
This is a repository copy of Discovering multiword expressions.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/153553/

Version: Accepted Version

Article:

Villavicencio, A. orcid.org/0000-0002-3731-9168 and Idiart, M. (2019) Discovering 
multiword expressions. Natural Language Engineering, 25 (6). pp. 715-733. ISSN 
1351-3249 

https://doi.org/10.1017/S1351324919000494

This article has been published in a revised form in Natural Language Engineering 
https://doi.org/10.1017/S1351324919000494. This version is free to view and download for
private research and study only. Not for re-distribution, re-sale or use in derivative works. 
© Cambridge University Press.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Natural Language Engineering 1 (1): 1–24. Printed in the United Kingdom

c© 1998 Cambridge University Press

1

Discovering Multiword Expressions

Aline Villavicencio and Marco Idiart
Federal University of Rio Grande do Sul, Brazil
University of Essex, UK

( Received July 2019 )

Abstract

In this paper we provide an overview of research on Multiword Expressions, from a natu-
ral language processing perspective. We examine methods developed for modelling MWEs
that capture some of their linguistic properties, discussing their use for MWE discov-
ery and for idiomaticity detection. We concentrate on their collocational and contextual
preferences, along with their fixedness in terms of canonical forms and their lack of word-
for-word translatatibility. We also discuss a sample of the MWE resources that have been
used in intrinsic evaluation setups for these methods.

1 Introduction

Multiword Expressions (MWEs) have already been described as a pain in the neck

(Sag et al.2002a) and hard going (Rayson et al.2010) for natural language pro-

cessing (NLP), but also considered to be much ado about nothing (de Marneffe et

al.2009) and perhaps plain sailing (Rayson et al.2010) through the years. Despite

any controversies, with a growing community and various events dedicated to them,

interest in MWEs shows no indication of slowing down, as they can be viewed as

providing not only challenges but also opportunities for designing new solutions for

more accurate language processing (Constant et al.2017).

After almost two decades and thousands of citations since the publication of the

Pain in the Neck paper by Sag et al. (2002a) what is it that makes them still an

object of interest? First of all, MWEs come in all shapes, sizes and forms, from a

(long) idiom like keep your breath to cool your porridge (as keeping to your own

affairs) to a (short) collocation like fish and chips, and models designed for one

category of MWE may not be adequate to other categories. Secondly, they may

also display various degrees of idiosyncrasy, including lexical, syntactic, semantic

and statistical (Baldwin and Kim2010), which may interact in complex ways. For

instance, a dark horse, in addition to describing the colouring of an animal, may also

be used to refer to an unknown candidate who unexpectedly succeeds and this second

meaning cannot be fully inferred from the component words. As a consequence, their

accurate detection and understanding may require knowledge that goes beyond the

individual words and how they can be combined together (Fillmore1979).
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In this paper we review some of the methods that have been adopted for com-

putationally modelling MWEs, concentrating on their discovery from corpora. The

paper is structured as follows: we start with a brief description of MWEs in section

2. Methods for MWE discovery are reviewed in section 3, with focus on discovering

information from their collocational and contextual profiles (sections 4 and 5), as

well as from the degree of rigidity of form and translatability (sections 6 and 7).

We also discuss some of the MWE resources available (section 8). We finish with

some conclusions and discussion of future possibilities.

2 What is in a Word/Multiword?

Multiword expressions are all around. According to estimates about four MWEs are

produced per minute of discourse (Glucksberg1989). They feature prominently in

the mental lexicon of native speakers (Jackendoff1997) in all languages and domains,

in informal and in technical contexts (Biber et al.1999). They can be found in

songs (Joshua Tree by U2, Knocking on Heaven’s Door by Guns ‘N’ Roses), in

books (Much ado about nothing, All is well that ends well by Shakespeare), in

newspaper headlines (Spilling the beans about coffee’s true cost1), and in scientific

texts (dentate gyrus, long-term memory, word sense disambiguation). Moreover,

these expressions have also been found to have faster processing times compared to

non-MWEs (compositional novel sequences) (Cacciari and Tabossi1988; Arnon and

Snider2010; Siyanova-Chanturia2013). But what are they and how can we recognise

them?

Different definitions have been proposed for them that describe them as recurrent

or typical combinations of words that are formulaic (Wray2002) or that need to be

treated as a unit at some level of description (Calzolari et al.2002; Sag et al.2002a).

In fact, there may not even be a unified phenomenon but instead a set of features

that interact in non-trivial ways and that fall in a continuum from idiomatic to

compositional combinations (Moon1998).

As some of these definitions refer to words and the crossing of word boundaries

(Sag et al.2002a), it is also important to adopt a clear definition of what a word is,

either in terms of meaning, syntax, or whitespaces (Church2013; Ramisch2015).For

example, the PARSEME guidelines (Ramisch et al.2018) define a word as a “lin-

guistically (notably semantically) motivated unit”2 and MWEs as containing at

least two words even if they are represented as a single token (e.g. snowman). Here

for the sake of simplicity we assume that words are separated by whitespaces in

texts.3 Adopting clear and precise definitions for these target concepts provides the

1 From the Guardian https://www.theguardian.com/xero-digital-connectivity/
2018/dec/11/spilling-the-beans-about-coffees-true-cost

2 https://parsemefr.lif.univ-mrs.fr/parseme-st-guidelines/1.1/?page=010_
Definitions_and_scope/010_Words_and_tokens

3 Although simple to implement, this definition will not work for languages whose writing
system does not use spaces like Chinese and Japanese, or for agglutinative languages in
which a single word can in fact be an MWE (e.g. single-token compounds in Germanic
languages) (Ramisch and Villavicencio2018).

