply security, and renewable energy acceptance [1, 2, 3]. A standard RFBs

system consists of two modules to separate the abilities of meeting the power and energy

requirements respectively [4]. Two external reservoirs are employed to store the aqueously

electroactive electrolytes which convert the chemical energy into electricity. A sequence of

individual cells are stacked in parallel to provide the power capacities. Thereby, the energy

and power modules of RFBs are completely split by the structural merits. In this regard, an

outstanding feature of RBFs is that battery capacities will increase with the concentration

and volume of the applied soluble redox couples [1, 4, 5, 3]. While for a single cell, an

ion-membrane separator is sandwiched in the middle of two electrodes, and electrolytes are

circularly driven by two independently auxiliary pumps. The relatively simple construction

will lead to straightforward scaled-up. There are three widely accepted and well investigated

RBF systems, namely the polysulphide bromine [6], all vanadium [7] and zinc bromine redox

flow batteries [8]. Although these RBFs have gained substantial interest in grid applications,

the relatively high costs of the ion-membranes and the interference of the electrolyte cross-

contamination are still the main bottlenecks for their future development [4]. Single flow

battery technique was first exploited by Pletcher [9]. This favourable system breaks through

the aforementioned limitations and only one flow passenger (electrolyte) is employed to

remarkably simplify the construction, while the often expensive ion-membranes are not re-

quired in the system design, and the cross-contamination is thus eliminated. The zinc nickel

single flow batteries (ZNBs) proposed by Cheng [10] is a new single flow battery for which

the zincate is dissolved in the high concentration potassium hydroxide medium. In the

charging phase, zinc is electrodeposited from the zincate ions at the negative electrode and

Ni(OH)2 is oxidised to NiOOH at the positive electrodes, and vice versa [11]. In compar-

isons of other RFBs, ZNBs exhibit the promising features in terms of its intrinsic higher

specific energy (with theoretical electromotive force up to 1.70V ), abundant and nontoxic
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materials of redox couples (reducing environmental impact), and nonflammable support-

ing electrolyte (safe and dependable utilisation) [10, 11, 12]. In short, due to a number of

merits, such as low cost and material abundance of its redox couples, environment-friendly

chemistries, relatively high standard electrode potential, and desirable power and energy

densities, the development of ZNBs technique is attractive. However, due to the inherent

surface conversion and relatively poor kinetics in the positive reaction, the internal redox

reaction shows a polarisation proneness during the normal cycling of ZNBs [13]. As a con-

sequence, the gas evolution often accompanies with the positive reaction [14] and battery

performance is compromised at the high charge rate tests [15]. Therefore, a reliable battery

management system (BMS) is essential to operate ZNBs within the safe bounds and to

provide the information of the in-situ states concurrently, before any practical application

becomes feasible.

The peak power capability is an instantaneous state relating to the loading capacity in

battery applications [16, 17, 18]. It can be interpreted by the maximum remaining abilities

of a battery to meet the subsequent power demands [19, 20]. Analogous to the remaining

fuel in the fuel tank of an internal combustion (IC) engine, the state of charge (SoC) of

a battery only represents the ratio of the residual charges in a specific operating point

to the normal capacity. Relying only on such knowledge, it is still not possible to know

exactly how much power or peak power can be drawn from the battery. As a grid-tied

energy storage system, it is imperative to know its absorbing and delivering limitations at

time-varying working conditions. For instance, in the renewable energy market [21], the

state information of peak power capability will assist the system operator to regulate the

amount of battery absorption/delivery power in response to the instantaneous changes in

supply and demand, and to abnormal operation conditions. For instance, the information

of peak power capacity is critical to protect the battery stack when the instantly excessive

generation from renewable power by wind turbines and solar panels greater than the its

accepting potential (peak power) of energy storage systems. Thereby, an accurate prediction

of the peak power capability is pivotal for safely and reliably operating the grid-based energy

storage systems such as ZNBs.
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To the best of our knowledge, substantial research has been conducted on the develop-

ment of new materials and chemistries for ZNBs [15, 22, 23, 14, 13, 24]. However, little

study has been done so far on the ZNBs management and optimising the performance from

the application perspectives. The essence of peak power prediction is to render the value

of maximum power in a short-term without violating the safe operating area (SoA) [18].

Over the past decades, the hybrid pulse power characterisation tests (HPPC) are broadly

adopted in the lithium batteries online tests [25]. HPPC tests at once were also consid-

ered for other electrical accumulators like all-vanadium redox flow batteries (VRBs). The

research of [26] reports the temperature dependency in the peak power prediction. How-

ever, the HPPC method restrains the magnitudes of terminal voltages. The HPPC based

peak power prediction is thus flawed due to the absence of constraints imposed on the SoC,

leading to the overoptimistic prediction at higher and lower SoC segments. In addition,

the HPPC prediction fails to consider the effects of increasing resistance at the low SoC

segments. Overpredictions will be problematic for the battery operation as it may result in

overcharging/discharging peoblems [27]. In contrast, the model based peak power prediction

is more reliable and effective [28, 17]. With the merits of the real time identification, the

uncertainties arising from the varying conditions will be addressed easily. Furthermore, due

to its access to the battery internal states such as the SoC, various factors contributing to

accurate peak power predictions, such as SOC, design limitations, voltage and flow, will be

incorporated. To achieve accurate predictions, a suitable battery model is indispensable.

