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A combinatorial model for the known Bousfield classes

NEIL PATRICK STRICKLAND

We give a combinatorial construction of an ordered semiring A , and show that it can

be identified with a certain subquotient of the semiring of p–local Bousfield classes,

containing almost all of the classes that have previously been named and studied.

This is a convenient way to encapsulate most of the known results about Bousfield

classes.

55P42, 55P60; 16Y60

1 Introduction

Fix a prime p , and let L denote the set of Bousfield classes in the p–local stable

category (which can be regarded as an ordered semiring in a natural way). This note is

an attempt to organise many of the known results about the structure of L in a more

coherent way.

One of the main open questions about L is Ravenel’s telescope conjecture (TC). The

statement will be recalled in Remark 4.2. Many people suspect that TC is false, but this

has still not been proven. We will define an ordered semiring L which is, in a certain

sense, the largest quotient of L in which TC becomes true. We will then define (in an

explicit, combinatorial way) another ordered semiring A and a function �W A ! L

such that the composite

A
�

�! L
�

�! L

is an injective homomorphism of ordered semirings. (However, � itself is probably

not a semiring homomorphism, unless TC holds.) For almost all elements x 2 L that

have been named and studied, we have �.x/ 2 ��.A/. Thus, A is a good model for

the known part of L.

Remark 1.1 We will mention two exceptions to the idea that A captures all known

phenomena in L. First consider the spectra BP=J from Ravenel [15, Definition 2.7],

where J is generated by an invariant regular sequence of infinite length. Ravenel shows

that for different J these have many different Bousfield classes, but only one of them
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2678 Neil Patrick Strickland

is in the image of �W A ! L. It is unlikely that the situation is any better in L. Next,

Mahowald, Ravenel and Shick [12] introduce a number of new Bousfield classes in the

course of studying the telescope conjecture. It is reasonable to conjecture that their

images in L lie in ��.A/, but we have not considered this question carefully.

2 Ordered semirings

Definition 2.1 By an ordered semiring we will mean a set R equipped with elements

0; 1 2 R and binary operations _ and ^ such that:

(a) _ is commutative and associative, with 0 as an identity element.

(b) ^ is commutative and associative, with 1 as an identity element.

(c) ^ distributes over _.

(d) For all u 2 R we have 0 ^ u D 0 and 1 _ u D 1 and u _ u D u.

It is easy to check that there is a natural partial order on such an object, where u � v

if and only if u _ v D v . The binary operations preserve this order, and 0 and 1 are

the smallest and largest elements. Moreover, u _ v is the smallest element satisfying

w � u and w � v .

Definition 2.2 Let R be an ordered semiring. We say that R is complete if every

subset S � R has a least upper bound
W

S 2 R. We say that R is completely

distributive if, in addition, for all S � R and x 2 R we have

W

fx ^ s j s 2 Sg D x ^
W

S:

We next recall the definition of the Bousfield semiring L.

Definition 2.3 We write B for the category of p–local spectra in the sense of stable

homotopy theory. This has a coproduct, which is written X _ Y and is also called

the wedge product. There is also a smash product, written X ^ Y . Up to natural

isomorphism, both operations are commutative and associative, and the smash product

distributes over the wedge product. The p–local sphere spectrum S is a unit for the

smash product, and the zero spectrum is a unit for the wedge product.

For any object E 2 B we put

hEi D fX 2 B j E ^ X D 0g;

Algebraic & Geometric Topology, Volume 19 (2019)
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and call this the Bousfield class of E. We then put

L D fhEi j E 2 Bg:

(This is a set rather than a proper class, by a theorem of Ohkawa [14; 4].) It is

straightforward to check that this has well-defined operations satisfying

hEi _ hF i D hE _ F i D hEi \ hF i;

hEi ^ hF i D hE ^ F i D fX j E ^ X 2 hF ig D fX j F ^ X 2 hEig:

It is then easy to check that this gives an ordered semiring, with top and bottom elements

1 D hSi D f0g; 0 D h0i D B:

The resulting ordering of L is given by hEi � hF i if and only if hEi � hF i.

Next, recall that B has a coproduct, written
W

i Xi , for any family of objects .Xi /i2I ,

and these satisfy W ^
W

i Xi '
W

i .W ^Xi /. It follows that L is completely distributive,

with
W

i hEi i D h
W

i Ei i.

Definition 2.4 Let R be an ordered semiring, and let � 2R be an idempotent element

(so � ^ � D � ). We put

R=� D fa 2 R j a � �g:

We define a surjective function � W R ! R=� by �.a/ D a _ � .

Proposition 2.5 There is a unique ordered semiring structure on R=� such that � is

a homomorphism. Moreover, if �W R ! S is any homomorphism of ordered semirings

with �.�/ D 0, then there is a unique homomorphism x�W R=� ! S with x� ı � D � .

Proof The set R=� clearly contains 1 and is closed under ^ and _. We claim that

these operations make R=� into an ordered semiring, with � as a zero element. All

axioms not involving zero are the same as the corresponding axioms for R . The axioms

involving zero say that we should have � _ u D u and � ^ u D � for all u 2 R=� , and

this follows directly from the definition of R=� and the idempotence of � . It is clear

that this is the unique structure on R=� for which � is a homomorphism. If �W R ! S

has �.�/ D 0 then we can just take x� to be the restriction of � to R=� . This is clearly

a homomorphism, with

x�.�.a// D �.a _ �/ D �.a/ _ �.�/ D �.a/ _ 0 D �.a/;

as required.

Algebraic & Geometric Topology, Volume 19 (2019)
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Remark 2.6 If R is complete, or completely distributive, then we find that R=� has

the same property.

Remark 2.7 In Definition 4.1 we will introduce certain Bousfield classes a.n/ D

hCnK 0.n/i for n 2 N , and put �.n/ D
W

i<n a.i/ for n 2 N1 . These will all be zero

if and only if TC holds. In Lemma 5.18 we will check that �.n/ is idempotent, which

allows us to define L D lim
��!n<1

L=�.n/. This will be our main object of study.

Definition 2.8 Let R be an ordered semiring. An ideal in R is a subset I � R such

that

� 0 2 I ,

� for all x; y 2 I we have x _ y 2 I ,

� for all x 2 R and y 2 I we have x ^ y 2 I .

Remark 2.9 Let S be any subset of R, and let I be the set of elements x 2 R that

can be expressed in the form x D
Wn

iD1 yi ^ zi for some n 2 N and y 2 Rn and

z 2 Sn . (This should be interpreted as x D 0 in the case n D 0.) Just as in the case

of ordinary rings, this is the smallest ideal containing S, or in other words, the ideal

generated by S.

Lemma 2.10 Let R be an ordered semiring.

(a) Suppose that every ideal in R has a least upper bound ; then R is complete.

(b) Suppose that R is complete , and that for x 2 R and every ideal I � R we have

x ^
W

I D
W

.x ^ I/; then R is completely distributive.

Proof (a) Let S be a subset of R, and let I be the ideal that it generates. It is then

easy to see that the upper bounds for I are the same as the upper bounds for S, and I

has a least upper bound by assumption, so this is also a least upper bound for S.

(b) Now suppose we also have an element x 2 R , and that x ^
W

I D
W

.x ^ I/. We

find that x ^ I is the same as the ideal generated by x ^ S, so

W

.x ^ S/ D
W

.x ^ I/ D x ^
W

I D x ^
W

S;

as required.

We next define two canonical subsemirings for any ordered semiring R. This is an

obvious axiomatic generalisation of work that Bousfield did for L in [2].

Algebraic & Geometric Topology, Volume 19 (2019)
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Definition 2.11 Let R be an ordered semiring, and let x and y be elements of R.

We say that y is a complement for x (and vice versa) if x _ y D 1 and x ^ y D 0. If

such a y exists, we say that x is complemented.

Lemma 2.12 If x has a complement then it is unique, and we have x ^ x D x .

Proof Let y be a complement for x . Multiplying the equation x _ y D 1 by x and

using x ^ y D 0 gives x ^ x D x .

Now let z be another complement for x . Multiplying the relation x _ y D 1 by z

gives y ^z D z . Multiplying the relation x _z D 1 by y gives y ^z D y . Comparing

these gives y D z .

This validates the following:

Definition 2.13 For any complemented element x , we write :x for the complement.

Definition 2.14 For any ordered semiring R, we put

Rlatt D fx 2 R j x ^ x D xg; Rbool D fx 2 R j x is complementedg:

Remark 2.15 Let �W R ! S be a homomorphism of ordered semirings. Then it

is clear that �.Rlatt/ � Slatt . Moreover, if x and y are complements of each other

in R , we find that �.x/ and �.y/ are complements of each other in S . It follows that

�.Rbool/ � Sbool . In other words, both of the above constructions are functorial.

Proposition 2.16 The set Rlatt is a subsemiring of R. Moreover, for x; y; z 2 Rlatt

we have x � y ^ z if and only if x � y and x � z , so the ^ product is just the meet

operation for the natural ordering, and this makes Rlatt into a distributive lattice.

Proof It is clear that Rlatt contains 0 and 1 and is closed under ^. Now suppose that

x; y 2 Rlatt , and put z D x _ y . Using the commutativity and distributivity of ^, and

the idempotence of x and y , we obtain

z ^ z D x _ y _ .x ^ y/:

We can rewrite y _ .x ^ y/ as .1 _ x/ ^ y D 1 ^ y D y , so z ^ z D x _ y D z , as

required. This proves that Rlatt is a subsemiring.

Now suppose that x; y; z 2Rlatt with x � y and x � z . We then get x D x ^x � y ^z ,

as required. The converse holds in any ordered semiring, so we see that ^ is just the

meet operation, as claimed.

Algebraic & Geometric Topology, Volume 19 (2019)
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Proposition 2.17 The set Rbool is a subsemiring of Rlatt and is a boolean algebra.

Proof Lemma 2.12 shows that Rbool � Rlatt . Note also that if x 2 Rbool then x is a

complement for :x , so :x lies in Rbool as well.