https://www.theguardian.com/xero-digital-connectivity/2018/dec/11/spilling-the-beans-about-coffees-true-cost
https://www.theguardian.com/xero-digital-connectivity/2018/dec/11/spilling-the-beans-about-coffees-true-cost
https://parsemefr.lif.univ-mrs.fr/parseme-st-guidelines/1.1/?page=010_Definitions_and_scope/010_Words_and_tokens
https://parsemefr.lif.univ-mrs.fr/parseme-st-guidelines/1.1/?page=010_Definitions_and_scope/010_Words_and_tokens
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basis for estimating their occurrence in human language and consequently for de-

termining adequate vocabulary sizes, since the performance of many tasks seems to

be linked to vocabulary size (Church2013). They are also important for designing

clear evaluation setups for comparing different MWE processing methods. Discus-

sions of alternative definitions for these and related concepts (e.g. phraseological

units, phrasal lexemes, and collocations) along with the implications of the combi-

nations they include can be found in (Moon1998; Seretan2011; Ramisch2015) and

(Constant et al.2017).

Some of the core properties that have been used to describe MWEs include

(Calzolari et al.2002):

• high degree of lexicalisation, with some component words not being used

in isolation (e.g. ad from ad hoc and sandboy from happy as a sandboy),

• breach of general syntactic rules with reduced syntactic flexibility and

limited variation (e.g. by and large/*short/*largest). Although it may be pos-

sible to find a canonical form for an MWE, it is not always easy to determine

which elements form its obligatory core parts and which elements can be var-

ied (if any), as they may allow discontiguity and some degree of modification

(e.g. throw NP to the hungry lions/wolves as sacrificing someone),

• idiomaticity or reduced semantic compositionality, possibly involving

figuration like metaphors, with the meaning of some expressions not being

entirely predictable from their component words4. MWEs fall into a contin-

uum of idiomaticity, from compositional expressions like olive oil (meaning

an oil made of olive) to idiomatic expressions like to trip the light fantastic

(meaning to dance),

• high degree of conventionality and statistical markedness reflecting

a preference for some specific forms, or collocations, over plausible but low

frequency variations, or anti-collocations (Pearce2001), (e.g. strong tea and

fish and chips vs. the less common powerful tea and chips and fish).

Each of these characteristics may occur in varying degrees in a given expression,

and Sag et al. (2002a) proposed a classification of MWEs in terms of how much

variability they display. Fixed expressions do not display any morphological inflec-

tion or lexical variation (e.g. in addition/*additions and ad infinitum). Semi-fixed

expressions have fixed word order but display some morphological inflection (cof-

fee machine/machines). Syntactically flexible expressions exhibit a large range of

morphological and syntactic variation (rock the political/proverbial/family/Olympic

boat).

To sum up, MWEs can be characterised as possibly discontiguous word combina-

tions that display lexical, syntactic, semantic, pragmatic and/or statistical idiosyn-

crasies (Baldwin and Kim2010). These properties can be distributed in different

ways in MWE categories such as:

4 This property is also related to semantic decomposability (Nunberg et al.1994): by
considering non-standard meanings for the components of an expression, its meaning
can be compositionally constructed (e.g. spill beans as reveal secrets with spill as reveal
and beans as secrets.
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• proper names: Manchester United,

• collocations: emotional baggage, heavy rain,

• compounds: pinch of salt, friendly fire,

• idioms: keep NP in NP’s toes, throw NP to the lions/wolves,

• support verbs: wind blows, make a decision, go crazy,

• prepositional verbs: look for, talk NP into,

• verb-particle constructions: take off, clear up,

• lexical bundles: I don’t know whether.

More detailed inventories of categories are discussed by Sag et al. (2002a), Con-

stant et al. (2017) and Ramisch et al. (2018). For instance, the PARSEME anno-

tation guidelines (Ramisch et al.2018) focus on verbal MWEs in over 25 languages

including Bulgarian, French, Portuguese and Turkish.

3 Can we detect them automatically?

There has been considerable work on describing MWEs and cataloguing their prop-

erties, and some popular resources are discussed in section 8. As their manual con-

struction is time consuming and requires expert knowledge, much effort has been

devoted to automatically extracting MWEs from corpora. This task, known as

MWE discovery5 aims to to determine if a given sequence of words forms a genuine

MWE or if it can be treated as standard combination of words (e.g. small boy). For

MWE discovery the hope is that some form of salience is present such that MWEs

stand out and can be automatically detected. In this context, methods based on

statistical markedness have been particularly popular since they rely on association

and entropic measures calculated from corpus counts (Manning and Schütze1999;

Pecina2010) and are inexpensive and independent of language and MWE category.

They have been used to detect preferences of various types, including:

• Collocational preferences. Given that the “collocations of a given word are

statements of the habitual or customary places of that word” (Firth1957a),

these methods search for word sequences that are particularly recurrent in

corpora and can form MWEs.

• Contextual Preference. Assuming the Distributional Hypothesis that you

shall know a (multi)word by the company it keeps (Firth1957a) these methods

have been used to detect discrepancies between the meaning of an MWE and

those of its parts, as an indication of idiomaticity.

• Canonical Form Preferences. As MWEs may display different types of

inflexibility, evidence of marked preferences for very few of the expected mor-

phological, lexical, and syntactic variants can be use as indications of an

MWE.

5 A related task, known as MWE identification, focuses on finding (and labelling) oc-
currences of a particular MWE in a text, usually with the help of previously compiled
MWE resources (Constant et al.2017). In this paper we concentrate on the task of dis-
covery, in particular in methods for finding MWEs and determining how idiomatic they
can be.
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• Multilingual Preferences. These methods are often based on detecting

unexpected asymmetries in translations.

In the next sections we present a general overview of these methods.

