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Polyphase Mid-Latitude Glaciation onMars: Chronology
of the Formation of Superposed Glacier-Like Forms
from Crater-Count Dating

A. J. Hepburn1,2 , F. S. L. Ng2 , S. J. Livingstone2 , T. O. Holt1 , and B. Hubbard1

1Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, UK, 2Department of Geography,

University of Sheffield, Sheffield, UK

Abstract Reconstructing Mars's glacial history informs understanding of its physical environment and

past climate. The known distribution of viscous flow features (VFFs) containing water ice suggests that its

mid-latitudes were glaciated during the Late Amazonian period (the last several hundred million years).

The identification of a subgroup of VFFs—called superposed glacier like forms (SGLFs)—flowing onto

other VFFs, indicates multiple glacial phases may have occurred during this time. To explore the history

and spatial extent of these glaciations, we record the distribution of SGLFs globally and use impact-crater

counting to date the SGLFs and the VFFs onto which they flow. Our inventory expands the handful of

SGLFs reported in earlier literature to include 320 located throughout the mid-latitudes. Our dating reveals

these SGLFs to be much younger than their underlying VFFs, which implies a spatially-asynchronous

glaciation. SGLFs have been forming since ∼65 Ma, and their ages are clustered in two distinct groups

around 2–20 and 45–65 Ma, whereas the ages of their underlying VFFs span the last ∼300 Ma diffusely.

We discuss these results in the light of well-known uncertainties with the crater-dating method and infer

that while ice sheets decayed over the Late Amazonian period, alpine glaciers waxed and waned in at least

two major cycles before their final demise approximately two million years ago.

PlainLanguage Summary Mars hosts numerous ice-rich glacier-like landforms throughout

its mid-latitudes. Previously recognised high-alpine glaciers superposed over lower elevation valley

glaciers have been assumed to correspond to multiple episodes of mid-latitude glaciation. However, these

superposed glaciers have not been dated, and so the timing of their formation is unknown. Here, we

conduct a Mars-wide survey of superposed high-alpine glaciers. We retrieve a formation age for each of

them by counting the number of impact craters on their surface, as well as those on the underlying valley

glacier. We find 320 examples of glaciers superposed over valley glaciers. The oldest superposed glaciers

formed approximately 65 million years ago and the (many) remaining superposed glaciers formed in two

distinct subsequent periods. These results suggest at least two major cycles of alpine glaciation in Mars's

recent geological history. Finally, our data suggest that mid-latitude glaciation on Mars ended about two

million years ago.

1. Introduction

Mars has substantial volumes of water ice held in its polar ice caps (Laskar et al., 2002; Levrard et al.,

2007; Smith et al., 2016). Beyond the polar regions, water ice can only persist if shielded by overlying debris

deposits, as exposed ice sublimates quickly. Of interest in this regard are a distinct group of buried ice

deposits located throughout the mid-latitudes (Squyres, 1978) called viscous flow features (VFFs: Milliken

et al., 2003). Numerous studies have suggested that VFFs are analogous to glacial systems on Earth, positing

a similar origin for VFFs whereby ice accumulates following precipitation over several years (Baker et al.,

2010; Dickson et al., 2008; Head et al., 2010; Levy et al., 2007; Morgan et al., 2009). Initially, only small lobate

features emerging from alcoves were referred to as VFFs (Milliken et al., 2003). However, the definition

has since been revised and following Souness et al. (2012), we use VFF as an umbrella term encompassing

a range of landforms subdivided according to their size and context. The highest order form of VFFs are

lineated valley fill (LVF) comprising highly-integrated anastomising flows on valley floors, which extend

continuously for hundreds of km (Baker et al., 2010; Dickson et al., 2008; Head et al., 2010; Levy et al.,
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Figure 1. Superposed glacier-like form (SGLF) flowing onto the underlying viscous flow feature (underlying VFF), in
the Protonilus Mensae region of Mars. (a–b) North-up orientated Context Camera (CTX: Malin et al., 2007) imagery of
SGLF 159 (light blue) flowing into lineated valley fill (dark blue). Approximate location of image centre is 42.23◦ N,
50.53◦ E. (c) Surface elevation profile (taken from the HRSC digital elevation model) extending southwards
downglacier from the source alcove. The superposition boundary, where the SGLF terminates, is indicated by the
abrupt change in gradient at ∼10,000 m along the profile.

2007;Morgan et al., 2009). Lobate debris aprons (LDAs) are wide and often radially flowing VFFs commonly

found flanking isolated mesas and escarpments (Baker et al., 2010; Dickson et al., 2008; Levy et al., 2007;

Mangold, 2003; Morgan et al., 2009; Head et al., 2010). Glacier-like forms (GLFs)—the lowest-order form

of VFFs—occupy alcoves with cirque-like headwalls, often feeding the larger LDAs and LVFs (Hubbard

et al., 2014; Souness et al., 2012). Figures 1 and 2 show several examples where GLFs meet LDAs and LVFs.

Though not investigated herein, a final type of VFF, named concentric crater fills (CCFs), refers to buried

ice deposits on the floor of impact craters (Mangold, 2003).

The surface appearance of VFFs reflects the internal deformation and downslope transport of ice-richmate-

rial (Hubbard et al., 2014). Flow-parallel lineations observed on VFFs are deflected by topographic obstacles

and can be traced over hundreds of kilometres (Dickson et al., 2008; Levy et al., 2007; Morgan et al.,

2009). Lineations are also visible orthogonal to flow direction, including arcuate ridges from which flow

direction can be inferred (Levy et al., 2007), and crevasse assemblages consistent with strain of an under-

lying icy substrate (Hubbard et al., 2014). Further, VFFs form a complex and coalescing size-hierarchal
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Figure 2. Superposed glacier-like forms (SGLFs) and their underlying viscous flow features (underlying VFFs), with model ages (in Ma) derived from crater
counting. All images are Context Camera (CTX: Malin et al., 2007) mosaics in north-up projection. (a) SGLF 159 (42.23◦ N, 50.53◦ E) flowing into lineated
valley fill, Protonilus Mensae. (b) SGLF 272 (40.375◦ S, 103.05◦ E) flowing into lobate debris apron, Eastern Hellas. (c) SGLF 2 (44.02◦ N, 47.30◦ E) flowing into
lineated valley fill, Deuteronilus Mensae. (d) SGLFs 281 (41.73◦ S, 108.66◦ E) and 282 (41.68◦ S, 108.77◦ E) flowing into lobate debris apron, Eastern Hellas. The
different types of viscous flow features, all being remnants of palaeo-glaciation, are organised in a hierarchy of coalescing flows. Superposition is evidenced by
the frontal contact of a raised lobe or moraine-like ridge (marked by white arrows) and surface lineations mismatched from those on the underlying VFF unit.

system—emanating from alcoves, converging, coalescing, and continuing downslope before terminating in

steep convex lobes—as observed in inter-montane glacial settings on Earth (Dickson et al., 2008; Levy et al.,

2007, 2014; Morgan et al., 2009). Impact crater morphology (Kress &Head, 2008) and radar-detected stratig-

raphy (Holt et al., 2008; Plaut et al., 2009) suggest that VFFs consist of a predominantly water-ice substrate

covered by a thin surficial debris layer, akin to terrestrial debris-covered glaciers (Baker & Carter, 2019).

It is worth also considering the relationship between VFFs and what has been termed latitude dependent

mantle (LDM: Kreslavsky & Head, 2002)—a widespread terrain-draping morphological unit found >45◦

north and south of the equator that is inferred to contain ice and dust and covers ∼23% of Mars's surface.

Gamma-ray spectrometer data suggest LDM contains the bulk of Mars's shallow ground ice (Feldman et al.,

2004). However, disagreement persists with respect to the formation of LDM and the extent to which VFF

deposits are overlain by and/or sourced from these deposits. Diffusion of atmospheric vapour into regolith

is one formationmechanism proposed (Mellon & Jakosky, 1995), but this alone cannot explain observations

of ice content in decametre-thick LDM deposits exceeding 45–90% (Conway & Balme, 2014). We follow the

interpretation that thick LDM is more consistent with sustained atmospheric deposition of snow/frost (sub-

sequently shielded by debris) during extensive mid-latitude glaciation events (Berman et al., 2015; Conway

& Balme, 2014; Head et al., 2003; Milliken et al., 2003; Mustard et al., 2001). Thick LDM deposits with high

ice content are expected to deform plastically and therefore may be indistinguishable from some smaller

VFFs (e.g., GLFs) in form and appearance (Conway & Balme, 2014). LDMmay also contribute to the debris

cover on VFFs.