Now suppose that x0; x1 2 Rbool , with complements y0 and y1 . It is then easy to

check that y0 ^ y1 and y0 _ y1 are complements for x0 _ x1 and x0 ^ x1 , showing

that Rbool is closed under _ and ^. It also contains 0 and 1, so Rbool is a subsemiring

of Rlatt . By one of the standard definitions, a boolean algebra is just a distributive

lattice in which every element has a complement, so Rbool has this structure.

We can generalise the definition of :x as follows. Put

A.x/ D fy j x ^ y D 0g:

If y is a complement for x , then it is easy to check that it is the largest element in

the set A.x/. More generally, if x does not have a complement, but A.x/ still has a

largest element, then we can define :x to be that largest element. If R is completely

distributive then we see that
W

A.x/ is always an element of A.x/ and so qualifies

as :x . In particular, this operation is defined for all elements of the Bousfield semiring,

as was already discussed in [2]. However, a homomorphism �W R! S need not satisfy

�.:x/ D :�.x/ in this more general context, even if � preserves infinite joins. In

particular, we do not know whether the homomorphisms A ! L and L ! L preserve

negation. Thus, although we can compute the negation operation in A, this does not

provide much information about L, unless we restrict attention to Abool .

We can generalise still further as follows:

Definition 2.18 Let R be an ordered semiring, and let x and z be elements of R.

Put

A.x; z/ D fy 2 R j x ^ y � zg:

Then:

� If A.x; z/ has a largest element then we denote it by .x ! z/, and call it a

Heyting element for the pair .x; z/.

� A strong Heyting element for .x; z/ is an element y 2R such that x ^y � z � y

and x _ y D 1.

A complement for x is the same as a strong Heyting element for .x; 0/, and our more

general definition of :x is just the same as .x ! 0/.
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Proposition 2.19 (a) Any strong Heyting element is a Heyting element.

(b) If R is completely distributive, then every pair has a Heyting element.

(c) If x is complemented, then z _ :x is a Heyting element for .x; z/.

(d) Any homomorphism of ordered semirings preserves strong Heyting elements.

Proof (a) Let y be a strong Heyting element for .x; z/. Then x ^ y � z , so

y 2 A.x; z/. Let u be any other element of A.x; z/, so x ^ u � z . Multiplying the

relation x _ y D 1 by u gives

u D .u ^ x/ _ .u ^ y/ � z _ y;

but we also have z � y (as part of the definition of a strong Heyting element) so u � y ,

as required.

(b) Suppose that R is completely distributive, and put y D
W

A.x; z/. Complete

distributivity implies that

x ^ y D
W

fx ^ u j u 2 A.x; z/g � z;

so y 2 A.x; z/, and clearly y is the largest element of A.x; z/.

(c) Let w be a complement for x , so w ^ x D 0 and w _ x D 1. Put y D z _ w � z .

Then

x ^ y D .x ^ z/ _ .x ^ w/ D x ^ z; x _ y D z _ w _ x D z _ 1 D 1:

It follows that y is a strong Heyting element, as claimed.

(d) This is clear from the definitions.

If we assume that x ^ x D x for all x (so that R D Rlatt ) then the Heyting elements

satisfy a number of additional properties, such as x ^ .x ! z/ D x ^ z . These

properties are encapsulated by the definition of a Heyting algebra (see [11, Section 1.1]

for example). They do not hold automatically in our more general context, and we

have not investigated exactly how much can be rescued.

3 The combinatorial model

Definition 3.1 We put N1 D N [ f1g, and give this the obvious order with 1 as

the largest element. We will say that a subset S � N1 is small if S � Œ0; n/ for some

n 2 N ; otherwise, we will say that S is big. We will also say that S is cosmall if

N1 n S is small, or equivalently S contains Œn; 1� for some n.

Algebraic & Geometric Topology, Volume 19 (2019)
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Definition 3.2 We put N! D N [ f!; 1g, with the ordering

0 < 1 < 2 < 3 < � � � < ! < 1:

Definition 3.3 The set A has elements as follows:

� For each cosmall subset T � N1 and each q 2 N1 we have an element

t .q; T / 2 A.

� For each small subset S �N1 and each m2N! we have an element j.m;S/2A.

� For each subset U � N1 we have an element k.U / 2 A.

(For the corresponding elements of the Bousfield lattice, see Definition 4.1.)

We write At for the subset of elements of the form t .q; T /, and similarly for Aj

and Ak , so that A D At qAj qAk .

We define commutative binary operations _ and ^ on A as follows:

t .q; T / _ t .q0; T 0/ D t .min.q; q0/; T [ T 0/;

t.q; T / _ j.m0; S 0/ D t .q; T [ S 0/;

t.q; T / _ k.U 0/ D t .q; T [ U 0/;

j.m; S/ _ j.m0; S 0/ D j.max.m; m0/; S [ S 0/;

j.m; S/ _ k.U 0/ D

�

j.m; S [ U 0/ if U 0 is small;

k.S [ U 0/ if U 0 is big;

k.U / _ k.U 0/ D k.U [ U 0/;

t.q; T / ^ t .q0; T 0/ D t .max.q; q0/; T \ T 0/;

t.q; T / ^ j.m0; S 0/ D

�

j.m0; T \ S 0/ if q � m0;

k.T \ S 0/ if q > m0;

t .q; T / ^ k.U 0/ D k.T \ U 0/;

j.m; S/ ^ j.m0; S 0/ D k.S \ S 0/;

j.m; S/ ^ k.U 0/ D k.S \ U 0/;

k.U / ^ k.U 0/ D k.U \ U 0/:

We also put 0 D k.∅/ and 1 D t .0; N1/.

We next give some auxiliary definitions that will help us analyse the structure of A.
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Definition 3.4 We write P for the ordered semiring of subsets of N1 , with the

operations [ and \, and identity elements 0 D∅ and 1 D N1 . We define tailW A!P

by

tail.t.q; T // D T; tail.j.m; S// D S; tail.k.U // D U:

Remark 3.5 Inspection of the definitions shows that tail.x _ y/ D tail.x/ [ tail.y/

and tail.x ^ y/ D tail.x/ \ tail.y/ for all x and y . Once we have checked that A is

an ordered semiring, this will mean that tailW A ! P is a homomorphism of ordered

semirings. Inspection of the definitions also shows that

tail.x/ D fi j k.i/ ^ x ¤ 0g D fi j k.i/ ^ x D k.i/g D fi j k.i/ � xg:

Definition 3.6 We define

H D ft .q/ j q 2 N1g q fj.m/ j m 2 N!g q fkg;

and we define headW A ! H in the obvious way.

Remark 3.7 The interaction of the head map with the operations can be summarised

as follows:

t .q/ _ t .q0/ D t .min.q; q0//; t.q/ ^ t .q0/ D t .max.q; q0//;

t.q/ _ j.m0/ D t .q/; t.q/ ^ j.m0/ 2 fj.m0/; kg;

t .q/ _ k D t .q/; t.q/ ^ k D k;

j.m/ _ j.m0/ D j.max.m; m0//; j.m/ ^ j.m0/ D k;

j.m/ _ k 2 fj.m/; kg; j.m/ ^ k D k;

k _ k D k; k ^ k D k:

Because of the indeterminate rules for t .q/ ^ j.m0/ and j.m/ _ k , we cannot say that

headW A ! H is a homomorphism of ordered semirings.

Definition 3.8 We put N� D f?g q N! , and give this the obvious order with ? as

the smallest element. For m 2 N� and S � N1 we put

Q|.m; S/ D

�

j.m; S/ if m > ? and S is small;

k.S/ if m D ? or S is big:
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Remark 3.9 The elements Q|.m; S/ are distinct, except that Q|.m; S/ is independent

of m when S is big. The operations can be rewritten as follows:

t .q; T / _ t .q0; T 0/ D t .min.q; q0/; T [ T 0/;

t.q; T / _ Q|.m0; S 0/ D t .q; T [ S 0/;

Q|.m; S/ _ Q|.m0; S 0/ D Q|.max.m; m0/; S [ S 0/;

t.q; T / ^ t .q0; T 0/ D t .max.q; q0/; T \ T 0/;

t.q; T / ^ Q|.m0; S 0/ D

�

Q|.m0; T \ S 0/ if q � m0;

Q|.?; T \ S 0/ if q > m0;

Q|.m; S/ ^ Q|.m0; S 0/ D Q|.?; S \ S 0/:

Proposition 3.10 A is an ordered semiring.

Proof The operations are commutative by construction, and it is immediate from the

definitions that 0 _ x D 1 ^ x D x _ x D x and 0 ^ x D 0 and 1 _ x D 1. This leaves

the associativity and distributivity axioms. Remark 3.5 takes care of the tails, so we

just need to worry about the heads. This is just a lengthy but straightforward check of

cases, which is most efficiently done using Remark 3.9. (We have also coded a partial

formalisation using Maple.)

The order on A can be made more explicit as follows:

� We have t .q; T / � t .q0; T 0/ if and only if T � T 0 and q � q0.

� We never have t .q; T / � j.m; S/ or t .q; T / � k.U /.

� We have j.m; S/ � t .q; T / if and only if S � T .

� We have j.m; S/ � j.m0; S 0/ if and only if S � S 0 and m � m0.

� We have j.m; S/ � k.U / if and only if S � U and U is big.

� We have k.U / � t .q; T / if and only if U � T .

� We have k.U / � j.m; S/ if and only if U � S.

� We have k.U / � k.U 0/ if and only if U � U 0.

We next want to show that A is completely distributive. Because of Lemma 2.10, we

can concentrate on ideals in A.

Algebraic & Geometric Topology, Volume 19 (2019)
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Definition 3.11 Let I � A be an ideal. We put

A D
[

ftail.u/ j u 2 Ig � N1;

Q D fq 2 N1 j t .q/ 2 head.I/g � N1;

M D fm 2 N! j j.m/ 2 head.I/g � N! :

We define �.I/ 2 A as follows:

(a) If Q D ∅ and either A is big or M is empty, then �.I/ D k.A/.

(b) If Q D ∅ and A is small and M is nonempty but has no largest element, then

�.I/ D j.!; A/.

(c) If QD∅ and A is small and M has a largest element, then �.I/Dj.max.M/;A/.