4 Collocational preferences

Assuming that words that like to co-occur more frequently than by chance are in-

dicative of MWEs (Manning and Schütze1999; Pecina and Schlesinger2006), this

statistical markedness can be detected by measures of association strength. In a

typical scenario, a list of candidate MWEs is generated, for example from n-grams

(Manning and Schütze1999) or from relevant syntactic patterns for the target MWE

categories (Justeson and Katz1995). The list of candidates is then ranked accord-

ing to the score of association strength, and those with stronger associations are

expected to be genuine MWEs.

Formally, we consider a candidate MWE as a generic n-gram with n word tokens

w1 through wn. Its frequency in a corpus C of size N and lexicon L is denoted

by f(w1 . . . wn). From the corpus frequencies it is possible to estimate probabilities

using maximum likelihood estimation, for instance the unigram probability (p(w1))

and the n-gram probability (p(w1 . . . wn)):

p(w1) =
f(w1)

N
, p(w1 . . . wn) =

f(w1 . . . wn)

f(∗ . . . ∗)

or the probability that the word w1 occurs in the left of a bigram

p(wi∗) =
f(w1∗)

f(∗ ∗)

or even the probability that two words appears separated by a certain number of

words

p(wi ∗ ∗ wj) =
f(wi ∗ ∗ wj)

f(∗ ∗ ∗ ∗).

Here ∗ represents the sum over all possible words in L in that position.

A central question of the collocation problem is if the observed frequency of

a given combination of words is higher than what would be expected from pure

chance. Of course language is far from a random distribution of words, yet a no-

table discrepancy certainly represents something special in language. To access that

we have to measure the strength of the association between words, that formally

demands us to come up with a clear expression for the predicted frequency in the

case of pure chance, a baseline sometimes referred to as a null hypothesis. The usual

choice is to consider statistical independence, or that the frequency of a sequence

corresponds to the product of the unigram probabilities6 of its members scaled by

6 Rigorously the quantities of interest should be marginal probabilities such as p(∗wi∗)
for words occurring in the inner part of the MWE candidate, and p(w1∗) and p(∗wn)
for words occurring at the extremes, where the symbol ∗ represents any word in the
corpus. In a very large corpus, however, it is expected that the marginal probabilities
are not significantly different from the unigram probabilities.
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the size of the corpus,

H0 : f∅(w1 . . . wn) = Np(w1) . . . p(wn)

Therefore the association measure has to be a function that gauges some kind of

distance between the observed data and the prediction. This can be formulated

both in terms of frequencies

A(w1 . . . wn) = D[f(w1 . . . wn), f∅(w1 . . . wn)]

or in terms of probabilities

A(w1 . . . wn) = D′[p(w1 . . . wn), p(w1) . . . p(wn)]

However we must have in mind that the true probabilities are not known, just the

maximum likelihood estimates that we can obtain from a finite sample (in this

case a corpus). This fact raises an important issue of statistical significance of the

association itself in the case of low frequencies. In order to circumvent this problem

there are many association measures that are deduced from known statistical tests.

This results in more generalised versions of association measures that not only

depend of unigram frequencies but also of other possible combinations involving

n-grams of lower orders than the target. In the next sections we discuss some of

these measures.

4.1 Pointwise Mutual Information

By far the most widely used association measure is the Pointwise Mutual Informa-

tion (PMI) (Church and Hanks1990) and its variations. It is derived for bigrams

directly from the mutual information between two random variables, using the log-

ratio between the observed co-occurrences of the sequence and of the individual

words.

PMI = log
p(w1w2)

p(w1∗)p(∗w2)
= log

f(w1w2)

f∅(w1w2)

PMI values can be positive, denoting affinity between the words, 0 denoting inde-

pendence between them, or negative, denoting lack of affinity. Moreover, the closer

the counts for the sequence are to the word counts, the stronger the association

between the words and the more exclusively they like to co-occur.

One well known issue with PMI is its bias towards infrequent events. Its up-

per bound, corresponding to the case of perfect association (f(wi∗) = f(∗wj) =

f(wiwj)), is − log(f(wiwj)/N). Therefore a moderately associated low frequency

bigram could, in principle, have a better score than a highly associated high fre-

quency bigram (Bouma2009). To correct this, alternative statistical measures based

on suitable normalisation of PMI have been proposed (Bouma2009). One popular

variant is the lexicographer’s mutual information (LMI), or salience score (Kil-

garriff et al.2004), which adjusts a PMI value by multiplying it by the frequency,

reintroducing the importance of meaningful recurrence.

So far we have discussed association between two words. One option for handling

larger candidates is the generalisation of the mutual information to account for
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many variables. However, as this generalisation is not unique (Van de Cruys2011),

various proposals have been made for calculating the equivalent of PMI for n-

grams. One of these is the specific total correlation (STC), which is the direct

extension of the formula above for w1 . . . wn and it is based on the so called total

correlation proposed by Watanabe (1960). Similarly, if the Interaction Information

(McGill1954) is used as a basis, we have the variant called Specific Interaction

Information (SII) (Van de Cruys2011). One important difference of between STC

and SII is that former is zero only if all words are independent while the latter

is zero if at least one is not associated to the others. Table 1 displays these two

measures for trigrams.

Another alternative for n-grams is to maintain the original PMI formulation

with two variables (w1 and w2) but to allow each variable to contain nested ex-

pressions as one word (e.g. w1=first_class and w2=lounge, and w1=recurrent and

w2=neural_network) (Seretan2011).

Name Formula

Association Measures

1. Pointwise Mutual Information (PMI) log p(w1w2)
p(w1∗)p(∗w2)

= log f(w1w2)
f∅(w1w2)

2. Specific Total Correlation (STC) log p(w1w2w3)
p(w1∗∗)p(∗w2∗)p(∗∗w3)

= log f(w1w2w3)
f∅(w1w2w3)

3. Specific Information Interaction (SII) log p(w1w2∗)p(∗w2w3)p(w1∗w3)
p(w1∗∗)p(∗w2∗)p(∗∗w3)p(w1w2w3)

4. Students-t based association (t) f(w1...wn)−f∅(w1...wn)√
f(w1...wn)

5. Dice n f(w1...wn)
f(w1)+...+f(wn)

6. χ2 based association
∑

v∈(w1,w̄1)
u∈(w2,w̄2)

(f(vu)−f∅(vu))2

f(vu)

Table 1. Table of association measures.