A number of model types have been proposed in the literature, examples include elec-

trochemical models, equivalent circuit model (ECM), data driven model, etc. [29]. While

for real time applications, the ECM models are among the most popular ones. In [30], 12

battery models are compared, the first-order RC model is claimed to be the best candidate

for LiFePO4 cells. Yet, the best model to characterise the electrochemical behaviours of

ZNBs is still an area to be investigated. Whereas, substantial research has confirmed that

the ECM based battery modelling techniques and its variants exhibit some distinctive mer-

its of exceptional adaptability, easy implementation and desirable accuracy, and thus it is a

promising candidate for the onboard studies [19]. In [20] and [31], a first order ECM model
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is adopted to achieve accurate peak power predication in short-term prediction horizons.

While, [32] and [16] improved the model by integrating the thermal model with the ECM to

ensure the model fidelity and investigating the current dependency of the internal resistance,

respectively. Analogously, Zhang [33] proposed an ECM model taking into account of the ion

diffusion process. However, the offline model training is highly dependent on the experimen-

tal dataset and is not online adaptable. The performance can be significantly deteriorated

for given unseen data. Recently, Wei et al [31] investigated the peak power prediction of

VRBs. The peak power predictions are made over different prediction horizons, which is

regarded as the benchmarks for RFBs. However, a common drawback of the state-of-the-art

methods is that the terminal current signal applied across the predictive horizon is assumed

to be a constant value. Thereby, the correlation between terminal signals in terms of current

and voltage is assumed to be rigorously monotonous. The peak power prediction is thus

converted to a problem of how to ascertain the peak current while the peak current is solved

from a set of equality constraints. However, in reality, the terminal signals (current/voltage)

are time-varying and highly dynamic. To overcome the drawbacks, the first-order ECM

based state space model and the broadly accepted recursive least square (RLS) method are

adopted in this paper to capture the battery dynamics and update the model parameters in

real time. Then the SoC is estimated online by the Extended Kalman filter (EKF). With

these preliminaries, the peak power prediction of ZNBs is achieved online using the predic-

tion horizon concept where the prediction of peak power is calculated in the range from 1s

to 20s [34] with the assistance of the linear programming technique. Further, in addition to

the peak power, three plus indices, namely the the peak current, peak terminal voltage, and

peak SoC, are designed to render the user-end comprehensive insights into the information

of peak power against various prediction horizons. Finally, the additional current bounds

due to the influences of material and flow rates are discussed as a supplementary discussion.

The remainder of the paper is organised as follows. Section 2 introduces the ECM

based battery model and the online identification process as well as the EKF based SoC

estimation. The online peak power prediction and the corresponding constraints are given

in Section 3. Section 4 presents the experimental settings and procedures. Section 5 analyses
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the resultant peak power predictions, which confirms the effectiveness and efficiency of the

proposed methods. Section 6 concludes the paper.

2. Adaptive battery model identification and SoC estimation

2.1. Equivalent circuit model

RS

Voc

Rp

Cp

IL +

-

+

-
VtVp+ -

(a) First order RC Equivalent circuit model

RS

Voc

Rct

IL +

-

+

-
Vt

W

CPE 

Warburg 

Element

(b) Equivalent circuit of the impedance model

Figure 1: Typical equivalent circuit models (ECM): a) the commonly adopted first order ECM model when

being used for online application and b) the impedance modeling based on fractional-order circuit models

The equivalent circuit models (ECMs) based battery characterisation techniques are

considered as one of the most efficient methods to reproduce the dynamic process of the

electrochemical system. At this point, researches have been conducted to correlate the ex-

perimental measurements with certain electrical elements, e.g. lumped resistors, capacitors,
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indicators, and voltage sources [30, 35]. Fig.1(a) and Fig.1(b) shows two widely adopted

ECM architectures for different applications, where a typical impedance model (IM) is given

in Fig.1(b). In this regards, a Warburg impedance ZW is employed in the circuit to elucidate

the dynamics of mass transports during the slow diffusion process, and then the constant

phase element (CPE) and resistor are connected in parallel to represent the dynamic char-

acterises in charges transports. However, in such an IM, the load dynamics corresponding

to the demanding variations are not taken into consideration, since the IMs are developed to

achieve more accurate cell modelling in a full frequency range [36]. Besides, the parameters

of IM are pre-identified through the the certain impedance spectra under specified state

of charge (SoC) and ambient temperature, which are subject to significant changes as the

temperature varies [35]. Meanwhile, due to the high complexity of the IM, it introduces

extra difficulty in battery modeling and state estimations for online applications.

On the other hand, compared with IM, the simplified architecture of ECM with the

first order RC circuit is routinely considered for the real-time application. As shown in

Fig.1(a), the charge-transfer kinetics are characterised by the RC circuit with a specific

time constant. Generally, the higher order RC circuit models increase the accuracy, for

example, in [36], 5th order RC circuit model is shown to produce similar results in line

with the impedance modeling. However, to choose a suitable EMC model is a comprise

between the computational effort and numerical instability. Based on the studies in [30],

the first-order ECM is an acceptable trade-off for battery modelling in reproducing the

transient and dynamic performances in most cases. Additionally, the first-order ECM is

able to simplify the filter design for the state estimation to attenuate the cross-interference

in the estimations from the higher dimensions. Accordingly, the first-order ECM is used

in this work. The schematic diagram is illustrated in Fig.1(a). In this regard, Rs is the

ohmic resistance stands for the resistant losses in the electrodes and electrolyte phases. The

parallel RC branch mimics the electrochemical behaviours of the ZNBs in terms of the

transient responses and relaxation effects. Rp and Cp represents the polarisation resistance

and capacitance, respectively. The terminal current and voltage signals are denoted by

IL and Vt. When the battery is disconnected from the circuit, the terminal voltage will
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gradually converge to the equilibrium value denoted as Voc.