(d) If Q ¤ ∅, then �.I/ D t .min.Q/; A/.

(It would be possible to combine cases (b) and (c) in the above definition, but it is more

convenient to keep them separate, because they behave differently in various arguments

that will be given later.)

Lemma 3.12 We also have A D fi 2 N1 j k.i/ 2 Ig, and k.A/ is the least upper

bound for I \Ak .

Proof If i 2A then there exists u2I with i 2 tail.u/, which means that k.i/^uDk.i/.

As I is an ideal, this means that k.i/ 2 I . Conversely, if k.i/ 2 I then fig D

tail.k.i// � A. This proves the alternative description of A, and the second claim

follows easily from that.

Lemma 3.13 In cases (c) and (d) of Definition 3.11 we have �.I/ 2 I , and �.I/ � u

for all u 2 I , so �.I/ is the largest element of I .

Proof We first consider case (c), and put m0 D max.M/. By the definition of M,

there is a small set S0 such that j.m0; S0/ 2 I . By the definition of A we have S0 � A.

By assumption, the set A is small, and therefore finite. For each i 2 A we have k.i/ 2 I

by Lemma 3.12, and so the element

�.I/ D j.m0; A/ D j.m0; S0/ _
W

i2A k.i/

also lies in I . Now consider an arbitrary element u 2 I . By assumption we have

Q D ∅, so u is either j.m; S/ (for some m 2 M and S � A) or k.S/ (for some

S � A). In all cases it is clear that u � �.I/, as required.
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Now consider case (d), and put q0 D min.Q/. By the definition of Q , there is a

cosmall set T0 such that t .q0; T0/ 2 I . By the definition of A we have T0 � A, and

T0 is cosmall, so A D T0 q A0 for some finite set A0 � N . For i 2 A0 we have

k.i/ 2 I by Lemma 3.12, so the element

�.I/ D t .q0; A/ D t .q0; T0/ _
W

i2A0
k.i/

also lies in I . Now consider an arbitrary element u 2 I . If u 2 Aj q Ak then

u D j.m; S/ or u D k.S/ for some S � A, and this gives u � �.I/ (independent of

the value of m). If u 2 At then u D t .q; T / for some q 2 Q and T � A, and we must

have q � min.Q/ D q0 , which again gives u � �.I/, as required.

Lemma 3.14 In case (a) of Definition 3.11, the element �.I/ D k.A/ is the least

upper bound for I .

Proof We see from Lemma 3.12 that the element �.I/ D k.A/ is the least upper bound

for I \Ak , so we just need to check that it is an upper bound for all of I . Consider

an arbitrary element u 2 I . As Q D ∅ we must have u D j.m; S/ or u D k.S/ for

some S � A. As A is big, it follows that u � k.A/, as required.

Lemma 3.15 In case (b) of Definition 3.11, the set M is infinite and contained in N .

Moreover, we have j.m; A/ 2 I for all m 2 M, and the element �.I/ D j.!; A/ is the

least upper bound for I .

Proof By assumption, M is a nonempty subset of N! with no largest element. By

inspection, this is only possible if M is an infinite subset of N . Moreover, the set A is

small and therefore finite. It follows using Lemma 3.12 that k.A/ 2 I . If m 2 M then

j.m; Sm/ 2 I for some Sm , which must be a subset of A. It follows that the element

j.m; A/ D j.m; Sm/ _ k.A/ also lies in I .

Now let u be an arbitrary element of I . As Q D ∅, we must have u D j.m; S/ for

some m 2 M and S � A, or u D k.S/ for some S � A. From this it is easy to check

that j.!; A/ is the least upper bound.

Proposition 3.16 A is completely distributive.

Proof We will use the criteria in Lemma 2.10. Let I � A be an ideal. Lemmas 3.13,

3.14 and 3.15 show that the element a D �.I/ is always a least upper bound for I . It

follows that A is complete.
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Now consider an element x 2 A, and put I 0 D x ^ I and a0 D
W

I 0. It is clear that

x ^a is an upper bound for I 0, so a0 � x ^a , and we must show that this is an equality.

This is clear from Lemma 3.13 in cases (c) and (d) of Definition 3.11, so we need only

consider cases (a) and (b).

In these cases we have I 0 � I � Aj [Ak , and also a 2 Aj [Ak . Note that

tail.a0/ D
[

ftail.u0/ j u0 2 I
0g D tail.x/ \ tail.a/ D tail.x ^ a/;

so we just need to worry about the head.

Now suppose that x also lies in Aj [Ak . From the definitions we have

.Aj [Ak/ ^ .Aj [Ak/ D Ak;

and it follows that head.a0/ D k D head.x ^ a/, as required.

Now suppose instead that x D t .q; T /.

In case (a) we then have x ^ a D k.T \ A/, and T \ A is big (because A is big and

T is cosmall). Using Lemma 3.12 we see that k.i/ 2 x ^ I for all i 2 T \ A, and it

follows that a0 � k.T \ A/ D x ^ a , as required.

Finally, consider case (b) (still with x D t .q; T /). Put M 0 D fm0 2 M j m0 � qg.

Using Lemma 3.15 we see that M 0 is an infinite subset of N , and that j.m0; A/ 2 I

for all m0 2 M 0. In this context we have x ^ j.m0; A/ D j.m0; A \ T /. It follows

that a0 � j.m0; A \ T / for all m0 2 M 0, and thus that a0 � j.!; A \ T / D x ^ a , as

required.

Proposition 3.17 Alatt D At qAk :

Proof Just inspect the definitions to see which elements satisfy x ^ x D x .

Proposition 3.18 We have

Abool D ft .0; T / j T is cosmallg q fk.U / j U is smallg;

with :t .0; T / D k.N1 n T / and :k.U / D t .0; N1 n U /.

Proof Inspection of the definitions shows that when U � N1 is small, we have

t .0; N1 nU /_k.U / D t .0; N1/ D 1 and t .0; N1 nU /^k.U / D k.∅/ D 0. Thus, the

claimed elements all lie in Abool . Conversely, suppose that x and y are complementary

elements of Abool . We must then have x _ y D 1 D t .0; N1/. Inspection of the
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definitions shows that this is only possible if one of x and y has the form t .0; T / for

some cosmall T ; we may assume without loss that x D t .0; T /. We must also have

t .0; T /^y D 0, and this is only possible if y D k.U / with U \T D∅ . The condition

x _ y D 1 now reduces to T [ U D N1 , so we must have U D N1 n U.

Remark 3.19 It is also possible to tabulate all the Heyting elements .x ! y/ for

x; y 2 A, and to determine which of them are strong. Strong Heyting elements in A

will give strong Heyting elements in L, but the same cannot be guaranteed for weak

Heyting elements. The complete tabulation involves a rather long list of cases, so we

will not give all the details here.

4 Basic Bousfield classes

We now introduce notation for various spectra, and the corresponding Bousfield classes.

The names that we will use for some of these classes are the same as the names of

elements of A. Later we will consider the map �W A ! L that sends each element

of A to the element of L with the same name.

Definition 4.1 � For n 2 N we let K.n/ denote the nth Morava K –theory [10]. In

particular, K.0/ is the rational Eilenberg–Mac Lane spectrum HQ. We also write

K.1/ for the mod p Eilenberg–Mac Lane spectrum, and k.n/ D hK.n/i.

� For any subset U � N1 we put K.U / D
W

i2U K.i/ and k.U / D hK.U /i.

� It is a theorem of Mitchell [13] that for each n2N we can choose a (p–locally) finite

spectrum U.n/ of type n, meaning that K.i/�U.n/ D 0 if and only if i < n. We choose

U.0/ to be S and U.1/ to be the Moore spectrum S=p . We put F.n/DF.U.n/; U.n//,

which is a self-dual finite ring spectrum of type n. Note that F.0/ D S0 . In all cases we

put f .n/ D hF.n/i. As a well-known consequence of the thick subcategory theorem

[6, Theorem 7], these Bousfield classes do not depend on the choice of U.n/.

� For q 2 N we recall that the Bott periodicity isomorphism �SU D BU gives

a natural virtual vector bundle over �SU.pq/, and the associated Thom spectrum

X.pq/ has a natural ring structure. The p–localisation of this has a p–typical summand

called T .q/ (see [16, Section 6.5]). We will also take T .1/ D BP. Note that T .0/

is just the (p–local) sphere spectrum S. In all cases we put t .q/ D hT .q/i and

t .qI n/ D t .q/ ^ f .n/.
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� Now suppose we have q 2 N and a cosmall set T � N1 . For any n such that

Œn; 1��T , we define t .q; T I n/D t .qI n/_k.T /. We also define t .q; T /D t .q; T I n0/,

where n0 is the smallest integer such that Œn0; 1� � T .

� For m 2 N1 we let J.m/ denote the Brown–Comenetz dual of T .m/, so there is

a natural isomorphism

ŒX; J.m/� ' Hom.�0.T .m/ ^ X/; Q=Z.p//

for all spectra X. We also put J.!/ D
W

m2N J.m/, and j.m/ D hJ.m/i for all

m 2 N! . Given a small set S, we put j.m; S/ D j.m/ _ k.S/.

� For n 2 N we choose a good vn self-map wn of U.n/. (Here we use Definition 4.5

from [9], which is a slight modification of definitions used in [6; 3]. This means

that wn ^ 1 D 1 ^ wn as endomorphisms of U.n/ ^ U.n/, and that 1BP ^ wn D

v
pdn

n ^ 1U.n/ as endomorphisms of BP ^ U.n/ for some dn � 0.) We also write

wn for the corresponding element of ��.F.n//, and we put K 0.n/ D F.n/Œw�1
n � and

k0.n/ D hK 0.n/i.

� Now fix n 2 N . Let Ln denote the Bousfield localisation functor with respect

to the Johnson–Wilson spectrum E.n/, and let CnX denote the fibre of the natural

map X ! LnX. We also put A.n/ D CnK 0.n/ and a.n/ D hA.n/i. Note here that the

smash product theorem [17, Theorem 7.5.6] gives A.n/ D K 0.n/ ^ CnS. We also put

�.n/ D
W

i<n a.i/ for all n 2 N1 .