4.2 Other measures

In addition to PMI, another score that has been used for MWE discovery is the

probability of occurrence of the n-gram itself. When used on its own, it cannot

detect if the high score is merely by chance because the words are frequent, or

if the co-occurrence is meaningful. However, it has been used in conjunction with

other measures like PMI, generating LMI.

Two other popular measures are the Student t-test based measure and the Dice

coefficient (Table 1), which in common with PMI, also take into consideration the

expected counts to detect meaningful occurrences between words. For instance,

Student’s t-test is based on hypothesis testing, assuming that if the words are

independent, their observed and expected counts are identical. The Dice coefficient,
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also known as Normalised Expectation (Pecina and Schlesinger2006), differs from

both of these measures by having an upperbound of 1 for perfect correlation.

There are also measures based on contingency tables that record not only the

marginal frequencies of the words, but also the probability of “non-occurrence”,

and using all possible combinations of wi and w̄i (all words but wi), for all i.

These measures, which include Pearson χ2 (Table 1) and the more robust log-

likelihood ratio (Dunning1993), compare the co-occurrence of two words with all

other combinations in which they occur.

Over the years, many other association measures have been defined for MWE

discovery, and Pecina and Schlesinger (2006) compiled as many as 82 measures for

bigram collocation discovery found in the literature. They show that these mea-

sures capture different aspects of MWEs, and as a consequence, when combined

together they can generate better results in terms of MWE discovery than if used

in isolation. In fact, in comparative evaluations, no single measure has been found

to be the optimal best for extracting MWEs of any category or in any language,

confirming that an empirical exploration of these measures is needed for a particular

category and language combination (Evert and Krenn2005; Pearce2002; Villavicen-

cio et al.2007). Likewise, as these measures can be used to produce ranked lists of

MWE candidates, as discussed before, defining a threshold that separates genuine

MWEs from non-MWEs, also seems to depend on the particular target MWEs, and

on whether the task benefits more from recovering more MWEs at the expense of

allowing more noise, or not. Evaluation of how closely a given measure captures

the MWEs of a particular domain and language are usually done by means of gold

standard resources or manual validation by expert judges.

5 Contextual preferences

When deriving the meaning of a combination of words, one widely adopted strategy

is to build it from the meanings of the parts, following the Principle of Composition-

ality7. This principle allows a meaning to be assigned to larger units and sentences,

even if they contain unseen combinations of words. However, it is not adequate for

handling idiomatic MWEs since it may lead to an unrelated meaning being derived

(e.g. for trip the light fantastic). Considerable effort has been employed in methods

for detecting idiomaticity, both at the level of MWE types, discovering the degree

of idiomaticity that an MWE usually displays, and at the level of MWE tokens,

deciding for a specific occurrence if it is idiomatic or not. For example, the first

task would be used to identify that the meaning of access road can, in general,

be inferred from its parts (a road for giving access to a place) while the second

task would be to decide if in a sentence like the exam was a piece of cake the

occurrence of piece of cake should be interpreted literally as a slice of a baked good,

or idiomatically as something easy. For both tasks information about the contexts

in which an MWE occurs has been found to be a good indicator of idiomaticity and

we now discuss some of the measures that have been proposed for these tasks.

7 Attributed to Frege (1892 1960)
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5.1 Type idiomaticity

If a word can be characterised by “the company it keeps” (Firth1957a) and given

that words that occur in similar contexts have similar meanings (Turney and Pan-

tel2010) we can approximate the meaning of an MWE by aggregating its affini-

ties with its contexts. We can also find words and MWEs with similar meanings

measuring how similar their affinities are. These affinities can be determined from

distributional semantic models (or vector space models) which have been used to

represent word meaning (and possibly subword and phrase meaning) as numeri-

cal multidimensional vectors in a putative semantic space (Lin1998; Pennington

et al.2014; Mikolov et al.2013). These models are capable of reaching high levels

of agreement with human judgements about word similarity (Baroni et al.2014;

Camacho-Collados et al.2015; Lapesa and Evert2017). They vary according to fac-

tors like the following:8

• Type of model: count-based and predictive models (Baroni et al.2014).

Count-based models generate vectors derived from co-occurrence counts be-

tween words and their contexts (Lin1998; Pennington et al.2014). Predictive

models represent words as real-valued vectors projected onto low-dimensional

space whose distances are adjusted as part of learning to predict words from

contexts (or vice-versa) (Mikolov et al.2013; Baroni et al.2014).

• Type of pre-processing applied to the input corpus: such as lemmatisa-

tion and part-of-speech tagging. While state-of-the-art modes for English have

been constructed without any pre-processing, for morphologically richer lan-

guages like French and Portuguese pre-processing the corpus can lead to better

models (Cordeiro et al.2019).

• Type of context: in bag-of-words (BOW) models (Mikolov et al.2013), the

contexts of a target word are represented as an unordered set of words that

does not differentiate between their positions or relations to the target. In

models based on syntactic dependencies (Lin1998; Levy and Goldberg2014)

contexts are further distinguished in terms of their syntactic relations to the

target (e.g. dog as subject vs. as object of the target).

• Window size: defines the number of words around the target that are in-

cluded as contexts (Lapesa and Evert2014). These windows can be symmetric

or asymmetric in relation to the target, and may incorporate a decay factor

for prioritising words that are closer to the target.