VFFs are distributed within the 30–50◦ latitude zones in each hemisphere on Mars (Levy et al., 2007, 2014;

Milliken et al., 2003; Souness et al., 2012), inconsistent with ice emplacement under current surface con-

ditions. This finding motivates the so-called “mid-latitude glaciation” hypothesis (Head et al., 2003, 2005,
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2006). Mars's orbital parameters are too chaotic to be definitively modelled beyond 20 Ma (Laskar et al.,

2004). However, these authors found, through statistical modelling of 20,000 possible orbital solutions, that

Mars's obliquity (25.19◦ today) has likely fluctuated strongly about its mean value (37.62◦) over the last 4

Gyr, inferring that, by modulating insolation receipt, these chaotic fluctuations drive extensive zonal redis-

tribution of volatiles in the martian atmosphere. The mid-latitude glaciation hypothesis sees these shifts

as driving climatic cycles, causing glaciations at times of high average obliquity (≥35◦–40◦) when volatiles

were redistributed from the polar ice sheets to nourish mid-latitude ice (Head, Nahm, et al., 2006; Laskar et

al., 2004). This idea has received support from global climate models that predict precipitation in VFF-rich

regions during high obliquity events (Forget et al., 2006; Madeleine et al., 2009), and from glacial flow

modelling that predicts kilometres thick ice sheets extending into the plains abutting the present VFF-rich

regions in such scenarios (Fastook et al., 2011).

Accordingly, the mid-latitude glaciation hypothesis regards VFFs not as active glaciers, but as the recessed

relics of past glaciation armoured by surface debris (Head et al., 2003, 2005; Head, Marchant, et al., 2006).

Complex extensive ice flow emanating from plateau ice sheets fits the morphology of LVFs observed today

(Head, Marchant, et al., 2006; Head et al., 2010; Head, Nahm, et al., 2006), and their armouring by debris

is thought to have occurred when these ice sheets collapsed (Dickson et al., 2010, 2008). Modelling by

Fastook et al. (2014) confirms that during such a deglaciation, VFFs can form as scarps and massifs become

exposed and deposit debris onto VFF surfaces, and that over time, the deposition modulates their distal sur-

face slope such that the flow of exposed ice ensures their entire length becomes debris-covered. Sublimation

further consolidates surface deposits into a barrier that retards subsequent mass loss, allowing VFFs to per-

sist to the present day (Fastook et al., 2014; Kowalewski et al., 2006; Levy et al., 2007). Similar long-term

survival of buried ice has been observed in the debris-covered glaciers of the Antarctic Dry Valleys on Earth

(Kowalewski et al., 2006; Sugden et al., 1995). The mid-latitude glaciation hypothesis considers both the

bulk ice emplacement and subsequent recession of these regional ice sheets to be orbitally-driven (Head et

al., 2003; Head et al., 2005; Head, Marchant, et al., 2006).

Geomorphological evidence for at least one glacial recession since a maximum advance is abundant (e.g.,

Brough et al., 2016; Dickson et al., 2008; Levy et al., 2007; Morgan et al., 2009). VFFs within the fretted

terrain along Mars's northern dichotomy boundary are thought to have eroded this boundary southwards

over the last 2 Gyr (Head et al., 2005), leading to the characteristic formation of interconnected valleys and

fragmenting of the terrain into isolatedmesas further north. At the local scale, approximately a third of GLFs

appear recessed or depressed, as shown by distant forefield arcuate moraines, surface lowering relative to

putative lateral moraines, and staggered sequences of latero-terminal moraine ridges (Brough et al., 2016).

Tropical piedmont-style LDAs also appear to have retreated by up to 10 km from their maximum extent

(Shean et al., 2005), and highstands of palaeo ice-surface elevation up to 0.8 km above current LDA/LVF

surfaces have been inferred (Dickson et al., 2008). Further, steep scarps observed at the contact between LVF

surfaces and abutting talus deposits indicate substantial LVF surface lowering since the bulk emplacement

of that talus (Levy et al., 2007).

Age estimates for LDAs/LVFs from crater size-frequency distributions span 10 Ma to 1.2 Ga (Berman et

al., 2015), consistent with the broad decline of regional-scale ice sheets and ice caps over the past several

hundred million years (Baker et al., 2010; Dickson et al., 2008; Head et al., 2010; Levy et al., 2007; Morgan et

al., 2009). In addition, it is hypothesised that the switch from high (∼35◦) to low (∼25◦) planetary obliquity

at 4–6 Ma, the only major change in obliquity during the last 20 Ma, caused the bulk accumulation of the

polar ice caps which are approximately four million years old (Laskar et al., 2002; Levrard et al., 2007; Smith

et al., 2016). Some authors (e.g., Brough et al., 2016) posit that this obliquity shift also marks the time of the

last martian glacial maximum (LMGM), or the last time when mid-latitude glaciation was active on Mars.

That smaller and steeper glaciers on Earth are generally more sensitive to climate change has prompted

suggestions (Kargel, 2004) that GLFs may be the most responsive VFFs on Mars. Multiple phases of glacial

activity can produce a superposition of some VFFs, formed during one glacial phase, on to other VFFs,

formed during an earlier glacial phase. Indeed, several individual examples of VFFs (typically GLFs) flowing

onto other VFFs have been recorded (Dickson et al., 2008; Head et al., 2005; Levy et al., 2007; Shean et

al., 2005). Figures 1 and 2 show examples of such superposition. The GLFs involved in these superposi-

tions debouch from alcoves and are demarcated by a sharply-defined frontal lobate terminus. Here we term
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this subset of the GLF population “superposed glacier like forms” (SGLFs). In contrast to the anastomis-

ing regional VFF deposits, SGLFs terminate abruptly at the superposition boundary at their lower ends,

rather than coalescing with the valley VFF deposits below, and they tend to extend short distances ≤5 km

from their source (Figures 1 and 2). Where SGLFs intrude far onto pre-existing VFFs, their flow-parallel

surface lineations may be orientated obliquely to those on the latter, with the boundary between the two

distinguished by a sharp contact (Dickson et al., 2008; Levy et al., 2007) (Figures 1 and 2). This stratigraphic

relationship, indicating that SGLFs are younger than their underlying VFFs, has been invoked as evidence

for two separate glacial phases: an early phase emplacing ice sheets/caps, and a later, alpine glaciationwhose

relics are the SGLFs (Baker et al., 2010; Brough et al., 2015; Dickson et al., 2008; Morgan et al., 2009; Levy et

al., 2007). Further, the lack of deflection and apparent freshness of the SGLF contact indicates that the bulk

of SGLF development occurred separately from the emplacement of underlying VFF and relatively recently

(Dickson et al., 2008; Levy et al., 2007). Based on the principle of geological superposition, SGLFsmay there-

fore provide a means of deducing the chronological relationships between the distinct scales and phases of

glacial advance and recession (Dickson et al., 2008; Levy et al., 2007).

This hypothesis of polyphase glaciation—that Mars's mid-latitudes experienced multiple glacial

stages—provides the setting for the investigation presented herein. Multiple phases of glacial activity are

plausible given Mars's chaotic obliquity history, and one may generally expect variations in the strength of

the orbital cycles to have driven successive glacial phases of different intensities and spatial distributions

over time. In this paper, we undertake the first systematic global study of SGLFs in an attempt to eluci-

date these successions. To unravel the temporal patterns of the mid-latitude glaciation, we derive surface

ages with crater counting for SGLFs and the VFFs onto which they flow (“underlying VFFs” hereafter),

which date when each of the respective ancestral ice masses stopped flowing actively. It is envisaged that

each SGLF is the modern form of an earlier glacier, whose transition to dormancy happened when (or

shortly after) climatic changes caused net snow/ice accumulation on it to cease; thinning of the ice under

negative mass balance then diminished its flow velocity. Because the transition allowed impact craters as

well as supraglacial sediments to build up on the SGLF's surface, whereas active ice flow and snow/ice

accumulation prior to the transition caused rigorous resurfacing that continually reset/cleaned the surface,

the age determined from today's cratering record reflects the formation age of the SGLF which, in turn,

constrains the minimum age of its active ancestral glacier. Note that there are also many locations where

laterally-confined viscous flow material (in alcoves or tributary valleys) coalesces with LDAs/LVFs without

apparent superposition; not being SGLFs, they are not included in the study.