Remark 4.2 The original formulation of Ravenel’s telescope conjecture [15, Con-

jecture 10.5] says that k0.n/ D k.n/ for all n 2 N . It is shown in [12, Section 1.3]

that this is equivalent to the claim that K 0.n/ D LnK 0.n/, which is in turn equivalent

to a.n/ D 0. These equivalences can also be obtained from Lemma 5.20 below. The

formulation a.n/ D 0 is also used in [7; 8]. We can reformulate it again as �.n/ D 0

for all n 2 N1 , or as �.1/ D 0.

Remark 4.3 We offer some translations between our notation and that used by some

other authors:

(a) In [15, Section 3], Ravenel uses the notation Xn for what we have called X.pn/.

He only mentions T .n/ in passing, but he calls it Tn . In [16; 17], however,

Ravenel uses the same notation as we do here.
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(b) We have used the symbol k.n/ for the Bousfield class of the spectrum K.n/,

with homotopy ring Z=pŒvn; v�1
n �. However, many other sources use the symbol

k.n/ for a certain spectrum with homotopy ring Z=pŒvn�, whose Bousfield class

is different from that of K.n/. We will instead use the notation BP hni=In for

this spectrum.

(c) Our finite spectra U.n/ and F.n/ have type n, and they have the same Bousfield

class as any other finite spectrum of type n. In particular, this applies to the

Toda–Smith spectra when they exist. The Toda–Smith spectrum of type n is

traditionally denoted by V.n � 1/, but we will call it S=In .

(d) Our class k0.n/ is often denoted by Tel.n/ or T .n/. Our notation is chosen to

reflect the fact that k0.n/ D k.n/ modulo the telescope conjecture.

Remark 4.4 The paper [12] is an incomplete attempt to disprove TC. It involves

spectra called y.n/ and Y.n/, which we will not define here. In Section 3 of that paper,

the authors say (in our notation) that y.n/ might be the same as T .n/ ^ S=In in cases

where S=In exists, and some of their calculations provide evidence for that possibility.

As a closely related possibility, it might be that hy.n/i D t .n/ ^ f .n/ as Bousfield

classes for all n. This would give hY.n/i D t .n/ ^ k0.n/. If the strategy in [12] could

be completed, it would show that A.n/ ^ y.n/ ¤ 0 for all n > 1. If we also knew that

hy.n/i D t .n/^f .n/, we could conclude that t .n/^a.n/ ¤ 0 for n > 1. On the other

hand, it is known that t .i/ < t.j / whenever i > j , and that t .1/ ^ a.n/ D 0. One

would thus want to ask whether t .n C 1/ ^ a.n/ is zero or not.

Definition 4.5 We define �W A ! L to be the map that sends each element of A to

the element of L with the same name.

Definition 4.6 Later we will prove that �.n/ is idempotent for all n. Assuming this

for the moment, we can define

L D lim
��!

n<1

L=�.n/:

We write � for the canonical quotient map L ! L, and we put x� D ��W A ! L.

We will need some properties of the spectra T .q/.

Lemma 4.7 The spectrum T .q/ is .�1/–connected, and each homotopy group is

finitely generated over Z.p/ .
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Proof As X.pq/ is the Thom spectrum of a virtual bundle of virtual dimension zero,

it is certainly .�1/–connected. It is a standard calculation that

H�.X.pq// D ZŒbi j 0 < i � pq�;

with jbi j D 2i . Using this and the Atiyah–Hirzebruch spectral sequence

Hi .X.pq/I �j .S// ) �iCj .X.pq//;

we see that the homotopy groups of X.pq/ are finitely generated over Z. As T .q/ is

a summand in X.pq/.p/ , we deduce that it is .�1/–connected, with homotopy groups

that are finitely generated over Z.p/ .

Lemma 4.8 For q � r we have

T .q/�T .r/ D T .q/�Œt1; : : : ; tr �

(with jti j D 2.pi � 1/).

The literature contains various similar and closely related results, but we have not been

able to find this precise version.

Proof By construction [16, Section 6.5], there is a map iqW T .q/ ! BP which

induces an isomorphism from BP�T .q/ to the subring BP�Œt1; : : : ; tq� of the ring

BP�BP D BP�Œti j i > 0�. This implies that the connectivity of the map iq is jtqC1j�1,

which is strictly greater than jtr j. The connectivity of the map

iq ^ 1W T .q/ ^ T .r/ ! BP ^ T .r/

is at least as large as that of iq , so the elements ti 2 BP�T .r/ have unique preimages

in T .q/�T .r/, which we also denote by ti . These give us a map

˛W T .q/�Œt1; : : : ; tr � ! T .q/�T .r/:

From the description of BP�T .r/ it follows easily that H�.T .r// D Z.p/Œt1; : : : ; tr �,

so we have an Atiyah–Hirzebruch spectral sequence

H�.T .r/I T .q/�/ D T .q/�Œt1; : : : ; tr � ) T .q/�T .r/:

The map ˛ provides enough permanent cycles to show that the spectral sequence

collapses, and it follows that ˛ is an isomorphism.
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Lemma 4.9 If m � m0 � 1, then T .m/ can be expressed as the homotopy inverse

limit of a tower of spectra Q.r/, where the fibre of the map Q.r C 1/ ! Q.r/ is a

product of suspended copies of T .m0/, and Q.r/ D 0 for r < 0.

Proof This is essentially a standard construction with generalised Adams resolutions.

Let j W M ! S denote the fibre of the unit map S ! T .m0/ (where S denotes the

p–local sphere). Recall that H�T .m0/ is a polynomial ring over Z.p/ with generators

ti in degree 2.pi � 1/ for 1 � i � m0. It follows that M is .d�1/–connected,

where d D 2.p � 1/ > 0. Now put N.r/ D M .r/ ^ T .m/. We can use j to make

these into a tower. We let P.r/ denote the cofibre of the map N.r C 1/ ! N.r/,

which is T .m0/ ^ M .r/ ^ T .m/. We also let Q.r/ denote the cofibre of the map

N.r/ ! N.0/ D T .m/. Connectivity arguments show that T .m/ is the homotopy

inverse limit of the spectra Q.r/. We know, from Lemma 4.8,

T .m0/�T .m0/ D T .m0/�Œti j 1 � i � m0�;

T .m0/�T .m/ D T .m0/�Œti j 1 � i � m�:

It follows that the spectra T .m0/ ^ T .m0/ and T .m0/ ^ T .m/ are free modules

over T .m0/, and thus that the same is true of P.r/. This means that P.r/ D
W

i †di T .m0/ for some sequence .di /. It is also easy to see that P.r/ is of finite type,

so di ! 1, so P.r/ can also be described as
Q

i †di T .m0/. Note also that the fibre

of the map Q.r C 1/ ! Q.r/ is the same as P.r/, by the octahedral axiom.

We will also need the following fact about K 0.n/:

Lemma 4.10 K 0.n/ admits a ring structure such that the natural map F.n/ ! K 0.n/

is a ring map.

The standard way to prove this is to show that K 0.n/ is a Bousfield localisation of F.n/.

We will give essentially the same argument, formulated in a more direct way.

Proof If Y is a finite spectrum of type n C 1 then 1DY ^ wn induces a nilpotent

endomorphism of MU ^.DY ^F.n//, so the nilpotence theorem tells us that 1DY ^wn

is itself nilpotent, which implies that the spectrum F.Y; K 0.n// D DY ^ F.n/Œw�1
n �

is zero.

Now let Q be the cofibre of the natural map F.n/ ! K 0.n/. It is not hard to see that

this is a homotopy colimit of spectra isomorphic to F.n/=wk
n , which are finite and of
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type n C 1. Using this, we see that F.Q; K 0.n// D 0. It follows inductively that the

restriction maps

F.K 0.n/.r/; K 0.n// ! F.F.n/.r/; K 0.n//

are isomorphisms for all r � 0. Using the case r D 2, we see that the map

F.n/ ^ F.n/
mult

��! F.n/ ! K 0.n/

extends in a unique way over K 0.n/ ^ K 0.n/. Using the cases r D 3 and r D 1, we

see that this extension gives an associative and unital product.

5 Relations in L

We first recall some basic general facts about Bousfield classes:

Proposition 5.1 (a) If R is a ring spectrum then hRi ^ hRi D hRi. Moreover, if

M is any R–module spectrum then hM i D hRi ^ hM i � hRi.

(b) Let K be a ring spectrum such that all nonzero homogeneous elements of K�

are invertible. Then for any X we have either K�X D 0 and hKi ^ hXi D 0, or

K�X ¤ 0 and hKi ^ hXi D hKi and hXi � hKi.

(c) Let X be a spectrum, and let vW †d X ! X be a self-map with cofibre X=v

and telescope XŒv�1�. Then hXi D hX=vi _ hXŒv�1�i.

(d) Let T and X be spectra such that the homotopy groups of X are finitely

generated over Z.p/ . Then T ^ IX D 0 if and only if T ^ I.X=p/ D 0 if and

only if F.T; X=p/ D 0.

(e) Suppose again that the homotopy groups of X are finitely generated over Z.p/ ,

and that they are not all torsion groups. Then hXi D hX^
p i D hHQi _ hX=pi.

Proof None of this is new, but we will give brief proofs for the convenience of the

reader.

(a) It is immediate from the definitions that hX ^ Y i � hXi and hX ^ Y i � hY i.

Similarly, it is clear that hXi � hY i whenever X is a retract of Y . If R is a ring and

M is an R–module then M is a retract of R ^ M (via the unit map � ^ 1W M !

R ^ M and the multiplication R ^ M ! M ), so hM i � hR ^ M i. On the other

hand, we have hR ^ M i � hRi and hR ^ M i � hM i. Putting this together gives
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hM i D hRi ^ hM i � hRi, as claimed. Taking M D R gives hRi ^ hRi D hRi. This

is all covered by [2, Section 2.6; 15, Proposition 1.24].