• Number of vector dimensions used for representing words. These range

from sparse vectors with as many dimensions as words in the vocabulary

to denser and more compact representations. Reductions in the number of

dimensions can be obtained using explicit context filtering, such as using only

the n more frequent or salient contexts (Padró et al.2014; Salehi et al.2014),

or adopting techniques like singular value decomposition.

• Measures of association strength between a target word and its contexts.

These measures help to detect more salient co-occurrences that are not just

8 A detailed discussion of these models can be found in (Clark2015).



10 LATEX Supplement

due to chance, and some of them were discussed in the previous section such

as χ2, t-score, PMI and Positive PMI (PPMI) (Curran and Moens2002; Padró

et al.2014).

• Measures of similarity, distance or divergence between word vectors.

These measures have been used to find word vectors that display similar affini-

ties with their contexts, like cosine (explained below), Manhattan distance,

Kullback-Leibler divergence, Jensen-Shannon, Dice and Jaccard.

A major advantage of vector space models is the possibility of using algebra

to model complex interactions between words. Similarity or relatedness can be

modelled as a comparison between word vectors, for instance, as the normalised

inner product (the cosine similarity):

simcos(w1, w2) = v̂(w1) · v̂(w2)

where v̂(w) is the normalised9 word vector of the word w. Compositional meaning

also can be modelled as a mathematical function that composes the vectors of

the words in an MWE, but this time not to compare but to add information.

The simplest of all is the additive model (Mitchell and Lapata2008) but there

are alternative possibilities including other operations (Mitchell and Lapata2010;

Reddy et al.2011; Mikolov et al.2013; Salehi et al.2015). For the additive model the

vector for a two word compound (vβ(w1, w2)) can be defined as

vβ(w1, w2) = β v̂(whead) + (1 − β) v̂(wmod),

where whead (or wmod) indicates the semantic head (or modifier) of the compound,

and β ∈ [0, 1] is an adjustable parameter (usually set to 1/2) that might control

the relative importance of the head to the compound semantics (Reddy et al.2011).

For example in flea market, it is the head (market) that has a larger contribution

to the overall meaning, and β may be used to reflect this.

The degree of compositionality can be calculated between the corpus-derived

vector of the MWE, v(w1w2) (e.g. for rocket_science)10, and the compositionally

constructed vector containing the combination of the component words, vβ(w1, w2)

(e.g. rocket and science):

comp(w1w2) = cos( v(w1w2), vβ(w1, w2) ).

MWEs that presented low values of comp are candidates to be idiomatic MWEs

(Cordeiro et al.2019).

This score can be used both to validate a given candidate MWE and also to as-

sign a degree of idiomaticity to it, since MWEs fall on a continuum of idiomaticity

(McCarthy et al.2003; Reddy et al.2011; Salehi et al.2018). The success of this score

hangs on how linguistically accurate the compositional models and similarity mea-

sures used are. The good news is that recent work has demonstrated that additive

9
v̂(w) = v(w)/||v(w)|| and || · || is the Euclidean norm.

10 This is usually done during pre-processing by connecting the words of the MWE
using underscores so it corresponds to a unit (for instance rocket science becomes
rocket_science).
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compositional models associated with cosine similarity are suitable for detecting id-

iomaticity of noun compounds (Cordeiro et al.2019), and have outperformed other

variants in similar tasks (Reddy et al.2011; Salehi et al.2015), including in predict-

ing intra-compound semantics (Hartung et al.2017).

5.1.1 Additional Semantic Measures

Alternative measures for approximating idiomaticity have included comparing the

distributional neighbourhood of an MWE with those of the component words, that

is, the words that are closest to each of them in vector space. Assuming that compo-

sitional MWEs share more distributional neighbours with their component words,

the overlap between their neighbours has been used as an indication of the degree

of compositionality (McCarthy et al.2003). Additionally, the rank position of these

neighbours can also be considered.

Semantic information about MWEs and their possible senses can also be obtained

from resources like dictionaries and thesaurus, including synonyms, antonyms, def-

initions and examples. Some resources, like WordNet (Fellbaum1998) also include

similarity measures like Wu-Palmer (Wu and Palmer1994) and Leacock-Chodorow

(Leacock and Chodorow1998). However, their coverage for MWEs may be limited,

and they may not be available for a given domain or language, restricting their

applicability for idiomaticity detection.

5.2 Token idiomaticity

So far we discussed methods for discovering MWEs and deciding how idiomatic they

can be, and these could be useful for building resources. However, when faced with a

particular sequence of words, a speaker (as well as an automatic system) must decide

whether in that sentence they can be treated as simple isolated words or if they

are components of a unit, an MWE. Sometimes the syntactic context may help to

disambiguate them, as in the sentence Does the bus stop here? where bus stop could

be flagged as a possible MWE occurrence except that stop is a verb and the MWE

bus stop is formed by two nouns. However, there are cases where both idiomatic

and literal readings are possible with exactly the same syntactic configuration. For

instance for kick the bucket more information is needed to disambiguate if a kicking

event took place with a literal interpretation of the words, or a dying event with

idiomatic interpretation. Although for some MWEs one of the meanings will be

predominant, ambiguity is not the exception: an analysis of idiomatic verb-noun

combinations (VNCs) revealed that many of them were also used with their literal

senses in corpus (Fazly et al.2009). Therefore, for a given MWE occurrence in a

sentence, we need to determine if it is used in a literal or an idiomatic meaning.

Token idiomaticity detection can be seen as a word sense disambiguation task,

where information from the surrounding words in the sentential context can be used

to help disambiguate the MWE sense. Returning to the case of kick the bucked,

although both the literal and the idiomatic senses are possible, sentences in which

the idiomatic sense occurs will include words that may not be compatible with
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the literal sense (e.g. illnesses, hospitals and funerals). In previous work on token

idiomaticity detection this sentential context has been modelled in terms of lexical

chains, assuming that a literal sense displays strong cohesive ties with the context,

which are absent for the idiomatic sense (Sporleder and Li2009).