2.2. Online model parameter identification

Herein, the charging current is predefined as the negative sign, and vice versa. In the

basis of the RC responses, the first order equivalent electric circuit model can be then

expressed as follows:

Cp
dVp

dt
+

Vp

Rp

= IL (1)

Vt = VOC − Vp − ILRs (2)

the discrete-time expression of Eq (1) is of the form:

Vp(t) = e
−

∆ts
RpCp Vp(t−∆ts) +

(

1− e
−

∆ts
RpCp

)

RpIL(t−∆ts) (3)

where the start-up time is 0, and ∆ts denotes a fixed time interval. Define Vp(k) = Vp(k∆ts)

and the analogous definitions are imposed on VOC , Vt, and IL. A neat format is given as

follows:

Vp(k) = e
−

∆ts
RpCp Vp(k − 1) +

(

1− e
−

∆ts
RpCp

)

RpIL(k − 1) (4)

According to Eq (2), substituting Vp = VOC − Vt − ILRs to Eq (4), the expression of Vt(k)

is yielded as:

Vt(k) = βVt(k − 1)−RsIL(k) + (β ·Rs − (1− β)Rp)IL(k − 1)

+ (VOC(k)− βVOC(k − 1)) , (5)

where β = e
−

∆ts
RpCp . One time step difference is introduced to Eq (5), the differential voltage

of Vt is given as:

∆Vt(k) = β∆Vt(k − 1)−Rs∆IL(k) + (β ·Rs − (1− β)Rp)∆IL(k − 1)

+ (∆VOC(k)− β∆VOC(k − 1)) (6)

where the last term (∆VOC(k)− β∆VOC(k − 1)) is treated as the error term, denoted as

e(k), due to the slow varying OCV in the ZNBs. In this regard, the regression formula is

expressed as:

h(k) = θT (k)φ(k) + e(k), (7)
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where

h(k) = ∆Vt(k), θ(k) = α = [α1, α2, α3]
T = [β, −Rs, (β ·Rs − (1− β)Rp)]

T ,

φ(k) = [∆Vt(k − 1),∆IL(k),∆IL(k − 1)]T , e(k) = ∆VOC(k)− α1∆VOC(k − 1). (8)

The RLS method [31] is employed to estimate θ(k) recursively. After obtaining θ̂(k), the

model parameters [R̂s, R̂p, Ĉp]
T can be reversely derived by:

R̂s = −α̂2, β̂ = α̂1,

R̂p =
β̂ · R̂s − α̂3

1− β̂
=

−α̂1α̂2 − α̂3

1− α̂1

,

Ĉp = −
∆ts

R̂p log(β̂)
=

∆ts · (1− α̂1)

(α̂1α̂2 + α̂3) log(α̂1)
.

Assuming independent and identically distributed (i.i.d.) measurement noise, differen-

tial treatment further transforms the errors into zero-mean and symmetrically distributed.

Hence, constant term explaining the bias is not needed in 7. Note that this modelling error

may not necessarily be a Gaussian noise sequence globally, but given the differential treat-

ment in formulating the regression equation and utilization of the forgetting factors in RLS,

the Direct Current (DC) bias is significantly attenuated, so as for any bias introduced into

the model parameter estimation, which has be further verified in the experimental section.

In RLS, the forgetting factor λ = 0.98 is used. Meanwhile, in order to smooth the

fluctuations in these variables at different time scales, the multi-timescale RLS algorithm [37]

is adopted in the identification process, where the sample rate for Rs is set as 1s, oppositely,

4s are sampling time is used for both Vp and Cp. Note that the ZNBs is a slow time-varying

system, and different electrical elements have different convergence speeds. In this regard,

the multi-time scale RLS with fixed forgetting factors rather than other methods is employed

for the online parameter identification. While we noticed that other methods produce poor

modelling results due to their convergence issues.

2.3. SoC online estimation based on EKF algrothm

The state of charge (SoC) is the ratio of the remaining charge to the nominal capac-

ity value at a specific operating condition. The Coulomb counting (CC) method is readily
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implementable and reliable, but it is subject to the unknown perturbations and initial de-

viations [37]. Additionally, the SoC-OCV look-up table is an open-loop method, in which

the SoC can be read straightforward from the inherent monotonous SoC-OCV table. Never-

theless, the pre-trained SoC-OCV table has to be calibrated periodically, due to the effects

of the battery degradation. Additionally, the measurement noises and uncertainties intro-

duced into the model are still not dealt with appropriately. As a widely accepted method,

the extended Kalman filter (EKF) estimates the SoC values in a closed-loop manner and

dynamically filter out the measurement noises and uncertainties introduced into the SOC

estimation compared with the open-loop method. Based on Eq (4), a two-dimensional state

equation can be derived as:







SoC(k) = SoC(k − 1)− η∆ts
Q

IL(k − 1)

Vp(k) = e
−

∆ts
RpCp Vp(k − 1) +

(

1− e
−

∆ts
RpCp

)

RpIL(k − 1)
(9)

The terminal voltage signal Vt is formulated as the measurement equation:

Vt(k) = f(SoC(k))− Vp(k)−RsIL(k) (10)

where VOC = f(SoC). Therein, the incremental OCV tests (IO) [25, 38] are conducted to

formulate the SoC-OCV table. According to the IO method, the ZNB cell stack is charged

under the constant current constant voltage (CCCV) regime. Afterwards, the fully charged

battery is then discharged by pulse current in order to drain up the its capacity. Throughout

the experiments, the SoC values are recorded by high precision current sensors based on the

coulomb counting (CC) method. Meanwhile, the OCV values are logged at the end of each

discharging interval. Finally, the SoC-OCV relationship is characterized by the averaging

three current profiles in terms of 0.5C(1.85A), 1C(3.70A), and 1.5C(5.55A). At this point,

f is calibrated as a fifth-order polynomial [39], which correlates the relationship between