(b) A slight adaptation of standard linear algebra shows that all graded modules

over K� are free. If M is a K –module then we can choose a basis feigi2I for M�

over K� , and this will give a map f W
W

i2I †jei jK ! M of K –modules such that

��.f / is an isomorphism, which means that f is an equivalence. Thus, if M� ¤ 0 then

hM i D hKi. Taking M D K ^X gives claim (b). This is all covered in [6, Section 1.3].

(c) First note that if X D 0 then it is clear that X=v D 0 and XŒv�1� D 0. Conversely,

if X=v D 0 then v is an equivalence, so XŒv�1� D X ; so if XŒv�1� is also 0, then

X D 0. Thus, we have X D 0 if and only if X=v D XŒv�1� D 0. Now let T be an

arbitrary spectrum, and put

w D 1T ^ vW T ^ X ! T ^ X;

so T ^ .X=v/ D .T ^ X/=w and T ^ XŒv�1� D .T ^ X/Œw�1�. By applying our first

claim to w , we see that T ^ X D 0 if and only if T ^ .X=v/ D T ^ XŒv�1� D 0. In

other words, we have hXi D hX=vi_hXŒv�1�i, as claimed. This is [15, Lemma 1.34].

(d) First, we have �k.IX/ D Hom.��k.X/; Q=Z.p//. Using the fact that ��k.X/

is finitely generated, we see that this is a torsion group. It follows that .IX/Œp�1� D 0,

so (c) gives hIXi D h.IX/=pi. On the other hand, I converts cofibrations to fibra-

tions (with arrows reversed), giving .IX/=p D †I.X=p/, so hIXi D hI.X=p/i, so

T ^ IX D 0 if and only if T ^ I.X=p/ D 0. Next, we note that each homotopy group

�k.X=p/ is finite, which implies that the natural map

�k.X=p/ ! Hom
�

Hom.�k.X=p/; Q=Z.p//; Q=Z.p/

�

is an isomorphism, so the natural map X=p ! I 2.X=p/ is an equivalence. This gives

�kF.T; X=p/ D �kF.T; I 2.X=p// D Hom
�

��k.T ^ I.X=p//; Q=Z.p/

�

:

It is well known that for an abelian group A we have

A D 0 () Hom.A; Q=Z.p// D 0;

so F.T; X=p/ D 0 if and only if T ^ I.X=p/ D 0, as claimed. (This is essentially

covered by [15, Section 2].)

(e) As a special case of (c) we have hXi D hXŒp�1�i _ hX=pi. As everything is

implicitly p–local we see that XŒp�1� is a module over SŒp�1� D SQ D HQ, with
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homotopy groups ��.X/ ˝ Q ¤ 0, so hXŒp�1�i D hHQi, so hXi D hHQi _ hX=pi.

Now let Y denote the p–completion of X, which can be constructed as the cofibre of

the natural map F.SQ; X/ ! X. As X is assumed to have finite type, we just have

��.Y / D Zp ˝��.X/, and this is again not a torsion group, so hY i D hHQi_hY=pi.

Moreover, as F.SQ; X/ is a module over SQ we see that F.SQ; X/=p D 0 and so

X=p D Y=p , which gives hY i D hXi.

We next recall some relations between the elements named in Definition 4.1. Again,

many of these results are in the literature, but it seems useful to collect proofs in one

place.

Lemma 5.2 For any n 2 N1 and any spectrum X, we have either K.n/�X D 0 and

k.n/ ^ hXi D 0, or K.n/�X ¤ 0 and k.n/ ^ hXi D k.n/ and hXi � k.n/.

Proof This is a standard instance of Proposition 5.1(b).

Lemma 5.3 For all i we have k.i/^k.i/Dk.i/, and k.i/^k.i 0/D0 for i ¤ i 0. Thus ,

k.U / ^ k.U 0/ D k.U \ U 0/ and k.U / _ k.U 0/ D k.U [ U 0/ (for all U; U 0 � N1 ).

Proof The first claim holds because K.i/ is a ring spectrum, and the second can be

deduced from the fact that over K.i/�K.i 0/ we have two isomorphic formal group

laws of different heights. It is also proved as part of [15, Theorem 2.1]. The remaining

claims are clear from the first two.

Lemma 5.4 The elements t .q/, f .n/, t .qI n/, k.i/, k.U / and k0.i/ all satisfy

u ^ u D u.

Proof We have already seen the cases k.i/ and k.U /. The spectra T .q/ and F.n/

have ring structures by construction, and K 0.n/ is also a ring by Lemma 4.10, so all

remaining claims follow from Proposition 5.1(a).

Lemma 5.5 For all i 2 N1 and n 2 N we have k.i/ ^ f .n/ D 0 if i < n, and

k.i/ ^ f .n/ D k.i/ if i � n.

Proof The spectrum F.n/ was defined to have type n, which means by definition

that K.i/�F.n/ D 0 if and only if i < n. The claim follows from this together with

Lemma 5.2.
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Lemma 5.6 For all q � q0 � 1 we have t .q/ � t .q0/ and t .q/ ^ t .q0/ D t .q0/.

Proof There is a morphism T .q/ ! T .q0/ of ring spectra, which makes T .q0/ into a

T .q/–module spectrum.

Lemma 5.7 For all q; i 2 N1 we have t .q/ � k.i/ and t .q/ ^ k.i/ D k.i/.

Proof There is a morphism T .q/ ! T .1/ D BP ! K.i/ of ring spectra.

Corollary 5.8 For all q 2 N1 and n 2 N and U � N1 we have t .qI n/ ^ k.U / D

k.U \ Œn; 1�/.

Proof This is clear from Lemmas 5.5 and 5.7.

Lemma 5.9 Let X 2 B be such that �i .X/ is torsion for all i , and �i .X/ D 0 for

i > 0. Then hXi � k.1/.

Proof Put

C D fX j hXi � k.1/g D fX j X ^ Z D 0 whenever K.1/ ^ Z D 0g:

This is closed under cofibres, coproducts and retracts, and it follows that it is closed

under homotopy colimits of sequences. It contains K.1/ D HZ=p by definition,

so it contains HA whenever pA D 0 (by coproducts), so it contains HA whenever

pdA D 0 (by cofibres), so it contains HA whenever A is torsion (by sequential

colimits). Thus, if X is a torsion spectrum, we see that all the Postnikov sections

XŒ�d� D †�d H.��d X/ lie in C , so XŒ�d; 0� 2 C for all d � 0 (by induction and

cofibres), so X D XŒ�1; d � 2 C (by sequential colimits).

Lemma 5.10 For all m 2 N! we have j.m/ � k.1/.

Proof For m¤! we have J.m/DIT .m/, and T .m/ is .�1/–connected with finitely

generated homotopy groups, so Lemma 5.9 applies to J.m/. As J.!/ D
W

i2N J.i/,

the claim holds for m D ! as well.

Lemma 5.11 If m � m0 2 N! , then j.m/ � j.m0/.

Proof The case m0 D ! is immediate from the definition of J.!/, and the case m D !

will follow from the cases m 2 N , so we may assume that ! … fm; m0g.
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We must show that if X ^ J.m0/ D 0 then X ^ J.m/ D 0. In view of Lemma 4.7, we

can translate these statements using part (d) of Proposition 5.1. We must now show that

if F.X; T .m0/=p/ D 0 then F.X; T .m/=p/ D 0. This translated statement follows

easily from Lemma 4.9.

Lemma 5.12 For all m2N! and q 2N1 and n2N we have j.m/�k.1/� t .qI n/.

Moreover, if m<q then we have t .q/^j.m/D0, but if m�q then t .q/^j.m/Dj.m/.

Most of the statements with m D 0 are contained in [8, Lemma 7.1].

Proof We know from Lemma 5.10 that j.m/ � k.1/, and from Lemma 5.7 that

k.1/ � t .q/, and from Lemma 5.5 that k.1/ � f .n/. It follows that

k.1/ D k.1/ ^ k.1/ � t .q/ ^ f .n/ D t .qI n/;

as claimed.

For the remaining statements, the case m D ! follows easily from the cases m 2 N .

We will therefore assume that m 2 N1 .

Suppose that m � q . Then T .m/ is naturally a T .q/–module, so J.m/ D I.T .m// is

naturally a T.q/–module, which implies (by Proposition 5.1(b)) that t.q/^j.m/Dj.m/.

We now just need to show that when m < q we have T .q/ ^ J.m/ D 0. By

Proposition 5.1(d), this is equivalent to F.T .q/; T .m/=p/ D 0. If q D 1 then this

is [15, Lemma 3.2(b)]. If q < 1 then we can use Lemma 5.11 to reduce to the case

m D q � 1, which is [15, Lemma 3.2(a)].

Lemma 5.13 For all n 2 N1 and m 2 N! we have k.n/ ^ j.m/ D 0.

Proof First suppose that n < 1, so k.n/ ^ k.1/ D 0. We have j.m/ � k.1/ by

Lemma 5.10, so k.n/ ^ j.m/ D 0.

Now consider the case where n D 1 and m 2 N . We have t .m C 1/ ^ j.m/ D 0 by

Lemma 5.12, but k.1/ � t .m C 1/ by Lemma 5.7, so k.1/ ^ j.m/ D 0. The case

m D ! follows from this.

Finally, consider the case where n D m D 1. Here the claim is that H=p^IBP D 0, or

equivalently that F.H=p; BP=p/ D 0. This is the first step in the proof of Theorem 2.2

of [15].

Lemma 5.14 For all i; j 2 N we have k0.i/ ^ k0.i/ D k0.i/, but k0.i/ ^ k0.j / D 0

for i ¤ j . We also have k0.i/^f .j / D 0 if i < j , and k0.i/^f .j / D k0.i/ if i � j .

Finally, we have f .n/ D k0.n/ _ f .n C 1/.
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Proof If i < j then vi is nilpotent in MU�.F.i/^F.j //, so the nilpotence theorem

tells us that wi ^1F .j / is nilpotent as a self-map of F.i/^F.j /, so K 0.i/^F.j / D 0,

so k0.i/ ^ f .j / D 0. It is clear that k0.j / � f .j /, so we also have k0.i/ ^ k0.j / D 0

when i < j . By symmetry, this actually holds whenever i ¤ j .