To solve this ambiguity something akin to compositionality prediction, described

in the previous section, has to take place. But this time, instead of comparing the

compositional vector of the MWE formed by the combination of the parts with the

corpus generated vector for the MWE, we must compare the vectors for the literal

(e.g. hitting the bucket) and idiomatic (e.g. dying) senses with the vectors contain-

ing a representation of the sentential context in which the MWE occurs. In this case

the sentential context can be represented using sentence-level distributional mod-

els such as Skip-Thought Vectors (Kiros et al.2015), or it can be compositionally

constructed from the vector representations of the words in the sentence using an

operation like vector addition. For token idiomaticity detection in VNC, King and

Cook (2018) compared the use of different distributional models for representing

the target sentences in which the VNCs occur, from word-level (Mikolov et al.2013)

to sentence-level models (Kiros et al.2015). They found that representing a senten-

tial context using the additive model obtained the best results. Alternatives to the

additive model include concatenating word vectors of specific parts of the sentential

context (Taslimipoor et al.2017).

6 Canonical Form Preferences

Methods for MWE discovery have also used information about the fixedness dis-

played by some MWEs in comparison with ordinary word combinations (Sag et

al.2002b).11 Characteristics like limited lexical and syntactic flexibility (Sag et

al.2002b), have been used as indicators in tasks such as MWE discovery and id-

iomaticity detection. For instance, the expression to make ends meet cannot undergo

changes in determiners (*to make some/these/many ends meet), pronominalization

(*make them meet), modification (*to make month ends meet), and so on.

One common strategy to detect fixedness is to generate all variants that would

be expected for a given combination of words and verify which of them occurs in

a very large corpus. The assumption is that absence (or very limited presence) of

expected variants is an indication of idiomaticity (Ramisch et al.2008a; Fazly et

al.2009). These variants can be of two types: lexical and syntactic variants.

Lexical variants can be generated by lexical substitution of the component words

using synonyms from resources like WordNet (Pearce2001; Ramisch et al.2008a)

and inventories of semantic classes (Villavicencio2005) or using similar words from

distributional semantic models. For instance, for nut case variants would include

hazelnut case, cashew case, nut briefcase and nut luggage. A possible measure of

11 For expert annotation, the PARSEME annotation guidelines use inflexibility for various
MWE detection tests. For instance, if a regular morphological change that would nor-
mally be allowed by general grammar rules lead to ungrammaticality or to an unexpected
change in meaning this is an indication of a (morphologically inflexible) MWE (from
the PARSEME annotation guidelines (Ramisch et al.2018)).
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lexical fixedness (LF) proposed by (Fazly et al.2009), compares how the PMI of a

target MWE deviates from the average PMI of possible variants of this target

LF(w1...wn) =
PMI(w1...wn) − PMI

σP MI

where PMI is the average on the variants and σP MI is the standard deviation. LF

was defined in the context of detecting idiomaticity in VNCs and the variants were

obtained from a certain number of close synonyms of the verb and the noun, but

it can be adapted to larger n-grams using generalisations of PMI as discussed in

section 4. The reasoning behind using PMI is to avoid the possible confound caused

by high frequency lexical substitutes.

Syntactic variants can be generated according to regular syntactic rules that ap-

ply to a given MWE category, such as passivisation, pluralisation, change of deter-

miners or adverbial modification for verbal MWEs (e.g. ?the bucket was kicked/?kick

a bucket/?kick the buckets). Due to the fact that syntactic variants may present dif-

ferent number of words it is no longer suitable to compare PMIs. Instead (Fazly

et al.2009) defined a syntactic fixedness (SF) measure based on the probability of

occurrence in the corpus of a given syntactic pattern, among a set of m syntactic

patterns used to generated the syntactic variants. The proposed fixedness mea-

sure is the Kullback-Leibler divergence between the probability distribution for the

typical syntactic behaviour p(pt) and the distribution of occurrences of syntactic

patterns given that the target n-gram is involved p(pt|w1...wn).

SF(w1...wn) =

m∑

pt=1

p(pt|w1...wn) log
p(pt|w1...wn)

p(pt)

Large values of SF indicate that the target n-gram presents syntactic pattern fre-

quencies that are very different from the typical frequency distribution expected

for that kind of n-gram and this is interpreted as higher degree of syntactic fixed-

ness (Fazly et al.2009). If the syntactic patterns are approximately uniformly dis-

tributed SF is related to the Entropy of Permutation and Insertion (EPI) proposed

by Ramisch et al. (2008b),

EPI(w1...wn) = −
m∑

pt=0

p(pt|w1...wn) log(p(pt|w1...wn))

Nonetheless, EPI can be used in more general contexts. Low values of EPI indicate

some degree of fixedness.

Similarly, for some types of MWEs, fixedness can be captured by entropic mea-

sures of word order as the Permutation Entropy (Zhang et al.2006) defined as

PE(w1...wn) = −
∑

k

pk(w1...wn) log(pk(w1...wn))

where pk(w1...wn) is the probability of occurrence in the corpus of the kth permuta-

tion of the n-gram w1w2...wn. PE is also indirectly related the association strength

of the components of a candidate, since if there is no special association between

words, the probability of them appearing in multiple orders should be similar, lead-
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ing to high PE values (Villavicencio et al.2007). One of the advantages of using PE

as an association measure is that it can be applied to MWEs of arbitrarily large

sizes, without the need to be redefined.

If a MWE candidate passes a criteria for fixedness (a rigid adherence to a canoni-

cal form) based in the measures described in this section it is very likely an idiomatic

MWE. Therefore fixedness is an informative score for MWE discovery.

