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Abstract—Action recognition is a multi-faceted challenge that
requires solving three principal challenges in its design. This
paper discusses these principal challenges: Synchronisation, Seg-
mentation and Uncertainty, together with their implications and
possible solutions. We abstract the observations carried out for
action recognition to generalise the challenges encountered in the
classification of any time-dependant signal and finally propose the
best performing approach as a general solution to this problem.

I. INTRODUCTION

Action recognition is an important sensory problem that

is crucial for the advancement of Human-Robot Interaction

(HRI) or more generally Human-Machine Interaction (HMI).

This is because, as a system, humans only have two outputs

with which they can interact with the environment. These are

either via the sensory modality of sound, like music or speech,

or via actions that modify the physical environment. Action

recognition thus allows the robot to understand better what is

happening in its environment by being able to assign causal

relationships between agent, action and outcome [1].

Action recognition is a heavily researched area that makes

use of different sensory inputs such as vision [2]–[4] or depth

[5]–[7]. Some choose to focus solely on actions which do not

involve objects [8]–[10] or focus only on object related actions

[11], [12]. Furthermore action recognition has a prerequisite:

action segmentation, which is less heavily researched but just

as important [13], [14].

In this paper we will be focusing on these challenges and

others which arise from the use of an embodied system.

We make use of action recognition as a target application

while investigating the construction of this application in

a general way that can be applied to other time-evolving

signals such as EEG and EMG. We start in Section II

by describing the characteristics of the input data stream

and the challenges they impose. Then in Section III we

discuss Synthetic Autobiographical Memory (SAM) [15], the

modelling framework that we are using to build models for

Action Recognition and how it allows us to better handle

uncertainty and in Section IV the two methods of temporal

segmentation that are tested on the iCub humanoid robot

[16]. Finally, in Section V we present the results of the two

temporal segmentation solutions and conclude in Section VI.

Fig. 1. iCub Setup for Action Recognition. Eyes focused on objects to track
their location and kinect focused on the user to track the skeleton.

II. CHALLENGES

A. Sensory Inputs

The first decision in the construction of an action recog-

nition system starts with the decision of which data to use

as an input for said system. Our implementation centres on

performing action recognition with the iCub. Thus we have

taken the approach to use both RGB data originating from

the calibrated stereo cameras, the iCub’s eyes, to track objects

and depth data originating from a Kinect Version 1 which is

mounted above the iCub as shown in Figure 1 to track the

skeleton of the agent. This configuration was chosen not for

the purpose of redudancy but for the purpose of seperately

tracking objects and the skeleton of the interacting agent.

However, this configuration introduces intriguing challenges

in the domain of multi-sensory integration which are heavily

present in developmental robotics. The main challenges en-

countered are twofold. The first is that of combining different



sensory representations into a single representation for the

purpose of training and modelling. The second challenge is

that of synchronisation since two parallel data processing

streams often have different throughputs which need to be

rate-matched but also more significantly, different, sometimes

variable latencies.

The latter is especially the case with the chosen configura-

tion shown in Figure 1. The Kinect, on one side, has a high

throughput of 30 - 40 frames per second (fps) and a relatively

low absolute latency of around 100ms [17]. On the other hand,

the objects are being tracked via the image processing pipeline

of the iCub provided by IIT in the form of the Interactive

Object Learning library (IOL) [18].

This pipeline uses Local Binary Patterns (LBP) to segment

objects from the background and then employs the disparity

map extracted in a separate module to assign a 3D position

for the segmented object with respect to the eyes of the

iCub. IOL also performs object recognition on the segmented

images so that it tracks the names of the different objects

within the scene. The throughput of IOL is between 20 and

30fps but has a high latency relative to the kinect which from

observation varies between +600 to +800ms depending on

the current computational load. Furthermore, since the IOL

and the Kinect processing pipelines are running in separate

modules that may be run on separate computers, one also

incurs a non-determinant network latency at the receiving end.

This therefore presents a situation where the sensory streams

cannot be accurately synchronised because the latency is

variable. However, this configuration is analogous to the view

of the brain consisting of multiple, parallel and asynchronous

sensory processing streams [19] that are nonetheless combined

together into a coherent representation of the environment.

This challenge is referred to as the Synchronisation Challenge.

B. Action Segmentation

In order to carry out action recognition, one must first decide

upon temporal segments of the incoming data stream that are

representative of an action in order to process this data into

a meaningful representation that can be used to classify this

action. Thus, the automatic segmentation of actions from the

incoming data stream is the second challenge that is addressed

in our approach, the Segmentation Challenge, for which we

have identified three possible solutions.

The first solution is to construct a model that is trained

on the transitions between actions, in order to classify these

transitions when they occur. This would signal a start and an

end point for a temporal segment that can subsequently be used

by the recognition model. This approach is very generic how-

ever its primary disadvantage is in the source of uncertainty.