2. Materials andMethods
2.1. Mapping

We mapped SGLFs within 25–60◦ latitudes in both hemispheres (Figure 3) on a mosaic of 3,694 georef-

erenced Context Camera (CTX) images (Malin et al., 2007). We identified SGLFs using (i) the defined

characteristics of glacier-like forms (Hubbard et al., 2014; Souness et al., 2012; e.g., alcove heads; enclos-

ing higher topography; presence of longitudinal foliations) and (ii) evidence of superposition onto another

VFF (sharp frontal contact delineated by the edge/escarpment of a raised lobe or arcuatemoraine-like ridge;

surface lineations mismatched from those on the underlying VFF; e.g., Figure 2).

The enclosing boundaries of SGLFs and their underlying VFFs were mapped in the software ArcMap 10.4.

Keymorphometric parameters of each SGLF (length,width, area,mean surface slope,mean elevation, relief,

and orientation) were also derived in ArcMap 10.4 and are detailed in Table 1 of the online data repository

linked to this paper (Hepburn et al., 2019). When calculating area and slope, care was taken to use suitable

map projections to minimise the adverse effects of distortion. All areas were calculated in the sinusoidal

projection. There is potential uncertainty in identifying each SGLF/VFF boundary in our mapping. The

associated error in each area, estimated by assuming a uniform 1-pixel (∼6 m) misidentification on each

boundary, is a few percent. The uncertainty in each area due to pixel loss/replication during reprojection is

expected to be less than this. Surface slope was calculated using the Mars Express High-Resolution Stereo

Camera (HRSC;∼75-mgrid resolution) digital elevationmodel. However, sinceHRSC coverage is not global,

we supplement our analysis with Mars Orbiter Laser Altimeter (MOLA; ∼460-m grid resolution) digital

elevationmodels. Where both data sets were available, both were used to verify that while they yielded slope

values differing numerically due to the difference in spatial resolution, the results are broadly consistent so

this does not affect our conclusions (section 3). The mean slope of a SGLF is the areal average of elevation
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Figure 3. Locations of superposed glacier-like forms (SGLFs) on Mars. Plot symbols distinguish SGLFs formed during glacier-recession phases R2 (45–65 Ma)
and R1 (2–20 Ma). The latitudinal range of SGLFs displays strong hemispheric symmetry typical of viscous flow features produced by mid-latitude glaciation.
The northern SGLFs population is concentrated in the crustal dichotomy boundary of Mars, and the southern SGLF population near large impact basins.
Locations of all glacier-like forms (GLFs, Souness et al., 2012) are shown for comparison. Background colours show MOLA gridded topography in cylindrical
projection.

gradients within its boundary. To compute this quantity from each gridded elevation map, we followed the

method of Conway et al. (2017) of calculating the local gradients of elevation in the conformal Mercator

projection and then multiplying these by the secant of the local latitude to correct their baseline distances,

before reprojecting the gradients into the sinusoidal projection for areal averaging.

2.2. Crater size-frequency distributionmeasurement

To date the SGLFs and their underlying VFFs, we measured the abundance of supraglacial impact craters.

Using the ArcGIS extension CraterTools (Kneissl et al., 2011), with CTX imagery, the diameter D of impact

craters (except any discernible chains of secondary craters) in each area defined by a SGLF or underlying

VFF boundary was recorded and compiled into the crater size-frequency distribution (CSFD). CraterTools

has a built-in correction for the distortion of area under the map projection, where all counting areas and

craters are individually reprojected into a sinusoidal projection defined by the centralmeridian of the feature

in question.

Most SGLFs are small landforms at length scales of several kilometres. Their small size and the limited occur-

rence of impact craters on their surface—especially craters visible at CTX-resolution—means that we had to

aggregate multiple SGLFs to enable their dating. In aggregation, the counts from neighbouring SGLFs (typ-

ically those emerging from the same peak, mesa, or plateau) were combined to give usable crater statistics

for their total area; we assume geological homogeneity (e.g., Arvidson et al., 1979) for each counting area as

it pertains to the same landform or the same landform type. Table 1 lists the identification numbers of the

SGLFs in each of our 35 aggregates, and Table 2 of our online repository gives the aggregated counts binned

according to crater diameter. Aggregation necessarily means that the same age is assigned to all SGLFs in

each aggregate so their age differences cannot be resolved, but it extends the dating to individual SGLFs

for which ages cannot be ascertained due to scarcity of craters. Two of our SGLFs are large and were dated

without aggregation (we number them “aggregates” 10 and 19; Table 1), but most other individual SGLFs

must be aggregated as they have too few craters for their CSFDs to show a clear decay limb for fitting with

confidence to obtain ages (the fitting method and this issue will be elaborated in section 2.3).

We recorded all visible craters on SGLFs as far as discernible from CTX (∼6 m per pixel; Malin et al., 2007)

imagery down to diameters (D) ∼20 m. In contrast, we limited the CSFD measurement on the underlying

VFFs to craters larger than∼80m in diameter to ensure our recording effort was feasible on the largest VFFs.

Age determination for underlying VFFs using crater counts extending down to lower D (< 80 m) occurred
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Table 1
Dating Results for SGLFs and Their Underlying VFFs and Parameters Used in the Age Determination from Crater Distributions

Results for SGLF aggregate Results for underlying VFF

Area (km2) Age (Ma) Parameters in CSFD fitting VFF type Area (km2) Age (Ma) Parameters in CSFD fitting

SGLF aggregate SGLF ID no. (see Table Fitting No. of Fitting No. of

1 of online data range in D craters range in D craters

repository) (m) (m)

1 2, 3, 4, 19, 20, 21, 22, 23, 24 48.2 47.4 ± 9.2 49–100 26 LVF 805.9 68.2 ± 8.1 95 - 250 66

2 1, 11, 12, 14, 18, 25 48.6 11.9 ± 3.9 40–100 7 LVF 1045.2 67.2 ± 9.5 120 - 430 49

3 5, 6, 7, 8, 15, 26, 27 59.5 59.6 ± 18 65–120 8 LVF 964.6 81.1 ± 12 130 - 330 39

4 17, 16 7.7 12.5 ± 5 25–50 6 LDA 3082.7 544 ± 180 500 - 1000 8

5 36, 37, 38, 39, 40, 41, 42, 43, 61, 62, 63, 64, 65 174.4 64.9 ± 19 90–300 12 LDA 1451.7 80.6 ± 11 130 - 380 50

6 36, 37, 38, 39, 40, 41, 42, 43, 61, 62, 63, 64, 65 174.4 64.9 ± 19 90–300 12 LVF 3186.6 95.5 ± 36 350 - 550 7

7 36, 37, 38, 39, 40, 41, 42, 43, 61, 62, 63, 64, 65 174.4 64.9 ± 19 90–300 12 LDA 2825.4 43 ± 6.9 150 - 370 35

8 36, 37, 38, 39, 40, 41, 42, 43, 61, 62, 63, 64, 65 174.4 64.9 ± 19 90–300 12 LDA 2821.4 81.2 ± 13 180 - 640 41

9 29, 30, 31 37.9 54.7 ± 16 60–140 10 LVF 1945.8 67.5 ± 16 190 - 640 15.4

10 60 25.4 96 ± 55 100–200 3 LDA 496.4 57.2 ± 11 100 - 425 29

11 67, 78 20.3 16.9 ± 6.8 40–100 6 LDA 1167.9 43.9 ± 4.9 89 - 240 68.3

12 68, 69, 70 7 11.6 ± 5.1 25–60 5 LDA 731.3 69 ± 8.8 100 - 230 54

13 71, 72, 73 19.9 10.3 ± 4.2 30–80 6 LDA 626.6 81.8 ± 14 120 - 380 32.8

14 80, 84, 85 15.4 9.02 ± 2.7 25–40 10 LDA 767.3 355 ± 160 344 - 680 5

15 86, 87, 88, 89, 94, 95, 101, 102 53.5 4.76 ± 1.3 25–60 10 LDA 2499 69.4 ± 15 220 - 500 20

16 90, 91, 92, 93, 104 57 53.3 ± 22 90–120 6 LDA 572.9 120 ± 69 265 - 500 3

17 96, 97, 98, 103 47.6 45.9 ± 23 90–140 4 LDA 1067.3 43.1 ± 10 150 - 380 17

18 108, 109 9 2.7 ± 1.3 20–30 4 LDA 806 33.3 ± 8.5 120 - 350 15
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Table 1 continued

Results for SGLF aggregate Results for underlying VFF

Area (km2) Age (Ma) Parameters in CSFD fitting VFF type Area (km2) Age (Ma) Parameters in CSFD fitting

SGLF aggregate SGLF ID no. (see Table Fitting No. of Fitting No. of

1 of online data range in D craters range in D craters

repository) (m) (m)