Next, Proposition 5.1(c) gives

f .n/ D hF.n/=vi _ hF.n/Œv�1�i D hF.n/=vi _ k0.n/:

The thick subcategory theorem shows that hF.n/=vi D f .nC1/, so we obtain f .n/ D

f .n C 1/ _ k0.n/ (and we saw above that f .n C 1/ ^ k0.n/ D 0). An induction based

on this shows that 1 D f .0/ D f .j / _
W

m<j k0.m/. We can multiply this by k0.i/

and use the relations that we have already established to get k0.i/ ^ k0.i/ D k0.i/ if

i < j , and k0.i/ ^ f .j / D k0.i/ for i � j .

The next result is closely related to [7, Section 1].

Lemma 5.15 For all n 2 N we have k.n/ D t .1/ ^ k0.n/ D t .1/ ^ k.n/ and

t .1/ ^ a.n/ D 0.

Proof By construction, the spectrum T .1/ ^ K 0.n/ is obtained by inverting the

self-map u D 1BP ^ wn of BP ^ F.n/. However, we chose wn to be good, which

means that u is the same as vn ^1F .n/ , so T .1/^K 0.n/ D v�1
n BP ^F.n/. We also

know from [15, Theorem 2.1] that hv�1
n BP i D hE.n/i D

W

i�n k.i/, and it follows

that t .1/^k0.n/ D k.n/, as claimed. This is the same as t .1/^k.n/ by Lemma 5.7.

Now recall that A.n/ D K 0.n/ ^ CnS, and by definition we have E.n/ ^ CnS D 0. As

hT .1/ ^ K 0.n/i D hE.n/i, this gives

T .1/ ^ A.n/ D T .1/ ^ K 0.n/ ^ CnS D 0;

so t .1/ ^ a.n/ D 0.

Lemma 5.16 For all n 2 N we have k.n/ � k0.n/ and k0.n/^k.n/ D k.n/, whereas

k0.n/ ^ k.m/ D 0 for m ¤ n.

Proof Multiply the equations in Lemma 5.14 by t .1/ and then use Lemma 5.15.

Lemma 5.17 For all n; n0 2 N we have

f .n/ _ f .n0/ D f .min.n; n0// and f .n/ ^ f .n0/ D f .max.n; n0//:
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Proof Recall that F.n/ has type n, which means that K.i/�F.n/ is zero for i <n, and

nonzero for i � n. It follows that F.n/_F.n0/ has type min.n; n0/, and F.n/^F.n0/

has type max.n; n0/. The thick subcategory theorem tells us that the Bousfield class of

a finite p–local spectrum depends only on its type, so f .n/ _ f .n0/ D f .min.n; n0//

and f .n/ ^ f .n0/ D f .max.n; n0//.

Lemma 5.18 The elements a.n/ satisfy

a.n/ ^ a.n/ D a.n/ � k0.n/ and a.n/ ^ a.m/ D 0

for m ¤ n. Thus, the element �.n/ D
W

i<n a.i/ is idempotent for all n 2 N1 .

This is also proved in [7, Section 1].

Proof First, the smash product theorem [17, Theorem 7.5.6] tells us that A.n/ D

K 0.n/ ^ CnS, so a.n/ � k0.n/, so a.n/ ^ a.m/ D 0 for m ¤ n by Lemma 5.14. We

also have CnS ^CnS D Cn.CnS/ D CnS by the basic theory of Bousfield localisation,

and in combination with Lemma 5.14 this gives a.n/ ^ a.n/ D a.n/.

Corollary 5.19 For all n in N we have �.n/ ^ f .n/ D 0.

Proof As �.n/ D
W

i<n a.i/, it will be enough to show that a.i/ ^ f .n/ D 0 for

i < n. The lemma shows that a.i/ � k0.i/, and k0.i/ ^ f .n/ D 0 by Lemma 5.14, so

a.i/ ^ f .n/ D 0, as required.

Lemma 5.20 The elements a.n/ satisfy a.n/ ^ k.m/ D 0 for all n and m, and

k0.n/ D k.n/ _ a.n/.

This is also proved in [7, Section 1].

Proof We saw in Lemma 5.15 that t .1/ ^ a.n/ D 0, and k.m/ � t .1/ (even for

m D 1) by Lemma 5.7, so k.m/ ^ a.n/ D 0. Next, it follows from the smash product

theorem that LnS ^X D 0 if and only if LnX D 0 if and only if E.n/^X D 0, which

means that hLnSi D hE.n/i. This is also the same as
Wn

iD0 k.i/, by [15, Theorem 2.1].

We can multiply by k0.n/ and use Lemma 5.16 to get hLnK 0.n/i D k.n/.

We also have a fibration

A.n/ D CnS ^ K 0.n/ ! K 0.n/ ! LnS ^ K 0.n/;
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which easily gives

k0.n/ D hK 0.n/i D hA.n/i _ hLnS ^ K 0.n/i D a.n/ _ k.n/;

as claimed.

Lemma 5.21 For all m; m0 2 N! we have j.m/ ^ j.m0/ D 0.

Proof Lemma 5.10 gives j.m/ � k.1/, and Lemma 5.13 gives k.1/ ^ j.m0/ D 0,

so j.m/ ^ j.m0/ D 0.

Lemma 5.22 If m 2 N! and U � N is infinite then j.m/ � k.U /.

Proof In view of Lemma 5.11 we may assume that m D 1, so T .m/ D BP. Suppose

that K.U / ^ X D 0. Hovey proved as [7, Corollary 3.5] that BP ^
p is K.U /–local,

so the spectrum BP=p D .BP ^
p /=p is also K.U /–local, so F.X; BP=p/ D 0. It

follows by Proposition 5.1(d) that J.1/ ^ X D 0. We conclude that j.1/ � k.U /,

as claimed.

Corollary 5.23 If m 2 N! , and U � N1 is big then j.m/ � k.U /.

Proof This is just the conjunction of Lemmas 5.10 and 5.22.

Lemma 5.24 For all n 2 N and m 2 N! we have f .n/ ^ j.m/ D j.m/, and

a.n/ ^ j.m/ D k0.n/ ^ j.m/ D 0.

The statements with m D 0 are contained in [8, Lemma 7.1].

Proof The claims for m D ! follow easily from the claims for m 2 N , so we will

assume that m 2 N1 .

We first prove that f .n/ ^ j.m/ D j.m/. This is immediate when n D 0, and follows

from Proposition 5.1(d) when n D 1, so we can suppose that n > 1. It is clear

that f .n/ ^ j.m/ � j.m/, so we just need the reverse inequality. Suppose that

X ^ F.n/ ^ J.m/ D 0, or equivalently F.X ^ F.n/; T .m/=p/ D 0. We chose

F.n/ to be self-dual, so F.X; F.n/ ^ T .m/=p/ D 0. By the thick subcategory

theorem, we can replace F.n/ here by any other finite spectrum of type n, so in

particular F.X; F.n � 1/=wk
n�1 ^ T .m/=p/ D 0 for all k . As n > 1, a connectiv-

ity argument shows that F.n � 1/ ^ T .m/=p is the homotopy inverse limit of the
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spectra F.n � 1/=wk
n�1 ^ T .m/=p , so we see that F.X; F.n � 1/ ^ T .m/=p/ D 0.

By reversing the previous steps, we get X ^ F.n � 1/ ^ J.m/ D 0. This gives

f .n/ ^ j.m/ D f .n � 1/ ^ j.m/, which is the same as j.m/ by induction.

We can multiply the relation f .n C 1/ ^ j.m/ D j.m/ by k0.n/ and use

k0.n/ ^ f .n C 1/ D 0

(from Lemma 5.14) to get k0.n/^j.m/D0. We also have a.n/�k0.n/ by Lemma 5.20,

so a.n/ ^ j.m/ D 0.

6 The main theorem

By considering the phenomena in Lemma 6.3 below, we see that � is unlikely to

preserve either _ or ^ unless TC holds. However, if we pass to L then we have the

following:

Theorem 6.1 The map x� D ��W A ! L is an injective homomorphism of ordered

semirings.

Proof See Corollaries 6.5 and 6.9 below.

We must show that the rules in Definition 3.3 are valid as equations in L . In fact, most

of them are already valid in L:

Lemma 6.2 The rules for t ^ j , t ^ k , j ^ j , j ^ k , k ^ k , j _ j , j _ k and k _ k

are all valid in L.

(More concisely, these are all the rules where the right-hand side does not involve t .)

Proof � Consider the element x D t .q; T / ^ j.m0; S 0/. Let n be minimal such

that Œn; 1� � T . Then x is the wedge of terms u1 D t .qI n/ ^ j.m0/ and u2 D

t .qI n/ ^ k.S 0/ and u3 D k.T / ^ j.m0/ and u4 D k.T \ S 0/. Corollary 5.8 tells

us that u2 D k.S 0 \ Œn; 1�/ � u4 . We have u3 D 0 by Lemma 5.13, and u1 D

t .q/ ^ j.m0/ by Lemma 5.24. If q � m0 then Lemma 5.12 gives u1 D j.m0/ and so

x D u1 _ u4 D j.m0; T \ S 0/. If q > m0 then the same lemma gives u1 D 0 and so

x D u4 D k.T \ S 0/.

� Consider the element x D t .q; T / ^ k.U 0/. This is the wedge of the terms u1 D

t .qI n/ ^ k.U 0/ D k.U 0 \ Œn; 1�/ and u2 D k.T / ^ k.U 0/ D k.T \ U 0/ � u1 , so

x D u2 D k.T \ U 0/, as required.
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� Consider the element x D j.m; S/ ^ j.m0; S 0/. This is the wedge of terms u1 D

j.m/ ^ j.m0/ and u2 D j.m/ ^ k.S 0/ and u3 D k.S/ ^ j.m0/ and u4 D k.S \ S 0/.

The first three terms are zero by Lemmas 5.21 and 5.13, so x D u4 D k.S \ S 0/.

� Consider the element x D j.m; S/ ^ k.U 0/. This is the wedge of terms u1 D

j.m/ ^ k.U 0/ and u2 D k.S \ U 0/. We have u1 D 0 by Lemma 5.13, so x D u2 D

k.S \ U 0/.