Any uncertainty present within the segmentation model would

greatly increase the uncertainty of the recognition model.

This brings us to the second possible solution which takes

the same approach of segmenting complete actions from the

temporal stream but with the use of criteria such as motion in

between scenes or the presence of contact between a hand

and an object. This mitigates the problem of propagating

uncertainty but with the presence of non-deterministic latency

this approach suffers greatly because while one sensory stream

can be indicating the absence of motion, the other sensory

stream might be still catching up.

The final possible solution is in the use of temporal windows

[20]. These are frames of fixed lenght that are extracted from

the incoming data stream and processed by the recognition

model. The use of this approach requires the recognition model

to operate at a much higher frame rate than the other two

solutions since there will be many more classifications per

second required.

Furthermore, for the latter approach, due to the presence of

multiple classifications per action one also requires a method

of combining multiple classifications into a single decision.

Despite this disadvantage, the latter approach increases the

robustness of the classification and moreover draws a second

analogy with the human brain, which as demonstrated by [21],

recognises an action within 200ms of its start using partial

trajectories.

C. Identifying Novel Inputs

The previous section describes the various methods that are

available to carry out temporal segmentation of actions. How-

ever, detecting when an action starts and stops by employing

the first two solutions does not guarantee that the temporal

segment represents an action known by the model. This is

also especially the case with the use of temporal windows

where there is no guarantee that the temporal window chosen

for classification is a valid action or even representative of an

action because it could just as well be random motion.

This becomes an issue when a model is performing classi-

fication on this data because whatever the data represents, a

model will still return one of the n labels that it was trained

on. This is our third challenge, the Uncertainty Challenge.

One solution would be to return a probabilistic measure of

certainty from the model together with the classification. One

can subsequently apply a threshold and consider probabilities

above the threshold as known and thus classifiable and those

below the threshold as unknown and thus either ignored or

stored for future learning.

This approach however can result in false negatives de-

pending on how high the threshold is set. The model may

be recognising an action correctly but returns an unknown

result because of a low level of certainty. In some cases this

is favourable but in other applications such as the early stages

of a developmental learning approach, the high rate of false

negatives would decrease the rate of learning.

In Section III we will demonstrate the various approaches

that were tested on our model in order to address this

challenge, the Uncertainty Challenge, from a developmental

perspective.

III. APPROACH

Our approach is divided into five parts. First, we describe

the dataset that is used throughout our modelling of action

recognition. Then we describe how SAM allows us to model



this dataset followed by a description of the feature vectors

used for the two temporal segmentation approaches that were

tested for the Segmentation Challenge. Following this, we

discuss how the different segmentation techniques also affect

the Synchronisation Challenge and subsequently we discuss

the solutions for the Certainty Challenge and their effect on

classification performance.

A. Dataset

The dataset used is recorded from the setup shown in Figure

1 and consists of a total of 20,800 frames of data which are

rate matched by upsampling the slow input stream to match

the fast input stream. This data has been manually labelled

on the basis of manually segmented actions and consists of

19 different labels that describe not only the action but also

the name of the object that the action was carried on e.g.

push_object_car. Of these 19 labels, 8 are chosen to be

trained on which are:

1) push_object_car

2) push_object_octopus

3) pull_object_car

4) pull_object_octopus

5) lift_object_car

6) lift_object_octopus

7) drop_object_car

8) drop_object_octopus

These 8 labels account for 5401 data frames, 26% of the total

in the form of 60 actions: 30 lift-drop pairs and 30 push-pull

pairs. The rest of the actions are treated as unknown actions.

B. SAM

The starting point for the modelling approach we are em-

ploying was that of human episodic and autobiographical (or

event) memory. This memory can be considered as an attractor

network operating in a latent variable space, whose dimensions

encode salient characteristics of the physical and social world

in a highly compressed fashion [22]. The operation of the

perceptual systems that provide input to event memory can

then be analogised to learning processes that identify psycho-

logically meaningful latent variable descriptions [23]. In this

framework, instantaneous memories are seen as corresponding

to points in the latent variable space and episodic memories

to trajectories through this space. Seeding such a mechanism

with appropriate clues will allow retrieval of a past episode,

but the same system can also serve to fill-in and enrich the

representation of the current situation, providing the potential

for more informed action.

Gaussian Processes (GP) [24], [25] are probabilistic, non-

parametric equivalents of neural networks and have many

attractive properties as models of event memory; for exam-

ple, the ability to discover highly compressed latent variable

spaces, to form attractors that encode temporal sequences, and

to act as generative models. The core element of our robot

SAM system is therefore constituted by a set of GP latent vari-

able models (GP-LVMs) that represent memories of multiple

heterogeneous sensory modalities through a compressed latent

feature space and a set of anchor points. Each SAM model

knows how to combine these two elements to reconstruct

past memory, or to generate fantasy memories (imagination).