19 107 51.2 11 ± 3.6 40–60 7 LVF 701.9 48.3 ± 18 180 - 300 7

20 116, 117 7.9 52.5 ± 20 20–100 7 LVF 482.3 121 ± 21 130 - 550 31

21 159, 160, 161, 162, 163, 60.9 3.7 ± 0.75 20–100 24 LVF 1528.7 54.7 ± 11 150 - 550 24

164, 182, 183, 184

22 119, 120, 121, 122, 123, 41.2 5.89 ± 2.2 30–80 7 LVF 1511.7 185 ± 75 300 - 650 5

124, 187

23 125, 126, 127, 128, 129, 67 2.46 ± 0.54 20–120 20 LDA 1522 30.7 ± 7.2 140 - 380 18

130, 131, 132, 133, 134,

135, 137, 138

24 176, 177, 178, 179, 186 57.9 2.01 ± 0.51 20–60 15 LDA 898.6 383 ± 67 220 - 380 19.4

25 199, 200, 201, 202, 203, 204, 205 17.5 18.9 ± 5.9 28–120 9 LVF 563.4 355 ± 88 200 - 750 16

26 216, 217, 222 80.9 3.32 ± 0.8 25–120 17 LDA 152.5 32.5 ± 13 95 - 200 4

27 225, 229 20.4 16 ± 3.7 25–120 18 LDA 292.5 115 ± 13 80 - 330 71

28 236, 237, 239 19.5 7.47 ± 2.6 25–60 8 LVF 205.7 3.59 ± 1 40 - 150 12

29 232, 233 8.2 2.61 ± 1.2 15–30 5 LDA 89.6 26.4 ± 9.9 70 - 150 7

30 244, 245, 246, 247, 248, 249, 250, 251 25.7 19.3 ± 3.5 25–80 30 LDA 507.2 253 ± 63 220 - 750 16

31 254, 255, 256, 257, 258, 259, 260, 261, 262, 269 53 9.61 ± 1.9 25–120 25 LDA 1793.7 200 ± 29 220 - 750 44.8

32 272, 273, 274, 275, 307 65.2 4.23 ± 1.3 30–60 7 LDA 1169.3 230 ± 59 225 - 750 15

33 270, 271, 306 35.9 9.28 ± 2.5 30–80 13 LDA 279.2 99 ± 18 95 - 750 29.9

34 281, 282, 283, 284 107.1 7.92 ± 2 40–100 14 LDA 1200.9 35 ± 3.4 80 - 750 103

35 276, 277, 278, 279, 280, 309, 310 99.5 17.2 ± 4 45–110 16 LDA 810.7 79.6 ± 12 120 - 230 35.2

Note. CSFD = crater size-frequency distribution, SGLFs = superposed glacier-like forms, VFFs = viscous flow features.
Aggregates 5, 6, 7, and 8 contain the same SGLFs but have different underlying VFF ages. This is because the SGLFs flow onto a large VFF with four sub-units that are distinct in terms of surface
texture. We dated each sub-unit to ensure robust age estimation. Number of craters in columns 6 and 11 pertains to the fitted range only. For the total crater counts on each CSFD, see Table 2
of the online data repository linked to this paper. Non-integer counts occur when one or more craters are located on the domain boundary.

H
E
P
B
U
R
N
E
T
A
L
.

8
o
f
21



Journal of Geophysical Research: Planets 10.1029/2019JE006102

in two cases (aggregates 28 and 29, Table 1) because the maximum crater size (i.e., the upper limit of their

D ranges) was relatively low. Aggregation was not needed for the underlying VFFs, due to their large size.

In terms of crater morphology, a previous study that dated VFFs (Berman et al., 2015) subcategorised

counted craters by their variable states of degradation (e.g., fresh, degraded, and filled) in order to resolve

any timing difference between the cessation of flow of the ancestral ice mass (i.e., stabilisation of its surface)

and development of the surface-debris cover on the VFF, and to date the emplacement of further overly-

ing mantling deposits due to the latitude-dependent mantling (LDM) process. Dating with subcategorised

counts is thus useful for examining the history of surface processes on a VFF after the ancestral ice mass

transitioned to the VFF. However, although subcategorisation of our crater counts is possible, it would not

aid in our goal of dating the initial transition, which is what defines the formation age of each SGLF or

underlying VFF. As explained in section 1, the timing of this formation constrains the minimum age of the

formation of the ancestral glacier or ice cap. We emphasise, accordingly, that the actual formation age of

the ancestral ice glacier/ice cap can only ever be bounded, not determined. Therefore we did not subcate-

gorise craters in the present study; all counted craters were used in estimating the crater retention age of the

surfaces. Note that, as mentioned in section 1, we follow the interpretation that SGLFs may be superposed

by younger LDM deposits which contribute material to their surface mantle, but that SGLFs themselves do

not derive wholly from re-mobilisation of such deposits, even though GLFs/SGLFs are relatively thin. Our

approach of using all craters accords with standard practice as stated byMichael and Neukum (2010). Issues

concerned with the potential impact of resurfacing on crater retention ages and the use of small craters are

explored further in section 3. It would be a mistake to base our age determination on subcategorised crater

counts, as this would yield an underestimation of all formation ages.

The occurrence of “ring-mold” craters on some VFFs (Kress & Head, 2008) is relevant to our procedure of

crater identification and size determination. Ring-mold craters are observed acrossD∼ 102–103 m, and they

exhibit an unusual morphology (e.g., some with multiple rings, a central plateau) as a result of post-impact

modification processes on an icy substrate overlain by a debris layer (Kress & Head, 2008). Of the total

873 craters we counted on SGLFs, ∼54 (6.2%) were ring-mold craters. This number is approximate as the

identification becomes more difficult for small craters at scales approaching the CTX imagery resolution

limit. Owing to the icy substrate, ring-mold craters are interpreted to form at diameters larger than the

corresponding bowl-shaped craters on basaltic substrates—given the same impacts (Kress & Head, 2008).

This size difference led Hartmann (2007) to propose downscaling the diameter of ring-mold craters by a

factor of two when their counts are compiled into CSFDs for dating, but this correction factor is uncertain

and does not account for the actual ice rheology (which is unknown for the SGLFs and their underlying

VFFs). We therefore neglected such scaling and instead followed Berman et al. (2015) by treating ring-mold

craters as filled craters without diameter correction, and included them in our counting. Note that while

the size difference may have biased some ages upwards, enhanced resurfacing on an icy substrate may have

removed some craters to cause an opposite (not necessarily equal) effect on age. As noted below, we also did

not attempt to account for resurfacing by using a correction factor.

Care was exercised in our crater identification to exclude circular features unrelated to impact processes,

such as sublimation and collapse pits, which sometimes occur in localised populations on SGLF/VFF sur-

faces. The larger sublimation and collapse pits (at scales ∼100 m) are straightforward to distinguish from

impact craters. There is higher chance of misidentifying such features as impact craters as the resolution

limit of CTX imagery is approached. We acknowledge that some secondary craters and non-impact fea-

tures may have been falsely counted within our CSFD data, an issue that pertains to all CSFD-based dating

on Mars.

2.3. Absolute Surface Age Determination

Next, the absolute ages of each pair of SGLF aggregate andunderlyingVFFwere estimated from their CSFDs.

Since the icy composition of SGLFs and VFFs means that their cratering record may have been modified by

some resurfacing after the transition, all absolute ages reported herein are “crater retention ages”. In fact, all

crater-count based ages of martian surfaces are crater retention ages because all such planetary surfaces are

influenced by different kinds of resurfacing processes. We interpret these crater retention ages as formation

ages of the SGLFs/underlying VFFs because the surfaces were strongly reset up to the transition (see section

1), and there is limited evidence from our results that equilibrium between subsequent resurfacing and

impact cratering on those surfaces has been reached for the crater populations used in our dating.
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Figure 4. Impact crater size-frequency distributions of (a) SGLF aggregate 21 and its underlying VFF and of (b) all SGLF surfaces and all underlying VFF
surfaces. Data points are derived from crater counts on CTX imagery (Table 2 of the online data repository linked to this paper) and grey curves outline the
isochron system. All distributions exhibit roll-off at small crater diameter. In (a), the model ages are determined by isochron fitting (red and black lines) to the
filled data points; the corresponding crater-diameter ranges are listed in Table 1. The kink on the underlying VFF data trend above the highest filled black point
evidences partial resurfacing. In (b), the surfaces of all underlying VFFs combined show systematically higher crater frequency than for SGLFs on the decay
flanks of the distributions. No fits were made to these flanks because their slopes deviate markedly from the isochron slopes (discussed in section 3.3). Both
plots are outputs from CraterStats 2.0. SGLF = superposed glacier-like form, VFF = viscous flow feature.