OCV and SoC. Follow-on, a standard expression of EKF is then formulated as:







s(k) = Ak · s(k − 1) + bk · IL(k − 1) + w(k)

Vt(k) = F (s(k), IL(k)) + v(k)
(11)
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where

s(k) = [SoC(k) Vp(k)]
T , Ak =





1 0

0 e
−

∆ts
RpCp



 ,

bk =

[

−
η∆ts
Q

(1− e
−

∆ts
RpCp )Rp

]T

,

F (s, I) = f(s1)− s2 −RsI,
∂F

∂s
= [f ′(s1) − 1].

w(k) and v(k) are the process noise and the measurement noise respectively, which are

assumed to be independent, zero-mean, Gaussian noise processes with covariance matrices
∑

w and
∑

v. In this respect, the discrete-time prediction and update equations of EKF are

summarized as follows:

Prediction

ŝ−(k) = Ak · ŝ
+(k − 1) + bk · IL(k − 1)

Σ̂−

s
(k) = AkΣ̂

+
s
(k − 1)AT

k + Σw

Update

e(k) = Vt(k)− F (ŝ−(k), IL(k))

Lk = Σ̂−

s
(k)HT

k

[

HkΣ̂
−

s
(k)HT

k + Σv

]

−1

ŝ+(k) = ŝ−(k) + Lk · e(k)

Σ̂+
s
(k) = (I− Lk ·Hk)Σ̂

−

s
(k)

Define

Ak =





1 0

0 β̂



 ,

Hk =
∂F (s, IL(k))

∂s
|
s=ŝ

−(k) = [f ′( ˆSoC
−

(k)) − 1]

(12)

where β̂ is the identified parameter in Eq (7) and Eq (8), and the superscripts − and + denote

the priori state update and posterior state update phases respectively. For the details of the

EKF based SoC estimation adoped in this work, please refer to [40].
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3. Online peak power prediction

Motivated by the receding horizon concept in model predictive control that has been

widely adopted in process industry [41, 42], a moving horizon scheme for peak power pre-

diction is proposed in this paper. This method handles the dynamics of the current and

voltage within the prediction window, where the discharging and charging current is not as-

sumed to be constant. Similar to the MPC [42] strategy, the constraints could be explicitly

formulated in the peak power prediction equations, and constraints on the terminal voltage,

SoC, flow effects, and electrode material limitation can all be included. This approach can

thus easily search the optimum by solving linear programming problems, whilst taking all

the constraints into the optimisation process. If one variable reaches to its constraint, the

discharging and charging current in the prediction horizon will be fixed. In this regard, it

enables the safe operations.

3.1. Battery state space model for peak power prediction

Due to the implicit relationship between SoC and current IL, the CC method can be

expressed as:

SoCk = SoCk−1 −
ηIL(k − 1)∆ts

Q
(13)

where Q denotes the slowly changing battery capacity. It should be noted as the value of Q is

assumed to be constant within the first half of discharging and charging cycle. The coulombic

efficiency η is set as 100% for simplification. By applying the Taylor approximation to the

equation of VOC = f(SoC), a recursive formula for VOC is yielded accordingly:

VOC(k + i|k) = f(SoC(k + i|k)) ≈ VOC(k) + f ′(SoC(k)) [SoC(k + i|k)− SoC(k)]

= VOC(k)− f ′(SoC(k))
η∆ts
Q

i−1
∑

j=0

IL(k + j) (14)

Since the change of SoC depends on the slowly accumulating current effect, during the period

of two consecutive sample instants, the values of SoC(k + i|k) and SoC(k) are very close.

The above equation could then be reformulated as:

VOC(k + i|k) = VOC(k + i− 1|k)− f ′(SoC(k))
η∆ts
Q

IL(k + i− 1) (15)
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Combined with Eq (9) and Eq (10), the battery model can be expressed in the state space

form. Therefore, a three-dimensional predictive state equation system is formulated as

follows:






x(k + i|k) = Pk · x(k + i− 1|k) + qk · u(k + i− 1)

y(k + i|k) = Ck · x(k + i|k) + dk · u(k + i)
(16)

where

x(k + i|k) = [SoC(k + i|k) Vp(k + i|k) VOC(k + i|k)]T ,

Pk =











1 0 0

0 e
−

∆ts
RpCp 0

0 0 1











, qk = [−
η∆ts
Q

(1− e
−

∆ts
RpCp )Rp − f ′(SoC(k))

η∆ts
Q

]T ,

y(k + i|k) = Vt(k + i|k), Ck = [0 − 1 1]T , dk = −Rs, u(k + i) = IL(k),

According the rolling horizon scheme, the prediction of the state vector and input variable

(IL) are further explained by x(k + i|k), and u(k + i), respectively. Therefore, the neat

expression of x(k + i|k) can be then derived as follows:

x(k + i|k) = Pi
k · x(k) +

i−1
∑

j=0

P
i−1−j
k qk · u(k + j) (17)

Impose the vector notation on the prediction state x(k + i|k), and Eq (17) can be then

expanded over a prediction window of n steps:

~x(n)(k) =

















x(k + 1|k)

x(k + 2|k)
...

x(k + n|k)

















= P
(n)
k ·x(k)+P

(n)
q,k ·

















u(k)

u(k + 1)
...

u(k + n− 1)

















= A
(n)
x,k ·~u

(n)(k)+b
(n)
x,k (18)
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where

P
(n)
k =

















Pk

P2
k

...