� We know from Lemma 5.3 that k.U / ^ k.U 0/ D k.U \ U 0/.

� Put x Dj.m; S/_j.m0; S 0/. Then x Dj.m/_j.m0/_k.S[S 0/, but j.m/_j.m0/D

j.max.m; m0// by Lemma 5.21, which gives x D j.max.m; m0/; S [ S 0/.

� Put x D j.m; S/ _ k.U 0/ D j.m/ _ k.S [ U 0/. If U 0 is big then so is S [ U 0,

so j.m/ � k.S [ U 0/ by Corollary 5.23, so x D k.S [ U 0/. On the other hand, we

are assuming that S is small, so if U 0 is small then S [ U 0 will also be small, so

j.m; S [ U 0/ is defined and is equal to x .

� We know from Lemma 5.3 that k.U / _ k.U 0/ D k.U [ U 0/.

For the remaining rules, we have the following modified statement:

Lemma 6.3 The following rules are valid in L (provided that n is large enough for

the terms on the left to be defined ):

t .q; T I n/ ^ t .q0; T 0I n/ D t .max.q; q0/; T \ T 0I n/;

t.q; T I n/ _ t .q0; T 0I n/ D t .min.q; q0/; T [ T 0I n/;

t.q; T I n/ _ j.m0; S 0/ D t .q; T [ S 0I n/;

t.q; T I n/ _ k.U 0/ D t .q; T [ U 0I n/:

Proof � Consider the element x D t .q; T I n/ ^ t .q0; T 0I n/. This is the wedge of

the terms u1 D t .qI n/ ^ t .q0I n0/ and u2 D t .qI n/ ^ k.T 0/ D k.T 0 \ Œn; 1�/ and

u3 D k.T / ^ t .q0I n/ D k.T \ Œn; 1�/ and u4 D k.T \ T 0/. We are assuming that

Œn; 1/ � T and Œn; 1/ � T 0, so u2; u3 � u4 . We also have u1 D t .max.q; q0/I n/ by

Lemmas 5.6 and 5.17. This leaves x D t .max.q; q0/; T \ T 0I n/.

� We have t .q; T I n/_t .q0; T 0I n/D t .qI n/_t .q0I n/_k.T [T 0/, and, by Lemma 5.6,

t .qI n/ _ t .q0I n/ D t .min.q; q0/I n/, which leaves t .min.q; q0/; T [ T 0I n/.

� Put x D t .q; T I n/_j.m0; S 0/. Then x D t .qI n/_k.T [S 0/_j.m0/, but j.m0/ �

k.1/ � t .qI n/ by Lemma 5.10, so we can drop that term, giving x D t .q; T [ S 0I n/.

Algebraic & Geometric Topology, Volume 19 (2019)



A combinatorial model for the known Bousfield classes 2705

� We have t .q; T I n/ _ k.U 0/ D t .qI n/ _ k.T / _ k.U 0/ D t .qI n/ _ k.T [ U 0/ D

t .q; T [ U 0I n/.

Lemma 6.4 In L the element t .q; T I n/ is independent of the choice of n.

Proof It is clear that t .q; T I n/ � t .q; T I n C 1/ in L, and it will suffice to show that

this becomes an equality in L. We have

f .n/ D f .n C 1/ _ k0.n/ D f .n C 1/ _ k.n/ _ a.n/

by Lemmas 5.14 and 5.20. In conjunction with Lemma 5.7 this gives

t .qI n/ D t .qI n C 1/ _ k.n/ _ .t.q/ ^ a.n//:

However, we are assuming that Œn; 1� � T , so n 2 T , so k.n/ _ k.T / D k.T /, so

t .q; T I n/ D t .q; T I n C 1/ _ .t.q/ ^ a.n//:

The extra term is less than or equal to �.n C 1/, so it is killed by the homomorphism

L ! L=�.n/ ! L.

Corollary 6.5 All the relations in Definition 3.3 are valid as equations in L, so the

map x� D ��W A ! L is a homomorphism of semirings.

Proof This is clear from Lemmas 6.2, 6.3 and 6.4.

Remark 6.6 As well as L, we can also consider the object yL D L=�.1/. The

canonical map L! yL then factors through L , so we see that the composite A!L! yL

is also a homomorphism of ordered semirings. This has the advantage that yL is

completely distributive, which we cannot prove for L. However, we do not know

whether the map A ! yL is injective.

Definition 6.7 We recall that P denotes the set of subsets of N1 , and we define maps

�i W L ! P by

�1.x/ D fi 2 N1 j k.i/ ^ x ¤ 0g D fi 2 N1 j k.i/ ^ x D k.i/g D fi 2 N1 j x � k.i/g;

�2.x/ D fi 2 N1 j j.i/ ^ x ¤ 0g;

�3.x/ D fi 2 N1 j x � j.i/g:

(The three versions of �1 agree by Lemma 5.2.)
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Lemma 6.8 There are maps x�r W L ! P (for r D 0; 1; 2) with x�r ı � D �r W L ! P.

Proof Lemmas 5.20 and 5.24 show that k.i/ ^ �.1/ D j.i/ ^ �.1/ D 0. It follows

that when r � 2 we have �r.�.n/ _ x/ D �r.x/ for all n 2 N1 and all x 2 L. This

means that �1 and �2 factor through L (or even yL), as claimed.

Now consider �3 . If x � j.i/, then of course �.n/_x � j.i/ for all n 2 N . Conversely,

suppose that n 2 N and �.n/ _ x � j.i/. It follows that

f .n/ ^ .�.n/ _ x/ � f .n/ ^ j.i/:

The right side is j.i/ by Lemma 5.24. On the left side, we have f .n/ ^ �.n/ D 0 by

Corollary 5.19. We therefore have x � f .n/ ^ x � j.i/. Putting this together, we see

that �3.�.n/ _ x/ D �3.x/ for all n 2 N , so �3 factors through L. (It is not clear,

however, whether �3 factors through yL.)

Corollary 6.9 The map x�W A ! L is injective.

Proof It is easy to check the following table of values of the maps �r :

�1 �2 �3

t .q; T / T Œq; 1� Œ0; 1�

j.m; S/ S ∅ Œ0; m� \ N1

k.U / (small) U ∅ ∅

k.U / (big) U ∅ Œ0; 1�

(In particular, we have �3.j.!; S// D N but �3.j.1; S// D N1 .) Now consider an

element x 2 A with ��.x/ D u 2 P3 . We see that:

� If u2 ¤ ∅ then x D t .min.u2/; u1/.

� If u2 D ∅ and u1 is small and u3 ¤ ∅ then x D j.sup.u3/; u1/ (where the

supremum is taken in N! ).

� If u2 D ∅ and u1 is small and u3 D ∅ then x D k.u1/.

� If u2 D ∅ and u1 is big then x D k.u1/.

This means that the composite �� is injective, but this is the same as x� x� , so x� is

injective.

We do not know whether L is complete. However, we do have the following partial

result:
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Proposition 6.10 Let S be any subset of A , and put a D
W

S 2 A. Then x�.a/ is the

least upper bound for x�.S/ in L.

Proof Let V denote the set of upper bounds for x�.S/. As x� is a homomorphism of

ordered semirings, it is clear that x�.a/ 2 V . We must show that x�.a/ is the smallest

element of V .

Now let I denote the ideal in A generated by S, so a is also the least upper bound

for I . This means that a D �.I/, where � is as in Definition 3.11.

Note that the set

S 0 D fx 2 A j x�.x/ � v for all v 2 V g

is an ideal containing S, so it contains I . This means that V is also the set of upper

bounds for x�.I/.

In cases (c) and (d) of Definition 3.11, Lemma 3.13 tells us that a 2 I , and the claim

follows immediately from this. We therefore need only consider cases (a) and (b), in

which I � Aj [Ak .

Now let v be an element of L such that the image �.v/ 2 L lies in V . This means

that for all x 2 I there exists n 2 N such that �.n/ _ v � �.x/ in L. We must show

that there exists m such that �.m/ _ v � �.a/.

Recall that
A D

[

x2I

tail.x/ � N1;

and Lemma 3.12 tells us that k.i/ 2 I for all i 2 A. This means that �.n/ _ v � k.i/

for some n 2 N . Lemma 5.20 tells us that �.n/ ^ k.i/ D 0, so we can multiply the

above relation by k.i/ to get

v � k.i/ ^ v � k.i/ ^ k.i/ D k.i/

in L . This holds for all i 2 A, and the element k.A/ 2L is by definition the least upper

bound in L of the elements k.i/ with i 2 A, so we get v � k.A/ in L. In case (a),

this is already the desired conclusion.

Finally, we consider case (b), in which A is small but the set

M D fm 2 N! j j.m/ 2 head.I/g

is an infinite subset of N . Lemma 3.15 tells us that j.m; A/ 2 I for all m 2 M. Thus,

for each m 2 M there exists n 2 N such that �.n/ _ v � j.m; A/ � j.m/. We now
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multiply this relation by f .n/. Corollary 5.19 tells us that f .n/ ^ �.n/ D 0, and

Lemma 5.24 gives f .n/ ^ j.m/ D j.m/, so we have

v � f .n/ ^ v � j.m/:

Now recall that j.i/ � j.i C1/ for i 2 N , and that the element j.!/ 2L is by definition

the join in L of these elements j.i/. We therefore have v � j.!/ in L, and we have

already seen that v � k.A/, so v � j.!/ _ k.A/ D j.!; A/ D a , as required.