Dating of each cratering record was performed on the reverse cumulative CSFD plot (Figure 4a and sup-

porting information, Figures S1–S35), with the crater diameter (D) axis binned logarithmically according

to standard practice (Hartmann, 2005; Michael & Neukum, 2010). The isochron system is constructed from

the lunar-specific chronology and production functions by accounting for proximity of the planetary target

to meteoric sources and its gravity and collisional cross-section. We used the Hartmann (2005) production

and chronology functions for Mars (Hartmann, 2005, 2007) because they contain improved treatment of

these complicating factors forMars and because they amalgamate crater distribution data sets from both the

Hartmann and Neukum traditions. The use of alternative functions, which is not undertaken here, would

shift our absolute ages systematically, but not alter their overall pattern.

Age was determined by fitting an isochron to each distribution's decay slope (Figure 4a and Figures S1–S35)

following established procedures (e.g., Arvidson et al., 1979; Michael & Neukum, 2010). Fitting of each

CSFD was done in the software CraterStats 2.0 (https://bit.ly/2U1lcJU; see Michael and Neukum, 2010),

which yielded the age and corresponding estimates of uncertainty. CraterStats 2.0 assigns error margins

when fitting a CSFD to reflect the statistical uncertainty associated with both the CSFD measurement and

the counting area. As detailed by Michael and Neukum (2010), the error bars shown on each cumulative

CSFD plot (grey vertical lines in Figures 4a and S1–S35) are given by ±[Ncum(D)]
1/2∕A, where Ncum is the

cumulative number of craters of diameter D, and A is the counting area. The “±error” reported with each

age estimate in Table 1 and Figures S1–S35 is based on the Poisson distribution model of random cratering

impacts (Michael & Neukum, 2010), which describes how the observed crater counts on a surface deviate

statistically from the number of crater counts expected from the true age of the surface, for given production

and chronology functions. The probability density distribution of the true age constructed from this model

yields the age error; the counting area is relevant to this statistical model via the impact rate. The error is cal-

culated automatically in CraterStats 2.0 during fitting. Small counting areas in our study produce relatively

large error bars (Figure 5a), which are controlled by our aggregation strategy (section 2.2).

Our CSFDs typically show a roll-off at small diameters (Figures 4 and S1–S35) due to undercounting near

the image-resolution limits and removal of small craters by resurfacing processes (e.g., sublimation, mass

movement, substrate deformation, burial by debris from hillslopes, and mantling by sediments accreting

HEPBURN ET AL. 10 of 21
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Figure 5. Formation history of SGLFs based on model ages determined from their cratering record on CTX imagery, and character of glacier recession phases
R1 and R2 and alpine glaciation phases A1 and A2. In all panels, blue and orange represent SGLFs in the northern and southern hemispheres, respectively. (a)
Model ages of SGLF aggregates versus those of their underlying VFFs. Error bars indicate statistical age uncertainty (explained in section 2.3). Square symbols
identify those SGLF aggregates in recession phase R2 (aggregates 1, 3, 5–9, and 17) whose model ages are similar to their underlying VFF model ages. Lower
histogram shows formation history of underlying VFFs. (b) Formation history of SGLFs over 100 Ma. The two age clusters are robust against age uncertainty
and motivate our central conclusions. Phases are numbered backward in time by analogy to Earth's glacial chronology. The time series shows Mars's obliquity
(Laskar et al., 2004) and its transition from ∼35◦ to ∼25◦ at 4–6 Ma. (c) Model age of each aggregate of SGLFs versus their mean surface slope derived from
MOLA (Mars Orbiter Laser Altimeter) digital elevation model. Solid line depicts regression through data. Square symbols identify the same SGLF aggregates as
selected in panel A. The horizontal axis plots the mean of the average slope angles of different SGLFs within each aggregate. Note that these average slope
angles generally differ, and their standard deviation (portrayed by horizontal error bars) far outweighs the errors in the slope angle of individual SGLF. (d) Rose
diagrams of SGLF azimuths in each hemisphere during each recession phase. SGLFs = superposed glacier-like forms, VFFs = viscous flow features.

on the surface of ablating ice). We expect most instances of crater misidentification due to image resolution

(section 2.2) lie within the roll-off of the CSFDs; in such cases, the counts do not fall within the fitting

range in our dating strategy, so those misidentifications do not influence our age estimates. In other cases,

specifically for SGLF aggregates 4, 12–15, 18, 19, 22, 24, 28–30, 32, 33 (Table 1), the entire fitting range lies

at small diameter (<80 m) and may be more susceptible to this issue. However, since the ages determined

for these SGLFs are all<20Ma, andmisidentification could only have increased crater counts to bias an age

upward, our conclusion (below) that these SGLFs belong to recession phase R1 is robust.

In addition to roll-off, some CSFDs show a double-kink reflecting partial resurfacing (Michael & Neukum,

2010) as illustrated by the underlying VFF data in Figure 4a. This double-kink reflects the depletion of

small craters by discrete episodic resurfacing events occurring in some narrow time-increment, followed by

crater accumulation post-event. We associate the kink/roll-off “shoulder” with the largest crater diameter

affected by resurfacing, and therefore fit the isochron to the larger craters plotted to the right of the shoul-

der, minimising the likelihood that the fitted parts of the distributions have been modified by resurfacing

(Figures 4a and S1–S35). The fitted diameter range on the limb was chosen to span the data points that plot

parallel to the slope of the isochron system (Berman et al., 2015). In most CSFDs, this fit included all other

counted craters ≥Dmin (the minimum diameter of the fitted range). These criteria ensured that we are dat-

ing the end of the last major resurfacing, which marks the time of transition from the ancestral glacier to

the SGLF/underlying VFF, rather than subsequent resurfacing episodes that erased craters of smaller diam-

eters. The potential influence of slope-driven resurfacing on the counts on the fitted limb for steep SGLFs is
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discussed in section 3.3. Table 1 lists the fitted diameter ranges in the CSFD plots for our SGLF aggregates

and underlying VFFs, which are also illustrated in Figures 4a and S1–S35.

As explained in section 2.2, we date SGLF aggregates because ages for the majority of individual SGLFs

cannot be found due to their small size. The issue lies in the difficulty of deciding where to fit the isochron

on the CSFDs of individual SGLFs (these aremade up by too few craters and do not showwell-defined decay

limbs), not so much in achieving manageable errors on the model age after fitting. Dating is thus used at

the minimum area scale where the CSFDs are well behaved to yield ages. Consequently, we do not have

individual SGLF ages againstwhich the aggregate age estimates can be compared (and potentially validated),

and our assumption that SGLFs in an aggregate have similar ages (i.e., the homogeneity assumption; section

2.2) may be open to challenge. We raise this as a limitation of the study, while recognising that there are

currently no independent methods that would give individual SGLF ages.

Like other studies ofMars that employ crater chronometry, we recognise that datingwith CSFDs is subject to

uncertainty from diverse sources. There may be other potential systematic biases/errors in our ages besides

those already discussed, stemming from assumptions in the cratering model (impact flux, chronology, and

production functions) and assumptions about target material properties. However, crater chronometry is

the only means currently available to date the SGLFs/VFFs, and we refer readers to Berman et al. (2015),

Hartmann (2005, 2007), Hartmann and Daubar (2017), Michael and Neukum (2010), Warner et al. (2015),

and Williams et al. (2018) for extensive discussions of issues. As in some investigations (e.g., Head et al.,

2005), no attempt is made here to correct for potential biases. Crater chronology models should therefore be

thought of as best effort calibration to absolute ages, and we hereafter refer to these as “model ages”. The use

of the Hartmann (2005) function (or indeed any other function) is meant to capture themain characteristics

of cratering history on Mars, even if calibration to absolute time is subject to considerable uncertainty. In

the specific context of dating SGLFs and VFFs, application of a (extremely poorly constrained) correction

for the icy nature of our landforms would probably result in all model ages being revised upward (Landis et

al., 2016), but since their near-surface material compositions should be similar (debris mantle on the order

of 101 m thick, underlain by ice; Baker & Carter, 2019), it is unlikely that such correction will change the

relative pattern of the modelled ages to invalidate our qualitative findings about the temporal sequence of

mid-latitude alpine glaciation phases. In this sense, although our aim is to report model ages, we are at least

as concerned with establishing the relative age contrasts between SGLFs and underlying VFFs and testing

whether their CSFDs agree with their relative stratigraphy.