Pn
k

















, P
(n)
q,k =

















qk 0 · · · 0

Pk · qk qk · · · 0

...
...

...
...

Pn−1
k · qk Pm−2

k · qk · · · qk

















, ~u(n)(k) =

















u(k + 1)

u(k + 2)
...

u(k + n)

















,

A
(n)
x,k = P

(n)
q,k ·





0 0

In−1 0



 , b
(n)
x,k = P

(n)
k · x(k) +P

(n)
q,k ·

















u(k)

0
...

0

















Similarly, a set of n ahead predictions y(k + i|k) can be accordingly deduced as follows:

~y(n)(k) =

















y(k + 1|k)

y(k + 2|k)
...

y(k + n|k)

















=

















Ck 0 · · · 0

0 Ck · · · 0

...
...

...
...

0 0 · · · Ck

















· ~x(n)(k) +

















dk 0 · · · 0

0 dk · · · 0
...

...
...

...

0 0 · · · dk

















· ~u(n)(k)

= A
(n)
y,k · ~u

(n)(k) + b
(n)
y,k (19)

where

A
(n)
y,k = diag(Ck,Ck, · · · ,Ck) ·A

(n)
x,k + diag(dk, dk, · · · , dk),

b
(n)
y,k = diag(Ck,Ck, · · · ,Ck) · b

(n)
x,k

Note that the peak power prediction horizon is often set within short-term view (in the

range from 1s to 20s). At an operating point, the RLS based model identification will be

executed first to update the parameters. The model dynamics will be fully taken into the

following prediction steps. Herein, the prediction window (prediction horizon) n begins from

1s and ends at 20s. The imposed constraints on the voltage, SoC and current are strictly

guaranteed at each prediction step.

3.2. Moving horizon scheme based optimisation

Due to the similar equation derivation and optimisation procedure for both the charging

and discharging phases, only the discharging phase is selected for presentation in this section.
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In this regard, the average power in the prediction window is to be maximized. In the

meantime, the SoC and Vt are confined within their particularly allowable ranges. Hence,

the objective function can be further interpreted as:

P dis
peak = max

~u(n)(k)

1

n

n
∑

i=1

u(k + i)y(k + i|k) = max
~u(n)(k)

1

n
~u(n)(k)T · ~y(n)(k)

= max
~u(n)(k)

~u(n)(k)T ·A
(n)
y,k · ~u

(n)(k) + b
(n)
y,k

T
· ~u(n)(k) (20)

Combined with constraints on the voltage, current, and SoC, the optimization problem

can be stated as follows:

max
~u(n)(k)

1

2
~u(n)(k)T ·

(

A
(n)
y,k +A

(n)
y,k

T
)

· ~u(n)(k) + b
(n)
y,k

T
· ~u(n)(k) (21)

s.t.

















Vt,min

Vt,min

...

Vt,min

















≤ ~y(n)(k) = A
(n)
y,k · ~u

(n)(k) + b
(n)
y,k ≤

















Vt,max

Vt,max

...

Vt,max

















,

















SoCmin

SoCmin

...

SoCmin

















≤ diag(e1, e1, · · · , e1) · (A
(n)
x,k · ~u

(n)(k) + b
(n)
x,k) ≤

















SoCmax

SoCmax

...

SoCmax

















,

















IL,min

IL,min

...

IL,min

















≤ ~u(n)(k) ≤

















IL,max

IL,max

...

IL,max

















where e1 = [1 0 0] is a unit vector. The above problem is a convex optimization problem,

as matrix −
(

A
(n)
y,k +A

(n)
y,k

T
)

is positive definite. Consequently, it can be solved using the

quadratic programming. Once the optimal solution ~u
(n)
opt(k) is obtained, the peak average
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power can be predicted as:

P
(n)
peak(k) =

1

n

n
∑

i=1

Vt(k + i|k)|
~u
(n)
opt(k)

· uopt(k + i) (22)

In addition to the peak power, three plus indices encompassing the peak current, peak

terminal voltage, and peak SoC are used jointly over a varying prediction horizon:

I
(n)
L,peak(k) =

1

n

n
∑

i=1

uopt(k + i), (23)

V
(n)
t,peak(k) =

1

n

n
∑

i=1

Vt(k + i|k)|
~u
(n)
opt(k)

, (24)

SoC
(n)
peak =

1

n

n
∑

i=1

SoC(k + i|k)|
~u
(n)
opt(k)

(25)

This above elaborated approach makes full use of the dynamic correlations between current

and voltage, while the amplitude of the future current does not have to be a constant,

an assumption imposed by the existing approaches. Further, the over-optimistic and over-

pessimistic predictions are avoided, rendering reliable and safe operations in the future.

Compared with the existing methods, the predictions of the peak power at each instant

SoC state are solved simply by the linear programming. The average peak power prediction

presents the power limit in the corresponding prediction horizon, and all other peak power

predictions over the relative prediction horizon can then be discounted. The computational

cost of the proposed method is also competitive for online applications, in comparison with

the existing methods.

4. Experiment and Setups

Based on the previous research [10, 12], a ZNB prototype has been made and tested in this

study. The schematic of the experimental apparatus and the testing platform are illustrated

in Fig.2. Four sintered nickel oxide plates (Jiangsu Highstar Battery Manufacturing) are used

as the nickel electrodes (positive/cathodes electrode) and three inert electrodes such as the

polished stainless steel sheets are adopted as the zinc electrodes (negative/anodes electrode).

The electrodes in such a stack are connected electrically in parallel. As depicted in Fig.2, the
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electrodes have been sized as 7cm ∗ 7cm with a 1cm rectangular clip outside. All the clips

are well arranged and attached together as the current collector on one side of the battery.