Fixedness has also been incorporated in methods for detecting token idiomaticity,

such as those discussed in section 5.2. The assumption is that when the idiomatic

sense is used it tends to occur in the canonical form of the MWE, while the literal

sense is less rigid and may occur in more patterns (Fazly et al.2009). Fazly et al.

(2009) propose a method based on canonical forms learned automatically from cor-

pora, where distributional vectors for canonical and non-canonical forms are learned

and then an MWE token is classified as idiomatic if it is closer to the canonical

form vectors. Methods that incorporate both information about the canonical form

of an MWE and distributional information about its sentential contexts (section

5.2) have found them to be complementary and outperform models that use only

one of them (Fazly et al.2009; King and Cook2018).

7 Multilingual Preferences

Idiomatic MWEs resist word-for-word translation, often generating unnatural, non-

sensical or incorrect translations (e.g. o fim da picada in Portuguese, lit. the end

of the bridle path meaning something unacceptable). When parallel resources are

available this lack of direct translatability can be measured using information

such as asymmetries in word alignments between source and target languages

(Melamed1997; Caseli et al.2010; Attia et al.2010; Tsvetkov and Wintner2012).

The degree of idiomaticity of an MWE has also been calculated from the overlap

between the translation of an MWE and the translations of its component words.

Moreover, the translations for the MWE and for each of its component words can

also be compared using string distance metrics that can help to account for any

inflectional differences between them and determine whether the translations share

a substring (Salehi et al.2014). For instance, the translation for public into Persian

is contained in the translation for public service. These string similarity measures

have been found to lead to better results for MWE idiomaticity detection when

combined with information from distributional similarity models of the source and

target language (Salehi et al.2018).

8 MWE Resources

Evaluation of MWE discovery methods can be performed intrinsically or extrinsi-

cally. In intrinsic evaluation, the results produced by a model are compared to a

gold standard, usually a dictionary, electronic resource or dataset where MWEs have

been manually curated using expert annotations from linguists or lexicographers,

or collected via crowdsourcing. While the former provides high quality and robust

annotations, it is usually costly and time-consuming to obtain. The latter provides
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a faster way of gathering judgements from usually large groups of non-experts to

reduce the impact of subjectivity on the scores. In extrinsic evaluation the results

produced are incorporated in an NLP application such as machine translation or

text simplification, with the expectation that the quality of the MWE resource will

be reflected in the performance of the task. However, the results may be influenced

by the the particular integration of the information into the application. In this

section we focus on some of the resources that have been used for intrinsic evalua-

tion of MWE tasks and further discussion about extrinsic evaluations can be found

in (Constant et al.2017). In particular we discuss some of the main corpora that

have been annotated with MWEs, as well as datasets containing human judgments

about MWE properties.

Annotated corpora

• The largest initiative in terms of language diversity is the PARSEME project

(Savary et al.2015), which resulted in the creation of corpora for over 25

languages (Ramisch et al.2018) containing annotations of verbal MWEs.12

• The Supersense-Tagged Repository of English with a Unified Semantics for

Lexical Expressions (STREUSLE) (Schneider and Smith2015) provides com-

prehensive manual annotations of MWEs and of noun and verb semantic

supersenses in a corpus of online reviews in English.13

• Detecting Minimal Semantic Units and their Meanings shared task data

(DIMSUM) extended the STREUSLE corpus with additional domains and

resulted in a comprehensive annotation of MWEs in running text for En-

glish (Schneider et al.2016). The corpus contains over 90,000 words and 5,000

MWEs.14

• The VNC-Tokens dataset (Cook et al.2008) contains 2,984 sentences from the

British National Corpus that contain VNCs, marked according to whether

their sense is idiomatic, literal or unclear, with up to 100 sentences for each

of 53 different combinations.15

• For detecting compositionality in context, Korkontzelos et al. (2013) produced

annotations for the occurrences in context of target phrases, like old school,

with a figurative or literal meaning in 4,350 sentences from WaCky corpus.16

Datasets

• The English Compound Noun Compositionality Dataset (ECNC) (Reddy et

al.2011) contains crowdsourced judgments about the degree of compositional-

ity for a set of 90 English noun–noun (e.g. zebra crossing) and adjective–noun

(e.g. sacred cow) compounds. For each compound an average of 30 judgments

were collected for three numerical scores: the degree to which the first word

contributes to the meaning of the compound (e.g. zebra to zebra crossing),

12 https://lindat.mff.cuni.cz/repository/xmlui/handle/11372/LRT-2842
13 https://github.com/nert-nlp/streusle
14 https://github.com/dimsum16/dimsum-data
15 http://cs.unb.ca/~ccook1/English_VNC_Cook.zip
16 https://www.cs.york.ac.uk/semeval-2013/task5/index.php%3Fid=full.html

https://lindat.mff.cuni.cz/repository/xmlui/handle/11372/LRT-2842
https://github.com/nert-nlp/streusle
https://github.com/dimsum16/dimsum-data
http://cs.unb.ca/~ccook1/English_VNC_Cook.zip
https://www.cs.york.ac.uk/semeval-2013/task5/index.php%3Fid=full.html
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the same for the second word (e.g. crossing to zebra crossing) and the degree

to which the compound can be compositionality constructed from its parts.

A Likert scale from 0 (most idiomatic) to 5 (most compositional) was used.17

• The Noun Compositionality Dataset (Ramisch et al.2016; Cordeiro et al.2019)

uses the same protocol as Reddy et al. (2011) and extends the ECNC with

judgments collected from native speakers for 190 new compounds for English,

and 180 compounds for two additional languages, French and Portuguese.

Additionally, for Portuguese the annotations were extended to include lexical

substitution candidates for each of the compounds, resulting in the Lexi-

cal Substitution of Nominal Compounds Dataset (LexSubNC) (Wilkens et

al.2017).18

• The Dataset of English Noun Compounds Annotated with Judgments on

Non-Compositionality and Conventionalization (Farahmand et al.2015; Yaz-

dani et al.2015) provides judgments for 1,042 English noun-noun compounds.