Finally, the use of Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE:

McEwen et al. (2007)) imagery at ∼0.25 m per pixel resolution could give improved statistics for small

craters than CTX imagery. If HiRISE imagery covers all of our SGLFs completely, it would enable us to com-

pile CSFDs extending to lower values of D. However, only 31 SGLFs were covered by HiRISE imagery, few

of which were close enough to other SGLFs for aggregation. In most cases, the HiRISE imagery provided

only partial areal coverage of individual SGLFs, which was further compromised by image shadowing. This

sub-sampling of SGLF surfaces limits the number of larger craters recorded on any given feature. Even in the

few instanceswhere SGLFswere entirely covered by aHiRISE image, crater countswere at the sub-aggregate

level and could not bemeaningfully compared to the CSFDs derived fromCTX imagery, which included the

combined area of several aggregated SGLFs. Therefore, no HiRISE-derived crater counts were used in this

study.

3. Results and Discussion
3.1. SGLFMorphometry and Global Distribution

Using CTX imagery, we identified 320 SGLFs, 251 in the northern hemisphere, and 69 in the southern hemi-

sphere (Figure 3). The resulting inventory of 320 SGLFs (Table 1 of our online data repository) extends the

handful of SGLFs from the Deuteronilus-Protonilus Mensae regions reported in the literature (e.g., Baker et

al., 2010; Dickson et al., 2008; Levy et al., 2007; Morgan et al., 2009), none of which has been dated.

Morphometrically, SGLFs are similar to GLFs and statistically indistinguishable from them with respect to

length,width, and area data (supporting information, Table S1). Our observations support those of Levy et al.

(2007) andDickson et al. (2008) that SGLFs all share a sharp frontal contact demarcating their boundarywith

their underlying VFFs. However,morphological differences do exist between SGLFs, particularly in terms of

the hemisphere. Northern hemisphere SGLFs generally debouch from an alcove and therefore have clearly
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marked boundaries with a sharp terminus (e.g., Figures 1, 2a, and 2c); whereas in the southern hemisphere,

up-glacier of the clearly demarcated terminus, the boundaries of SGLFs become more difficult to discern

and map (e.g., Figure 2d). SGLFs appear to share with GLFs a similar minimum elevation threshold of

approximately 3,000 m below datum (Souness et al., 2012).

SGLFs also share similarity with GLFs in terms of geographical distribution. They occupy the same 30–50◦

latitude bands in each hemisphere (Figure 3), where all other forms of VFF are found (Milliken et al., 2003;

Levy et al., 2007, 2014). However, note that our mapping window extended to 25–60◦ in each hemisphere,

similar to other VFF studies (e.g., Levy et al., 2007, 2014; Milliken et al., 2003; Souness et al., 2012). SGLFs

are clustered in eight regions globally, with the highest densities in the contiguous regions of Deuteronilus

Mensae, ProtonilusMensae, and Nilli Fossae (Figure 3), which delineates themost prominent section of the

northern dichotomy boundary. High densities of VFFs have also been described amongst the fretted terrain

within this region (e.g., Levy et al., 2014; Morgan et al., 2009). Outside the fretted terrain of the dichotomy

boundary, SGLFs are also found in Utopia Planitia and Phelgra Montes. In the southern hemisphere, exam-

ples of fretted terrain are limited, and SGLFs are concentrated along the rims of theHellas andArgyre impact

basins.

3.2. Model Ages of SGLF Aggregates and Underlying VFFs

Crater size-frequency distributions were calculated for 162 SGLFs grouped into 35 aggregates, yielding 35

corresponding model ages. One hundred and fifty eight small SGLFs could not be dated, as their distance

from others precluded aggregation.We also derived crater size-frequency distributions for the 35 underlying

VFFs (without aggregation) to date their surfaces. Table 1 lists all of the age results. As noted above, our

crater counts are given in the online data repository. Figure 4a and Figures S1–S35 document the complete

set of 35 crater size-frequency distributions, and their isochron fits in the age determination. Typically, the

fitted crater-diameter ranges are one to several hundred metres for underlying VFFs and a few decametres

to a hundred metres for SGLF aggregates (Table 1). The potential limitation of small craters in dating the

latter population is discussed in section 3.3.

The SGLFs have a model age range of 2–96 Ma (Figures 5a and 5b) and mean model age of 21.9 (±23.8)

Ma. Most SGLFs are much younger than their underlying VFFs, whose model ages span 3.6–544 Ma with

a mean of 121.5 (±121.9) Ma (Figure 5a). The model age deficit of SGLFs confirm their superposition on

the underlying VFFs (despite the current lack of radar evidence capable of resolving the internal structure

at the contact) and means that the SGLF's ancestral glacier existed for some time even as the underlying

VFF ice cap was transitioning to a VFF. However, of the 35 SGLF aggregates dated, four had a model age

exceeding that of their underlying VFF. These four anomalous results of SGLF aggregates dating older than

their underlying VFFs contradict their observed superposition relationship, but are reconcilable through

model age uncertainty indicated by the error bars in Figure 5a; also, geomorphological examination of the

SGLFs and VFFs concerned reveals nothing unique about them compared to other SGLFs/VFFs, nor any

shared peculiarities that might explain the contradiction (see supporting information, Figure S36). We also

undertook an analysis amalgamating the CSFDs of all SGLFs and all VFFs to calculate two global CSFDs for

each of these surface types (Figure 4b). Comparison of these two globalCSFDs shows systematically different

abundances on their decay slopes (Figure 4b), confirming that SGLF surfaces are collectively younger than

VFF surfaces. Although each type of surfaces does not have a uniquemodel age, attempts at fitting the decays

in Figure 4b generally yield ages of 20–50Ma for the SGLF surfaces and 100–250Ma for the underlying VFF

surfaces, which are consistent with the mean model ages reported above.

The SGLFmodel ages cluster at 2–20Ma and 45–65Ma, indicating two distinct glacier recession phases “R1”

and “R2”, respectively (Figure 5b). These imply pre-exisiting alpine glaciations, “A1” and “A2”, respectively,

stretching back into the periods preceding R1 and R2 when no SGLFs formed. Formal clustering analysis of

the ages with the k-means method (e.g., Everitt et al., 2011) supports our identification of two clusters (sup-

porting information, Figure S37a), and additionalMonte-Carlo simulations that account for the uncertainty

on each age during the k-means optimisation confirms our cluster assignment for each age (Figures S37b

and 37c). To reiterate, our interpretation takes a SGLF's formation age as the minimum age of its ancestral

glacier, assuming that the SGLF formed when the glacier stagnated, thinned and developed a debris mantle.

“Recession” in our inferred chronology refers to such mass loss, not necessarily involving length reduction.

The ancestral glacier must have formed and been existing for some time prior to SGLF formation. Accord-

ingly, in Figure 5b, we indicate each glaciation (A1 or A2) at older times than the corresponding recession.
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We do not rule out new glaciers forming during each recession phase. In contrast, VFFs formed continu-

ously over the past ∼500 Myr (Figure 5a, lower plot), consistent with overall ice-sheet decline; resolving the

corresponding history would require dating all LDAs and LVFs, not only those underlying SGLFs. These

results reveal a polyphase history of overlapping alpine and ice-sheet style glaciations and specifically two

growth-recession cycles of alpine glaciation (Figure 5b). The population at a given time may include active

glaciers and ice sheets and relict SGLFs and LDAs/LVFs (see supporting information, Movie S1). It has been

hypothesised that the original ice sheets had submerged high peaks, mesas, and plateaus before thinning

under long-term ablation by sublimation (Dickson et al., 2008; Fastook et al., 2014; Head et al., 2010). In

this picture, our oldest SGLF aggregate ages of ∼65 Ma constrain the latest time when total submergence

ended to expose hillslopes for alpine glaciation (the age of 96 Ma for aggregate 10 is one of the four anoma-

lous results described above, so it may be overestimated and is not used here). This inference can be made

even if other SGLFs had formed at earlier times but their record has been obliterated.

3.3. Robustness of Model Ages

Caution has been expressed regarding chronometry based on populations of small diameter craters (decame-

tres or less), as are often encountered when dating young planetary surfaces. While some studies are critical

of its application (Warner et al., 2015; Williams et al., 2018), others are supportive (Hartmann & Daubar,

2017). Our dating of many SGLF aggregates relies on low crater numbers in the decametre range. Besides

the care needed to exclude obvious chains of secondary craters (scattered “background” secondaries are

included in the production function) and non-impact features from crater counts at small scales (section

2.2), another concern is that resurfacing rates on SGLFs and VFFs may strongly influence their model ages.