The similar arrangement has been made on the opposite side. This arrangement results in

around a voltage of 1.6V OCV of the cell stack. The acrylic spacers have been machined

with identical scale and then sandwiched between the positive and negative electrodes. The

inserted spacers prevent the electrode materials from warping and deformation. In order to

render an optimal flow channel, the spacers have the thickness 5mm and carved with the

grids based design. For leakproof, the spacer borders are encircled with gaskets. The rating

capacity of ZNBs demonstrator is about 3700mAh defined by the amount of activated area

and the material energy density. The electrolyte reservoir is made of commodity polymer

for the alkaline zinc electrolyte. Regarding the preparation of electrolyte, 1Mol ZnO and

20g/L LiOH are dissolved by the 10Mol/L KOH support solution as the used electrolyte.

The operating flow rate is remained at 19cm/s. The NEWARE CT − 3008W is used to

load the testing current profiles into the ZNBs and measure the output signals from the

terminals. The measurement ranges of voltage and current are 15V and 3A, respectively,

and nominal measurement error bounds are within 0.1%. Throughout experiments, the

ambient temperature is maintained at 25 ± 3◦C. An external host computer is connected

with the battery tester system (BTS) to log the experimental data in real time.

The ZNBs stack is cycling with the constant power regime, which is commonly adopted

in the flow battery tests. For the sake of gauging the maximum discharging capabilities,

the battery stack is cycling with the nominal capacity 3700mAh for each charging phase.

Specifically, a regular cell test protocol (galvanostatic cycling) with a moderate 1C (3.70A)

constant current is imposed to feed 3700mAh to the cell in each charging phase, and the

discharging phase will be terminated until Vt drops to the cut-off value 1.2V . The testing

data will be used for the RLS based model identification in real time. For the sake of

comparison, the SoC trajectory is recorded by the coulomb counting method. Furthermore,

the proposed methods provide the instantaneous prediction purely relying on the correlation

between terminal signals e.g. current and voltage, it promises the abilities to be generalised

for other batteries counterparts.
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Figure 2: Showcase of the experimental platform

5. Experimental Results and Peak Power Prediction

5.1. Model verification

The accurate modelling of the battery electrical dynamics is fundamental for the peak

power prediction. Additionally, since the SoC can not be accurately measured online by

existing sensor techniques, the SoC estimation is fused into the model identification pro-

cess. Thereby, the accurate battery model not only reproduces the dynamics in charging

and discharging processes and reflects the real-time operating condition but also affirms the

fidelity of SoC estimation. Fig.3 illustrates the results of EKF based SoC estimation and

RLS online model identification. As no prior knowledge is available on the model parame-

ters, the parameters are erroneously initialised as Rs = Rp = 0.01Ω and Cp = 1000F . It is

apparent that the model matches the measured terminal voltage in the entire experiments

and the error bounds are stabilised less than 0.01V . The relatively large error spikes can be

observed at the start-up point only, due to the intently erroneous initialisation. However,

it converges to the reference value quickly within 5s. The similar pattern is revealed in the

SoC estimation. The estimation errors are limited to 1% throughout the tests, which mani-

fests the effectiveness and accuracy of the synthesised RLS based real time SoC estimation

approach. Additionally, through the online adaption technique, the influence of the varying
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ambient environment changes can be easily taken into full consideration. Therefore, the

periodic calibration of battery model can be revoked.
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Figure 3: Model identification and SoC estimation

5.2. Peak power prediction considering both voltage and SoC constraints

The loaded current and applied flow rate play an important role in shaping the behaviours

of ZNBs. However, they are not only limited by the microscopic reactions on the electrodes

such as the mass transfer and ion immigration but also by the selected materials due to side

reactions and zinc deposition formation. For the sake of simplification, the effects of flow

rate will be decoupled from the cut-off voltage and operating SoC constraints, and it has

been discussed separately in section 5.3

The ZNBs are favourable energy storage systems, which have a very high energy and

power densities explained by a desirably practical range of operating voltage and SoC. In

the literature [10, 12], ZNB is able to tolerate the broad scope of operating SoC (from 0 to

100%) and voltage (from 0.8V to 2.05V ). Imposing the voltage and SoC restraints on the

ZNBs, the predicted peak power value over different prediction windows is shown in Fig.4(a).

And Fig.4(b) illustrates the thorough predictions at three selected SoC states. Since the

almost identical mechanism and constraints are employed for charging and discharging, in

this paper, only the prediction results at the discharging phase are detailed.
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Four different indices in terms of the peak current, peak SoC, peak voltage and peak

power are introduced to give a comprehensive assessment of the predictions over different

prediction windows. Furthermore, these four indices as a whole depict the maximum power

supplying capability at the different SoC states.

5.2.1. Discharging Phase
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Figure 4: Peak power prediction for discharging process

Fig.4(a) and Fig.4(b) show the dynamics of constraint variables along discharging process
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over different prediction windows. There are four main observations which can be inferred

from these subplots:

1. The proposed ZNBs system processes highly desirable peak power deliver-

ability over the entire discharging process. As illustrated in the second subplot

of Fig.4(a), for the majority of the operating time, the peak power prediction will stay

at 38W for this small ZNB prototype (3.7Ah). Specifically, in the lower SoC ranges

(0.17) as shown in the second subplot of Fig.4(b), the peak power deliverability still

maintains over 20W , where this observation also reveals that ZNBs are very promising

energy storage systems amongst all kinds of defined RFBs.