7 Index of popular Bousfield classes

We next give a list of spectra X together with corresponding elements x 2A. We write

X D x to indicate that hXi D �.x/ in L, or X ' x to indicate that �hXi D ��.x/

in L. As usual, everything is implicitly p–localised:

0 D k.∅/;(1)

S D S^
p D T .0/ D t .0; N1/;(2)

S=p D S=p1 D t .0; Œ1; 1�/;(3)

F.n/ D t .0; Œn; 1�/;(4)

HQ D SQ D I.HQ/ D k.f0g/;(5)

H=p D H=p1 D I.H/ D I.H=p/ D I.BP hni/ D k.f1g/;(6)

H D k.f0; 1g/;(7)

v�1
n F.n/ D K 0.n/ ' k.fng/;(8)

T .q/ D t .q; N1/;(9)

BP D BP ^
p D T .1/ D t .1; N1/;(10)

P.n/ D BP=In D t .1; Œn; 1�/;(11)

B.n/ D v�1
n P.n/ D K.n/ D MnS D k.fng/;(12)

IB.n/ D IK.n/ D k.fng/;(13)

E.n/ D v�1
n BP hni D v�1

n BP D LnS D k.Œ0; n�/;(14)

bE.n/D LK.n/S D k.Œ0; n�/;(15)

CnS ' t .0; Œn C 1; 1�/;(16)

BP hni D k.Œ0; n� [ f1g/;(17)

BP hni=In D k.fn; 1g/;(18)
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KU D KO D k.f0; 1g/;(19)

kU D kO D k.f0; 1; 1g/;(20)

Ell D TMF D k.f0; 1; 2g/;(21)

I.S/ D I.T .0// D I.F.n// D j.0;∅/;(22)

I.S^
p / D I.S=p1/ D j.0; f0g/;(23)

I.T .m// D I.T .m/ ^ F.n// D j.m;∅/:(24)

Proof (1) Clear from the definitions.

(2) Clear from the definitions together with Proposition 5.1(e).

(4) Clear from the definitions.

(3) From (4) we see that t .0; Œ1; 1�/ is the same as

F.1/ D F.U.1/; U.1// D F.S=p; S=p/ D D.S=p/ ^ S=p;

and it is easy to check that this has the same Bousfield class as S=p . Now S=p1

can be described as the homotopy colimit of the spectra S=pn , or as the cofibre

of the map S ! SŒp�1�. From the first description (together with the cofibrations

S=pn ! S=pnC1 ! S=p ) we see that hS=p1i � hS=pi. The second description

shows that S=p1 ^ †�1S=p ' S=p , which gives hS=pi � hS=p1i, so we have

hS=p1i D hS=pi.

(5) By definition we have HQ D k.f0g/, and it is standard that this is the same as

SQ. Moreover, I.HQ/ is a module over HQ, so Proposition 5.1(b) tells us that the

Bousfield class is the same as HQ provided that I.HQ/ ¤ 0. By definition we have

�0.I.HQ// D Hom.Q; Q=Z.p//, which is nontrivial, as required.

(6) By definition we have H=p D k.f1g/, and this is the same as H=p1 as a

consequence of (3). Note that ��.I.H// D Hom.���.H/; Z=p1/, which is a copy

of Z=p1 concentrated in degree zero, so I.H/ D H=p1 . A similar argument gives

I.H=p/ D H=p . We next consider the classes u.n/ D hI.BP hni/i. These start with

u.0/ D hIH i D k.1/, so it will suffice to prove that u.n/ D u.n � 1/ when n > 0.

Proposition 5.1(c) gives

u.n/ D hI.BP hni/=vni _ hI.BP hni/Œv�1
n �i;

and the first term is the same up to suspension as u.n � 1/. The second term is

the colimit of the spectra †�kjvnjIBP hni, which is trivial because the homotopy of

IBP hni is concentrated in nonpositive degrees. The claim follows.
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(7) Proposition 5.1(e) gives hH i D hH=pi _ hHQi, and this is k.f0; 1g/ by defini-

tion.

(8) We have K 0.n/ D v�1
n F.n/ by definition. If TC fails, then this may be different

from k.fng/ in L . However, Lemma 5.20 tells us that k0.n/ D a.n/ _ k.n/, so K 0.n/

and k.n/ have the same image in L, as we indicate by writing K 0.n/ ' k.n/.

(9) True by definition.

(10) Clear from the definitions together with Proposition 5.1(e).

(11) We have P.n/ D BP=In by definition. Now consider a more general spectrum

of the form BP=J, where J is generated by an invariant regular sequence of length n.

Ravenel proved as [15, Theorem 2.1(g)] that hBP=J i D hP.n/i. Using the theory of

generalised Moore spectra [17, Chapter 6; 9, Chapter 4] we see that for suitable J

there is a finite spectrum S=J of type n such that BP=J D BP ^ S=J. By the

thick subcategory theorem we have hS=J i D f .n/ and so hP.n/i D hBP i ^ f .n/ D

t .1; Œn; 1�/.

(12) We have K.n/ D k.fng/ by definition, and the spectrum B.n/ D v�1
n P.n/ has

the same Bousfield class by [15, Theorem 2.1(a)]. We will discuss MnS under (14).

(13) We first note that IK.n/ is a K.n/–module, and all K.n/–modules are free, and

the homotopy groups of IK.n/ have the same order as those of K.n/, so IK.n/ ' K.n/

as spectra, so certainly hIK.n/i D k.fng/. Next, note that IB.n/ is a B.n/–module,

so

hIB.n/i D hB.n/i ^ hIB.n/i D hK.n/i ^ hIB.n/i;

and this is either zero or k.fng/ by Lemma 5.2. It cannot be zero because

�0.IB.n// D Hom.�0B.n/; Q=Z.p// ¤ 0;

so it must be k.fng/, as claimed.

(14) We have E.n/ D v�1
n BP hni by definition. This has the same Bousfield class

as v�1
n BP and as K.f0; : : : ; ng/ by parts (b) and (d) of [15, Theorem 2.1]. Note that

E.n/ ^ X D 0 if and only if LnX D 0, which is equivalent to LnS ^ X D 0 by

[17, Theorem 7.5.6]. This means that LnS also has the same Bousfield class. Finally,

recall that MnS D Cn�1LnS D Cn�1S ^ LnS. This gives

hMnSi D
˝W

i�n K.i/ ^ Cn�1S
˛

D
˝W

i�n Cn�1.K.i//
˛

:
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Here K.i/ is E.n�1/–local for i < n, and E.n � 1/–acyclic for i D n, which gives

hMnSi D k.n/, as claimed in (12).

(15) This is part of [9, Proposition 5.3] (where bE.n/ is denoted by E, and LK.n/S is

denoted by yLS ).

(16) We know from (4) that t .0; Œn C 1; 1�/ D f .n C 1/, and we must show that this

becomes the same as CnS in L. Put

e D hE.n/i D hLnSi D
W

i�n k.i/e0 D
W

i�n k0.i/; f D f .n C 1/; f 0 D hCnSi:

An induction based on Lemma 5.14 gives 1 D f .0/ D e0 _ f , with e0 ^ f D 0. Next,

CnS is by definition the fibre of the localisation map S ! LnS, and this fibre sequence

gives 1 D e_f 0. Moreover, CnS and F.nC1/ are both E.n/–acyclic by construction,

so e ^ f D e ^ f 0 D 0 and f 0 ^ f D f . We now have

f D f ^ 1 D f ^ .e _ f 0/ D f ^ f 0;

f 0 D f 0 ^ 1 D f 0 ^ .e0 _ f / D .f 0 ^ e0/ _ .f 0 ^ f / D .f 0 ^ e0/ _ f:

All of this is valid in L. If we pass to L then e and e0 become the same by (8), so

f 0 ^ e0 D f 0 ^ e D 0, so f D f 0, as required.

(17) This is [15, Theorem 2.1(e)].

(18) By the same argument as for (11), we have hBP hni=Ini D hBP hnii ^ f .n/.

Using (17) and Lemma 5.5, this reduces to k.fn; 1g/.

(19) The spectrum KU is Landweber exact with strict height 1, so it is Bous-

field equivalent to E.1/ by [7, Corollary 1.12]. It is a theorem of Wood [18] that

KU D KO=�, where � 2 �1.KO/ is the Hopf map. This is essentially equivalent

to [1, Proposition 3.2], and the same paper proves the standard fact that �3 D 0 in

��.KO/. As � is nilpotent we find that KU generates the same thick subcategory

as KO, and thus has the same Bousfield class.

(20) We can take connective covers in the theorem of Wood to see that kU D kO=�,

so hkU i D hkOi. If v denotes the Bott element in �2.kU / then we have kU=v D H

and kU Œv�1� D KU, so hkU i D hKU i _ hH i, which is k.f0; 1; 1g/ by (7) and (19).

(21) Here Ell is intended to denote any of the standard Landweber exact versions

of elliptic cohomology, which all have strict height 2, so Ell D k.f0; 1; 2g/ by [7,

Corollary 1.12]. At primes p > 2 the spectrum TMF is itself a version of Ell and so
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hTMFi D k.f0; 1; 2g/. For p 2 f2; 3g it is known [5] that there is a finite spectrum X

of type 0 such that TMF ^ X D E.2/, so we again have the same Bousfield class.

(22) We have I.S/ D I.T .0// D j.0;∅/ by definition. For any finite spectrum X,

it is easy to see that I.X/ D DX ^ I.S/. As F.n/ is self-dual we have I.F.n// D

F.n/ ^ I.S/, and this has Bousfield class j.0;∅/ by Lemma 5.24.

(23) First, we have

I.S^
p /=p D †I..S^

p /=p/ D †I.S=p/;

which gives

hI.S^
p /i � hI.S=p/i D hI.S/i D j.0;∅/:

Next, there is a natural map i W S ! S^
p , with cofibre X say. We find that �k.X/ D 0

for k ¤ 0, but that �0.X/ D Zp=Z.p/ , which is a nontrivial rational vector space. This

gives a fibration IX ! I.S^
p / ! IS, giving

hI.S^
p /i � hIXi _ hISi:

Here IS is torsion and IX is rational and nontrivial, so it follows that I.S^
p / is not

torsion, and so hI.S^
p /i � hHQi D k.f0g/. Putting this together, we get hI.S^

p /i D

hISi _ hHQi D j.0; f0g/, as claimed. A similar proof works for S=p1 , using the

defining cofibration S ! SQ ! S=p1 .

(24) We have I.T .m//Dj.m;∅/ by definition, and this is the same as I.T .m/^F.n//

by Lemma 5.24 and the self-duality of F.n/.
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