Here, we examine whether such process could be responsible for the age difference presented above.

To explore this issue, it is necessary to consider the distinction between discrete episodic resurfacing

(which causes kinks in CSFD plots; section 2.3) and quasi-continuous resurfacing. The latter refers to the

planet-wide background resurfacing across Mars that acts constantly to degrade and remove craters of all

sizes (typically, smaller craters at much higher rates). In contrast, discrete resurfacing events reduce the

small crater population only up to a certain size, dependent on the magnitude of the event (Michael &

Neukum, 2010).

As discussed in section 2.3, discrete resurfacing is already accounted for by our CSFD fitting strategy.

The point of contention here is therefore whether the model ages of the SGLF aggregates significantly

underestimate their (true) formation ages as a result of quasi-continuous resurfacing. If so, the model age

deficits illustrated by Figure 5a may not quantify the formation-time difference between the SGLFs and

their underlying VFFs (instead they may reflect differences in the rates of quasi-continuous resurfacing).

Notably, the debris covered nature and underlying icy substrate of our target surfaces could cause enhanced

quasi-continuous resurfacing that decreases the model ages from the formation ages. Although the under-

lying VFF surfaces are gently sloping (≈10◦ or less), the surface slopes of steeper SGLFs (Figure 5c and

supporting information, Figure S38) approach the dry-granular angle of repose (≈24–42◦, Kleinhans et al.,

2011). This may facilitate surface debris movement on SGLFs as well as internal ice deformation, which

could serve to remove larger craters (i.e., craters whose diameters lie in the fitted range, right of the shoulder

on each CSFD) as well as small craters.

We consider that quasi-continuous resurfacing has a limited impact on our SGLF dating and does not upset

our key conclusions above (section 3.2) for the following four reasons:

1. If the influence of quasi-continuous resurfacing extending into the fitted parts of the crater distributions

is widespread on the steeper SGLFs, all decays of the fitted SGLF data would display a log-log slope less

than that of the isochrons. However, we do not see evidence of this tendency from Figures S1–S35; most

decays are closely aligned with the isochrons. As discussed in section 2.3, we selected our fitting range

Dmin to Dmax (where Dmin and Dmax, respectively, denote the minimum and maximum crater diameters of

the range) on each CSFD based on the portion that matches the isochron slope. For those CSFDs without

a clear kink, the shoulder between the (visible) roll-off and that portion/limb approximately demarcates

the Dmin value. An inherent assumption behind this choice in our fitting procedure is that crater counts

at D > Dmin are negligibly affected by quasi-continuous resurfacing and so are usable for dating, whereas

counts at D < Dmin are affected and were excluded from our analysis.
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Figure 6. Scatter plots of model ages versus Dmin (a) and Dmax (b) for our collection of SGLFs (red) and VFFs (black).
Dmin and Dmax, respectively, denote the minimum and maximum crater diameters of the isochron fitting range used on
the crater size-frequency distribution of the SGLF/VFF to determine its absolute surface age. In each panel, straight
lines show best-fit regression lines, for which the corresponding equations, r2, and p-values are given. As discussed in
section 3.3, the positive correlations found here—notably, that Dmin is a strong predictor of both SGLF and VFF model
age in (a)—validates the assumptions behind our isochron-fitting procedure, meaning that our dating of SGLF/VFF
formation is not hampered by the undesirable effects of quasi-continuous resurfacing on the landforms.

This assumption is supported by an independent line of evidence fromour CSFDdata. A general expectation

is that quasi-continuous resurfacing is effective (rapid) at small length scales.More precisely, resurfacing acts

on all length scales, but smaller craters resurface more rapidly than larger ones (Michael & Neukum, 2010).

For a given surface of a known true age, one should observe a well-defined crater-size threshold separating

those craters significantly affected by resurfacing from those insignificantly affected by resurfacing—even if

the transition between these crater types is expected to take place over a finite range ofD (i.e., not abruptly).

Indeed, the roll-offs on many of our CSFDs curve smoothly to join the straight-sloped limbs (Figures 4a

and S1–S35). Our choice of Dmin in each fit essentially demarcates this transition. Now, the older the sur-

face, the more time it has been exposed to resurfacing. Increased exposure time eliminates progressively

larger craters, lowering their frequency. Therefore Dmin should increase with the true age of the surface.

Figure 6a plots (model) age versusDmin in our CSFD dating fits for both the SGLF aggregates and the under-

lying VFFs. These data exhibit trends that confirm this expectation, with best-fit regression lines showing

strong correlation between the variables with an r2 of 0.78 and 0.57 for SGLFs and underlying VFFs, respec-

tively. In fact, the data trends (and trendlines) for the SGLFs and VFFs nearly overlap, further confirming

that the cumulative action of resurfacing over time affect crater populations in the same manner on both

landforms. This analysis means that (i) our visual determination of Dmin values in the CSFD fitting proce-

dure, and consequently, (ii) our assumption of the fitted limbs not having suffered from resurfacing (thus

closely reflecting true surface ages), are sound (i.e., there is self-consistency between the outcomes of the

method of fitting/age determination and its underlying assumptions). Finally, we note that the model ages

also correlate (positively) moderately strongly with Dmax (Figure 6b), though not as strongly as with Dmin.

The correlation with Dmax is not surprising because the likelihood of observing larger craters in a given area

should increase with its surface age (as well as with the size of the area).

1. Despite the steepness of some SGLFs, the rate of resurfacing caused by internal deformation within them

should be low, because we expect SGLFs to be thin (much thinner than VFFs generally) and this implies

limited ice-flow velocity. For instance, a tentative glaciological model (Karlsson et al., 2015), with its opti-

mised plastic yield stress of 22 kPa and typical observed surface slope angles (15–30◦, Figures 5c and

supporting information, S38–S39), yields a ball-park estimate for the thickness of SGLFs of only 11–24 m,

which is consistent with their often concave surfaces (Hubbard et al., 2014). Although this estimate does

not include a calculation of ice-flow velocity (e.g., using Glen's flow law, Cuffey & Paterson, 2010) because

the ice composition/rheology and temperature history are both uncertain, it points towards very subdued

ice flow and limited reworking of their impact craters.

2. If the SGLFs were much older than their apparent model ages, then their crater distributions would have

reached near-equilibrium, reflecting a balance of cratering and resurfacing rates. Thus, their model ages
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would be systematically (negatively) correlated with slopes; yet this is not observed (r2 = 0.01: Figure 5c).

This absence of correlation holds for both HRSC and MOLA surface slopes (Figure S39).

3. If our SGLF model ages have been grossly underestimated due to slope-driven resurfacing (because of

debris flow and/or ice flow), then it would not be possible to correct them in a physically-consistent man-

ner. Imagine that the supposition above were true, and a sizeable upward correction is applied to all of the

SGLF model ages—a correction large enough to eliminate or drastically reduce the age deficits for those

SGLFs in recession R1 (Figure 5a)—to disrupt our interpretation. The SGLF model ages in recession R2

that currently lie close to their underlying VFF model ages (eight points in square symbols near the 1:1

line, Figure 5a) would then exceed the underlying VFF model ages after the correction, but this outcome

contradicts the observed morphological superposition of SGLFs on their underlying VFFs. In our picture

of SGLFs/LDAs as relicts of ancestral glaciers/ice caps, it is implausible for an underlying VFF to form

after its SGLF(s): the underlying VFF lies at lower elevation than its SGLF(s), and it is difficult to imagine

how its ancestral ice cap/ice sheet could have a zone of net snow/ice accumulation and avoid transition

into a VFF when the ancestral glacier (at higher elevation) transitioned to become a SGLF as a result of

negative mass balance. Moreover, those SGLF aggregates belonging to recession R1 are not systematically

steeper than the eight aggregates belonging to R2 identified by square symbols (Figures 5c and S39), so

an alternative supposition that only the SGLF ages in R1 require an upward correction has no basis.

Taken together, these arguments indicate that slope-driven resurfacing has not hampered our dating of the

SGLFs, so our interpretation of the model crater-retention ages derived for them as their formation ages is

reasonable. The first, third, and fourth arguments above rest directly on evidence coming from our crater

counts, irrespective of the chronology model used. It could still be argued that an age correction should be

applied to both SGLFs and underlying VFFs in view of their icy composition, which can promote resurfacing

to bias model ages downward and/or cause craters to form at larger diameters than assumed in the crater

production model to bias model ages upward (Berman et al., 2015; section 2.3). However, such correction

would not change the relative pattern of the ages to disrupt our interpretation of (i) SGLFs being generally

substantially younger than their underlying VFFs and (ii) SGLF ages clustering into two discrete ranges.