Chunking and pattern separation are also naturally manifested

within this formulation. For instance, when a set of faces or

actions is presented to the robot, memory formation naturally

takes the form of clusters in the latent space, where separate

clusters represent different faces/actions.

Our current implementation of robot SAM for the iCub

humanoid robot is able to demonstrate effective memory

formation and retrieval of human faces, actions, voices and

emotions and is being progressed towards the challenge of

representing sequences of agents acting on objects. Due to

its generative nature, the system can also recreate memories

leading to the possibility of imagining sequences such as

an action by an agent that has not yet been observed [26].

By linking the sensory primitives of multi-modal memories

(vision, sound, and touch), to verbal descriptions of episodes

stored in the narrative processing parts of the system the SAM

model could provide a way of grounding linguistic accounts

of events in remembered experience [27].

Training a SAM model requires the training data to be

of constant length, which is one of the drawbacks of the

approach, together with an additional four parameters which

are the number of inducing points that the model contains

[28], the number of initialisation iterations, number of training

iterations and the number of target dimensions for the output

latent space called Q.

C. Segmentation Challenge

For the segmentation challenge, our approach makes a

comparison of solutions 2 and 3 mentioned in Section II-B. For

solution 2 we make use of two parameters, thresholded contact

and the magnitude of object motion relative to its immediate

past as the discerning variables to segment complete actions.

Since actions are not always completed within a constant

number of frames and since SAM requires a constant lenght

feature vector, the segmented action is processed into the

high level features shown in Table I as a description of the

action for training. The described features are relative, thus

during classification a list of hand-object combinations is

created and a feature vector featuring all the features serialised

into a single vector is constructed for each item in the list

of possible combinations. This combinatorial approach was

chosen because it would provide more information as to which

arm has performed an action on which object within the scene.

On the other hand, in the case of solution 3 which makes

use of temporal windows, there are also two parameters which

define the segmentation. These are the window length and the

window overlap which defines how many frames are skipped

before the start of a new window as a percentage of the

window length. The features extracted from these temporal

windows in contrast with solution 2 are low-level physical

features: position, velocity and acceleration of the hands and

the objects. These are serialised and concatenated using the



Contact
This is defined by calculating a threshold distance between hand and object where values less than threshold correspond
to 1 and values greater than threshold correspond to 0.

QTC Motion
The 3D version of Qualitative Trajectory Calculus(QTC) is defined in the paper by [29] based on the original work by
[30] and is a method of describing relative movement between objects K(hand) and L(object) based on three outcomes:
K approaching L (+), K stationary with respect to L (0) or K getting farther away from L(-).

QTC Orientation
QTC also has an orientation component which is defined by three angles in [29] that represent the orientation of
K(hand) with respect to L(object) depending on the direction of movement of K. Each of these three angles are also
expressed in terms of +, 0 and for each frame in the current action

Direction Vector
The direction vector represents the direction of the vector that connects the starting position of the data with the ending
position of the current action.

Euclidian Distance This is the distance between the starting position of the current action and its ending position

Relative Position Label
This classifies the position of the hand with respect to the object for each frame of the data as either: Top, Bottom,
Front, Back, Left, Right

Relative Motion Label K
This classifies the movement of the current frame with respect to the previous frame for the hand according to the
labels of Relative Position Label

Relative Motion Label L
This classifies the movement of the current frame with respect to the previous frame for the object according to the
labels of Relative Position Label

TABLE I
DESCRIPTION OF THE HIGH LEVEL FEATURES THAT ARE EXTRACTED FOR SOLUTION 2

same combinatorial approach defined for solution 2. Due to the

use of low-level features it was also decided to introduce two

additional parameters. These are the size of a filtering window

applied to the temporal window in order to smooth out the raw

data and whether the features are absolute or relative to the

start frame of the temporal window.

D. Synchronisation Challenge

The two approaches discussed in the previous section deal

with the segmentation challenge using different methods. Now

we discuss the effect of the different solutions with respect to

the Synchronisation challenge. For solution 2, the synchronisa-

tion problem is somewhat bypassed by compressing the whole

action into a set of high level features. However, since the

features are relational in nature this worsens the effect of the

synchronisation problem due to the computation of incorrect

relational movement.

On the other hand, the effect of synchronisation on solution

3 is quite large due to the use of low level features which are

heavily dependent on time. This is further aggravated with the

use of a temporal window which only provides a fraction of

an action. Thus the only control solution 3 has on the effect

of synchronisation is the length of the temporal window. The

greater the length of the temporal window, the more one can

diminish the effects of synchronisation by learning to model

the relative latency as part of the data.