2. The constraints on peak voltage and SoC are complementary, which al-

ternatively affect the peak power predictions. By inspections from the third

and fourth subplots of Fig.4(a), the turn points represent the timing when the control

modes are switched from cut-off voltage control to SoC control. However, it has to

be noted that the cut-off voltage constraint is only applicable, when the prediction

window comes to n = 1, because in this case the SoC constraint only considers one

time step, resulting in the extremely high discharging current (depicted in the first

subplot of Fig.4(a)).

3. The prediction results of the longer prediction window n are very sensitive

to the SoC and cut-off voltage constraints. As shown in Fig.4(a) and Fig.4(b),

the proposed four indices are sketched to illustrate the changes in prediction windows,

where the predicted peak values are reduced as the length of the prediction horizon

increases. The instantaneous power is greater over short prediction horizons i.e. n ≤ 5

as illustrated in the second subplot of Fig.4(b). However, as the gradual prediction

window increasing, the maximal power delivered is reduced distinctively. In addition,

as shown in the first and second subplots of Fig.4(b), except for the prediction horizon

n = 1, similar patterns are evident for both the peak current and peak power pre-

diction, where the cut-off voltage is the main constraint cross the whole discharging
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phase. The third subplot of Fig.4(b) reveals that if the length of the prediction win-

dow is short, the cut-off voltage as the major applicable constraint, will dominate the

predictions cross the entire discharging process. While the fourth subplot of Fig.4(b)

further details the SoC constraint is only applicable when the battery is operating

at a relatively lower SoC range (17%) and that the prediction window is longer than

n = 10.

4. For optimal operation, ZNBs are not recommended to operate at a lower

SoC range.

The above observations show that the four indices can provide a reliable and comprehen-

sive characterisation of the predicted power delivery capability. In addition, the proposed

maximal power prediction scheme can assist with optimal battery discharging operations.

To further elaborate the adequacy of the four indices to characterise the power delivery

capability at different SoC states, additional Fig.5 is given to illustrate the prediction re-

sults over different prediction windows. Again, the prediction results confirm the previous

observations.

For short prediction windows, in order to provide the maximum power delivery, the

predicted peak values are subject to the discharging cut-off voltage control. As the prediction

window increases, the voltage control will give way to the SoC control, and the SoC threshold

starts to dominate the predictions. As a consequence, the predicted peak power is reduced

and the operation moves to the voltage and SoC control modes. These observations can be

interpreted by the fact that the remaining charges in the battery are gradually drawn out

by the peak discharging current over a long prediction horizon. It is further revealed that

the peak current drops to the normal value for the 20s prediction window. Therefore, it is

meaningless to adopt longer prediction horizons (> 20s). On the other hand, the discharging

potential decreases significantly as the SoC drops, which implies that meticulous attention

should be paid to the lower SoC range for the operation safety.

Fig.6 presents a zoom-in view at one predicted time instant over the 20s prediction

horizon. By using the proposed moving windows scheme, at each time instant, 20 predicted
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Figure 5: Peak power prediction dynamics in 3D view

discharging current values (IL) will be produced, among which the average predicted value

is regarded as the peak value in the discharging process. Unlike existing approaches, the

battery dynamics are taken into account in the proposed scheme in predicting the peak

power capacity within an operation window. Another remarkable feature of this method

is that constraints imposed on the state variables are satisfied to maintain safe battery

operation. An interesting observation is drawn from the results is that most of the predicted

values of discharge currents are identical as shown in first subplot which agrees with the

results obtained by other approaches presented in the literature. For different SoC states

(0.86 and 0.17), it is seen inspected that a larger SoC renders a broader operating potential

as revealed by the higher peak values of the four indices. While for a lower SoC state, the

SoC constraint easily affects the battery operating potentials as shown in the fourth subplot

and that all the four indices are reduced significantly.
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Figure 6: The inside view of each prediction window

5.2.2. Charging Phase

The proposed approach is also applied to the charging process, and the prediction results

are briefly illustrated in Fig.7(a) and 7(b). Similarly, the cut-off voltage prevails in most

cases, except for a longer prediction window and larger SoC states. When the prediction

window >= 5, it is apparent that the value of predicted peak current decreases, resulting

in drops in the predicted power. However, as the prediction horizon further increases, the

predicted values are almost similar. At the beginning of the charging phase, due to lower

SoC values, similar to the discharging phase discussion, the voltage constraints prevail as

reflected in all the predicted values. As the charging proceeds, the effective constraints have

been shifted from the voltage control to both the voltage and SoC controls. On the other

hand, for long prediction windows, the instantaneous charging abilities are weakened. At

the end of charging phase, the SoC control completely replace the voltage control, as shown

in the fourth subplot of Fig.7(b). Therefore, it is essential to avoid overcharging at the end

of the charging phase.
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Figure 7: Peak power prediction for charging process
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5.3. Discussions on the current and flow rate constraints

5.3.1. Current constraint

The used materials and the structure of ZNBs are two major limiting factors for applied

current density on the surface of electrodes, thus the magnitude limit of the imposed current

of the battery stack. Existing work reveals that the battery performance is bounded by the

nonuniform zinc deposition and the oxygen evolution [13]. These side effects become more

serious under higher applied current densities. Therefore, ZNBs have to be operated at low

current densities (below 20mA/cm2 ) [10] in the past, which is not acceptable in the real

applications. Much of the work that has been done so far in the literature mainly focuses on

the development of new materials for the battery, and a continuous charge-discharge cycle

test at 80mA/cm2 operating current density on a new material design shows that the average

coulombic efficiency (CE) stays at 96% [22]. Similar promising results are also reported in

other published work. The latest Ni − 3D Zn configuration [23, 15] has demonstrated

fourfold increase in the applied current density, and the cost can be significantly reduced.