Each compound contains two binary judgments by 4 expert annotators, both

native and non-native speakers: one for its compositionality and one for its

conventionalization.19

• The Norwegian Blue Parrot Dataset (Kruszewski and Baroni2014) has judg-

ments for modifier-head phrases in English. These include annotations about

the phrase being an instance of the concept denoted by the head (e.g., dead

parrot and parrot) or a member of the more general concept that includes the

head (e.g., dead parrot and pet), along with typicality ratings.20

• The German Noun-Noun Compound Dataset (Roller et al.2013) contains

judgments for a set of 244 German compounds using a compositionality scale

from 1 to 7. Each compound has an average of around 30 judgments obtained

through crowdsourcing. This resource has also been enriched with feature

norms (Roller and Schulte im Walde2014).21

• A Representative Gold Standard of German Noun-Noun Compounds (Ghost-

NN) (Schulte im Walde et al.2016) includes human judgments for 868 German

noun-noun compounds about their compositionality, corpus frequency, pro-

ductivity and ambiguity. The annotations were performed by the authors,

linguists, and through crowdsourcing. A subset of 180 compounds has been

selected for balancing these variables and for these the annotations were done

only by experts.22

Other collections containing MWEs include the SemEval datasets for keyphrase

extraction (Kim et al.2010) and for noun compound interpretation (Nakov2008;

17 http://sivareddy.in/papers/files/ijcnlp_compositionality_data.tgz
18 http://pageperso.lif.univ-mrs.fr/~carlos.ramisch/?page=downloads/

compounds
19 https://github.com/meghdadFar/en_ncs_noncompositional_conventionalized
20 http://marcobaroni.org/PublicData/NBP.zip
21 https://www.ims.uni-stuttgart.de/forschung/ressourcen/experiment-daten/

feature-norms.en.html
22 https://www.ims.uni-stuttgart.de/forschung/ressourcen/lexika/ghost-nn.

html

http://sivareddy.in/papers/files/ijcnlp_compositionality_data.tgz
http://pageperso.lif.univ-mrs.fr/~carlos.ramisch/?page=downloads/compounds
http://pageperso.lif.univ-mrs.fr/~carlos.ramisch/?page=downloads/compounds
https://github.com/meghdadFar/en_ncs_noncompositional_conventionalized
http://marcobaroni.org/PublicData/NBP.zip
https://www.ims.uni-stuttgart.de/forschung/ressourcen/experiment-daten/feature-norms.en.html
https://www.ims.uni-stuttgart.de/forschung/ressourcen/experiment-daten/feature-norms.en.html
https://www.ims.uni-stuttgart.de/forschung/ressourcen/lexika/ghost-nn.html
https://www.ims.uni-stuttgart.de/forschung/ressourcen/lexika/ghost-nn.html
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Hendrickx et al.2013; Butnariu et al.2010), MWE-aware treebanks (Rosén et

al.2015), MWE lists23 as well as lexical resources (Losnegaard et al.2016).

9 Conclusions

MWEs are complicated, unruly, unpredictable and difficult. They are the telltale

sign of non-native speakers and are one big stumbling block for many applications

to achieve a more natural and precise handling of human language. Whole decades

of research have been devoted to them, and their behaviour still defies attempts to

fully capture them. However, they are also a frequent informal and very efficient

communicative device to transmit whole complex concepts in a conventional man-

ner, and in the words of Fillmore, Kay and Connor (1988) the realm of idiomaticity

in a language includes a great deal that is productive, highly structured and wor-

thy of serious grammatical investigation. In this paper we provided an overview

of research on computational modelling of MWEs, revisiting some representative

methods for MWE discovery. We concentrated in particular on methods for the

detection of word combinations that qualify as MWEs, and that identify some of

their characteristics, like their degree of fixedness and idiomaticity.

However, this paper only scratches the surface of MWE research, and additional

discussions can be found in (Constant et al.2017; Ramisch and Villavicencio2018;

Pastor and Colson2019). Moreover, progress in related areas is paving the way

for a better understanding of how people learn, store and process MWEs, and for

the development of computational approaches for dealing with them. For instance,

advances in word representations have brought new possibilities for MWE research.

In particular, crosslingual word embeddings (Søgaard et al.2019) provide fertile

grounds for the exploration of multilingual asymmetries linked to idiomaticity, while

richer contextually-aware word representation models like ELMo (Peters et al.2018)

can be incorporated in methods for token idiomaticity detection.

One possible source of clues of how to improve MWE processing comes from

studies of how the brain performs the task. Experimental studies dedicated to in-

vestigate how humans process language is growing in number and involve a series

of increasingly sophisticated techniques for measuring brain activity. The focus is

to understand with increasing accuracy what are the brain regions used in language

processing and how their interactions varies temporally and spatially with linguistic

complexity. These studies can provide clues about how MWEs are stored and pro-

cessed by the human brain. The use of eye-tracking information has already brought

benefits for tasks like part-of-speech tagging (Barrett et al.2016; Barrett et al.2018).

MWEs have been found to have faster processing times compared to non-MWEs

(compositional novel sequences) and these effects have been found in both research

using eye-tracking and EEG (Siyanova-Chanturia2013). Investigations of the use of

gaze features from the GECO corpus (Cop et al.2017) produced promising results

in tasks like discovery (Rohanian et al.2017), and further advances are expected

23 http://multiword.sourceforge.net/

http://multiword.sourceforge.net/
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with increasing availability of larger collections of eye-tracking data. There is still

a large gap that has to be overcome to connect the algorithms we develop for NLP

and the algorithm actually used by the brain. The hope is that the gap will close

soon. MWEs are here to stay and for the foreseeable future will still be on the

limelight of research.
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