E. Certainty Challenge

As mentioned before, the actual actions that are trained only

make up a quarter of the recorded data thus in a real world

application, the trained model must be robust enough to ignore

unknown actions when they occur and this is where the final

challenge comes in. SAM’s greatest advantage in this case is

that since it is based on the use of Gaussian Processes, the

model returns not only a mean value which corresponds with

a classification label but also the Q-dimensional variance at

that mean value of the Q-dimensional latent space.

The variance is a good measure of certainty with a high

variance indicating an unknown input while a low variance

indicates a known input. However variance is not equivalent

to probability because it does not have a bounded value but can

vary in range even in between dimensions. Thus we proposed

two methods that can transform the multi-dimensional vari-

ance into the probability that the action is known (Pknown)

and the probability that the action is unknown (Punknown).

Transforming the variances into two probabilities instead of

one allows us to circumvent setting a fixed threshold on the

probability but instead compare the two by taking the argmax

as the winner.

1) Method 1: The first method assumes that the variances

of all the known and unknown actions when combined together

on a per dimension basis form a gaussian distribution with a

mean and a variance. One can then compare the known and

unknown distributions achieved per latent dimension and find

in which dimension the distance between the two distributions

is largest by calculating the bhattacharya distance [31]. Finally

when the dimension with the largest distance is identified, one

can take the variance of the classification result and from

its value calculate the probability of that variance being a

known variance or an unknown variance. This calculation

is greatly simplified by finding the point at which the two

gaussians intersect and using this value as the threshold value

that decides between known and unknown.

2) Method 2: Method 1 assumes that the distribution of

the variances is a gaussian but this could be an incorrect

assumption. So in Method 2 we take a different approach to

deciding known and unknown. Instead of using a gaussian

representation for the known variances and the unknown

variance we instead calculate and store the per-dimension his-

togram of known variances and the per-dimension histogram

of the unknown variances. Once normalised, these histograms

provide a more accurate measure of the probability of the

classification variance being known and unknown because

they provide an experiential account of the distribution of

known and unknown variances. This method thus takes the

classification variance and calculates the probability of the

variance being known or unknown on a per-dimension basis.



(a) Solution 2 Testing Known (b) Solution 3 Testing Known

(c) Solution 2 Testing Unknown and Known (d) Solution 3 Testing Unknown and Known

Fig. 2. Optimisation results for Solution 2 and Solution 3 for both Known only (2a, 2b) and mixed Known and Unknown conditions (2c, 2d)

This method introduces the number of bins in the histogram

as an additional parameter.

Different means of combining these probabilities could also

be considered. The first via a voting approach where the

known and unknown of each dimension are compared and the

argmax probability assigned a vote. The votes are then tallied

across all dimensions and the highest tally is considered the

winner. The second mechanism is taking the sum of all known

probabilities and the sum of all unknown probabilities and

taking the argmax of the results. This serves to marginalise the

probability of Pknown|dimension into Pknown and likewise

for Punknown|dimension into Punknown.

IV. RESULTS

We present here the results obtained during our investigation

of the Segmentation and the Synchronisation Challenge. We

approached this by finding the optimal parameter configuration

for both solutions 2 and 3 by feeding all the respective pa-

rameters into a Bayesian Optimisation implementation called

GPyOpt [32]. Thus we find via Bayesian trial and error, the

optimal configuration of model parameters and also the best

combination of features to use, with the option of dropping

features if deemed necessary to improve the overall classifica-

tion. Both models are trained with 200 optimisation iterations

in a search space of just over 3 million possible parameter

combinations for solution 2 and 2 million for solution 3.

The results shown in Figures 2a and 2b are the results

obtained for classification on the manually segmented actions

in the dataset and they demonstrate that the model accuracy

is very close to that obtained by solution 3, both of which

are considerably accurate with low false positives and slightly

highe false negatives. This shows that the negative effect

of synchronisation has been indeed modelled by the GP in

both cases. However for solution 2, when segmenting actions

via the use of contact and motion thresholds which are also

optimised, we obtain the results shown in Figures 2c and 2d.

The segmentation approach of solution 2 thus fails completely

when action segmentation is not robust enough in detecting

proper action boundaries.

Solution 3 is therefore the best performing solution achieve-

ing an overall accuracy rate of 75%



V. CONCLUSION

In conclusion we present here the three main challenges

faced by any system processing a time varying signal for

classification. The challenges of synchronisation, segmentation

and uncertainty quantification. We demonstrate the various

approaches one can take in overcoming these challenges and

finally outline what we consider to be the most general and

well performing solution to these problems. Future work will

investigate the methods proposed for the Certainty challenge

as well as a more thorough investigation into the role of

window length with respect to the Synchronisation challenge.

Furthermore we also plan to carry out a comparison with

standard action recognition datasets to assess the performance

of the best approach with respect to the state of the art.
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