Note that popular materials in RBFs used in existing batteries, including the one used in

this study, are still not optimally designed. Given these considerations, only approximated

current constraints are imposed in this study, for a bench-marking reference. Once the

accurate constraints are confirmed, it can be readily integrated into Eq (21) according to

the proposed algorithms. The detailed analysis is presented below for the ZNBs.

In this work, the NiOOH sheets (positive electrode) and the stainless steels sheets (neg-

ative electrode) are stacked in parallel. Then, all the electrodes are machined into 7cm∗7cm

size. If the applied current density is set up as 80mA/cm2, the loaded current thresholds

is then calculated as 80mA/cm2 ∗ 7cm ∗ 7cm ∗ 7 = 27.440A, in which 7 individual cells are

stacked in parallel. As illustrated in the second subplot of Fig.8, the predicted peak current

is irrelevant to the current constraints in the charging phase, implying that in the charging

phase, other constraints prevail over the acceptable bounds for the charging current.

On the other hand, in the discharging phase, the first subplot reveals that the situation is

reversed. With the exception for small SoC ranges (between 0 to 0.2) over longer prediction

horizons, other predicted peak current will be constrained by the material-determined cur-
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rent threshold 27.440A. This implies that the state-of-the-art electrode materials are though

far from the optimum, which is the main challenge of ZNBs. Nevertheless, even with this

limitation, when compared with other RFBs, ZNBs still exhibit the highest instantaneous

discharging peak power due to the relatively lower cut-off voltage (0.8V). As new materials

are introduced, the material-determined current threshold 27.440 can be further relaxed.
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Figure 8: Predicted peak current considering material limits

5.3.2. Flow rate constraint

The electrolyte in ZNBs will take away the generated heat and moderate the thermal

influence on the battery operations. The introduction of the flowing assisted system also

helps to attenuate the dendrite formation [10, 11, 12]. As a consequence, the entire lifespan

of ZNBs can meet the acceptable industry requirement. Therefore, the flow rate has a

significant impact on the ZNB operation efficiency.

To achieve compact zinc deposition, the flowing velocity on the surface of electrodes

should be sufficiently big to achieve steady convection control for the immigration reaction.

The forced convection of the electrolyte close to the working electrodes will generate a

constant thickness of the diffusion layer δN . Two widely accepted assumptions are taken

into the consideration [43]:
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* Flow direction. The flow direction is ideally in parallel to the electrode plates and

perpendicular to the diffusion direction of the reactive ion.

* laminated distribution. The laminar flow of the electrolyte is assumed. As the

presentation of friction, the flow velocity near the electrodes is zero. While the velocity

maintains at the steady velocity u0 far from the electrodes (> δPr).

Given the above assumptions, for the steady convection control of the reaction, the thickness

of the diffusion layer δN can be formulated as [43]:

δN ≈ D1/3ν1/6y1/2u
−1/2
0 (26)

where D, y and ν are the diffusion constant, length of the plate, and viscosity coefficient

of the supporting electrolyte (10Mol KOH + 1Mol ZnO), respectively. Therefore, the

maximal tolerant current densities Ilim at a certain flowing velocity u0 can be derived re-

versely:

Ilim = nFD
c0
δN

≈ nFD2/3ν−1/6y−1/2u
−1/2
0 c0 (27)

where n is relative to the redox reaction for a given amount number of participated electrons.

c0 stands for the time-varying bulk concentration of zinc. F and δPr represent the Faraday

equation, namely the Faraday’s constant and the thickness of Prandt’s boundary layer,

respectively. In a normal charging/discharging cycling, the concentration of zinc will be

replenished or consumed with the progress of the redox reactions. As a consequent, the bulk

concentration of zinc is SoC dependent variable and can be represented on the form:

c0 = ci −
SOC(%)× Cbat(Ah)× 3600

nF × V
(28)

where V is the total volume of the electrolyte, and Cbat is the rated capacity of the battery.

While ci represents the initial zinc concentration.

Theoretically, the applied current densities are bounded by the flow rate and other in-

herent aspects as interpreted by Eq (27). In this work, the flow rate is large enough to

eliminate the side influences. Note that in real applications, due to superbly high concen-

tration of electrolytes applied, the subtle fluctuations of the concentration caused by the
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redox reaction is negligible. Throughout the entire discharging and charging phases, the

zinc concentration is varied slightly, rather stable. Thereby, the magnitude of the limited

current densities Ilim is relative stable during the reactions. Due to Eq (27) and (28), the

similar assumptions have also been applied to the analysis of other RBFs, and in this work,

the current constraints incurred by the flow rate can be ignored in ZNBs.

6. Conclusion

This paper presents a novel peak power prediction approach for the Zinc Nickel single

flow batteries. The RLS based real-time model identification process is first introduced to

acquire an accurate battery model, thus the uncertainties incurred by different operating

conditions can be addressed in real time. Then an EKF based SoC estimator is employed

to acquire precise estimations which is confirmed in the experiments. With these prelimi-

naries, a window-based peak power prediction framework is proposed which guarantees that

the dynamics of current and voltage across the entire prediction windows are taken into the

considerations. The proposed framework is capable of incorporating all the constraints on

the current, voltage, and SoC that are satisfied. Experimental results confirm the effective-

ness of the proposed scheme. Further, four indices are implemented to assess the power

delivery/absorption capabilities of ZNBs while operation constraints are guaranteed. Fi-

nally, the influences of the material and flow rate on the peak power prediction are analysed

qualitatively, proving a bench-marking paradigm in the RFBs research.
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