We conclude that even if our model age estimates deviate from true formation ages and one thinks only in

terms of contrasts in the number of craters observed on VFFs and SGLFs, our inference of two alpine style

glaciations and a polyphase mid-latitude glacial history holds.

We note that the decay flanks of the CSFDs in Figure 4b (which relate the total—thus, improved—crater

statistics for all SGLF and all underlying VFF surfaces) are markedly shallower than isochrons. Not only

does this shallowing prevent specific fits from being made to the flanks to yield unique ages (section 3.2;

caption of Figure 4b), but it may also indicate that the fitted limbs of individual CSFDs used to date our

SGLF aggregates and underlying VFFs have been pervasively affected by resurfacing that removed craters

at D > Dmin. Specifically, it could be argued that unless the fitted limbs were compromised by resurfacing,

the observed shallowing cannot arise, for example, solely from the large spread of ages of SGLF aggregates

and underlying VFF. Consider merging the crater counts of two surfaces with different ages and areas, both

unaffected by resurfacing; their CSFDs are Hartmann isochrons following the power laws N1 = c1D
−� and

N2 = c2D
−� where � = 3.1 (the log-log slope shown in our CSFD plots). The aggregated CSFD will be

N = cD−� , with the log-log slope � preserved, and with the coefficient c being an area-weighted combination

of c1 and c2. However, this argument overlooks the fact that the distributions aggregated to give Figure 4b,

and indeed, the CSFDs collected for any real planetary surface, are not functions extending over an infinite

range inD. The CSFD data for each SGLF aggregate or underlying VFF haveminimumandmaximum crater

diameters that vary substantially across aggregates andunderlyingVFFs. There is no reasonwhy aggregating

such data should yield the power law deduced above; consider adding two functions N1 and N2, defined

to be ∝ D−� within two arbitrarily different finite ranges in D and defined to be zero outside those ranges.

Consequently, we do not regard the shallowed CSFD decay flanks in Figure 4b as posing a problem to our

dating results; they are due to the specific shapes and combinations of the crater distributions on SGLFs and

underlying VFFs. It is interesting to ponder whether there are generic causes behind the shallowing. While

we do not undertake further analysis into this here, we note that the CSFD of all craters ≥1 km on Mars

is found to exhibit a decay slope (� ≈ 1.1) much shallower than the isochron system (Robbins & Hynek,

2012; see their Figure 8a). This global compilation necessarily includes surfaces with different ages and

resurfacing histories, as for the CSFDs in Figure 4b.
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Figure 7. Example of nearby superposed glacier-like form (SGLF) clusters belonging to the two different recession phases R1 and R2, and a conceptual model
of landscape evolution that can explain such observation. (a) SGLF aggregates 15, 16, and 17 in the Protonilus Mensae region and their model ages. Background
imagery is the Murray lab global CTX mosaic (Dickson et al., 2018). (b) Conceptual sequence of SGLF formation through two alpine glaciation-recession cycles;
note that these schematics are not to scale. In stages 1 to 3, a glacier formed on top of a viscous flow feature in alpine phase A2 transitions into a SGLF during
recession phase R2. Protected by its surface debris mantle, this SGLF is later overlain by another glacier in alpine phase A1 (stage 4). Whether a SGLF forms
from this new glacier in recession phase R1 (stage 6) or not (stage 5) depends on its level of protection by surface debris and the thickness/extent of the A1
glacier, as determined by local geological and climatic factors. These contrasting outcomes can lead to the coexistence of R1 and R2 SGLFs within the same
geographical area, as illustrated in (a).
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4. Broader Implications

The accelerating formation of SGLFs through recession phase R1 (Figure 5b) documents the demise of the

last alpine glaciation (A1) onMars. Its culmination in 2–4Ma, shortly after the obliquity transition at∼5Ma,

coincided with the accumulation of the bulk of the north polar ice cap∼0–4Ma (Laskar et al., 2002; Levrard

et al., 2007; Smith et al., 2016), providing evidence supporting poleward water transfer during mid-latitude

deglaciation due to reduced obliquity (Head et al., 2003, 2005; Head, Marchant, et al., 2006). However, even

if the ancestral glaciers of all SGLFs were as thick as 1 km, they would still contribute just 0.4% of the

present-day north polar ice cap volume (∼800,000 km3; Smith et al., 2016), so a significantwater contribution

to the polar cap must come from other VFFs or reservoirs such as buried ice deposits or LDM at mid–low

latitudes. Notwithstanding dating uncertainty, we gather from Figure 5b that alpine phase A1 apparently

reached its maximum between ∼20 and ∼10 Ma. Recent investigations of glacial landforms on the interior

walls of martian impact craters (Conway et al., 2018; Hartmann et al., 2014) proposed that glaciers eroded

some of the crater walls in the mid and low latitudes in a distinct episode dating to ∼5–10 Ma. This timing

is compatible with our finding that numerous mid-latitude alpine glaciers (of phase A1) existed at ∼5 Ma

and had not transitioned to SGLFs until later (Figure 5b).

We do not know how many glaciers survived the penultimate recession phase R2 into A1 or whether new

glaciers in A1 overprinted some SGLFs from R2. The latter scenario is likely given the overlapping spatial

occurrence of SGLFs left as relics of A1 and A2 (Figure 3). In this connection, we find several regions where

R1 and R2 SGLFs occur in close proximity—within 60 km—of each other (e.g., Figure 7a). Since these SGLF

populations often do not differ distinctly in their orientation preference (e.g., Figure 7a) or other apparent

geographical factors, it is difficult to imagine how the A1 phase could have selectively glacierised some areas

but not others over such short distances, to give the mixture of R1 and R2 SGLFs observed today. These

considerations lead us to infer some R2 SGLFs could have been sufficiently preserved to survive through

A1 without being overprinted/buried by R1 SGLFs, owing to preservation factors. Figure 7b illustrates this

tentative concept, although we note that our ability to test this hypothesis is limited. In our conceptual

model, during recession phase R1, a glacier formed in A1 on top of an R2 SGLF (stage 4 in the figure) would

transition to a new SGLF to bury the R2 SGLF if adequate debris/sediment supply causes a protectivemantle

to develop on its surface (stage 6). However, if the glacier lacked sufficient debris supply or was thin or

small in extent, it could decay without leaving an R1 SGLF (stage 5); then the R2 SGLF is observed today.

Accordingly, amixture of neighbouring R1 andR2 SGLFs can arise from variations in geological factors (e.g.,

rock layering, headwall geometry) at mesa or alcove scale, as well as from local glacio-climatic factors that

limited or prevented renewed glacial accumulation on R2 SGLFs during A1. By extension, it is also possible

for some glaciers in the earlier A2 phase (stage 2, Figure 7b) not to leave behind R2 SGLFs if they had too

little debris supply. Thus, a further potential outcome (not illustrated in Figure 7b) is the absence of SGLFs

in some alcoves or tributary valleys, with viscous flow material integrating smoothly with the VFF at lower

elevation (without superposition), whereas SGLFs occupy nearby alcoves/valleys. Other hypotheses may

invoke flow reactivation on select R2 SGLFs without the need for additional mass input (e.g., as a result of

localised subglacial warming from below) which reset their cratering record in phase A1 and caused them

to adopt an R1 age.

SGLF locations provide additional insights into the two alpine phases identified above. The older SGLFs

from A2–R2 are limited to Deuteronilus-Protonilus Mensae and Tempe Terra in the northern hemisphere,

whereas those from A1–R1 straddle both hemispheres with broadly-synchronous age distributions. The

latter SGLFs are also three times more abundant (Figures 3 and 5 and Movie S1). The orientation of the

hemispheric SGLF population from A2–R2 is biased equatorward, but for A1–R1, it is poleward, with a sec-

ondary south-pointing lobe for the northern SGLFs (Figure 5d), as found for the GLF population (Souness

et al., 2012). It is tempting to interpret these strong orientation differences in terms of contrasting climates

during the high-obliquity periods of these glaciations, in particular by considering glacier accumulation

and shifts in prevailing wind patterns. However, we caution that A2's antiquity may mean that its SGLF

imprint is incomplete, and a sound comparison must account for contrasting preservation (see last para-

graph), which is currently poorly understood. Likewise, since Mars's obliquity history before 20 Ma cannot

be reconstructed (Laskar et al., 2004), we cannot verify whether A2 was the less intense of the two alpine

glaciations, as the SGLF abundance would suggest. Consequently, we think that the more recent A1 offers

a more faithful spatial record for modelling studies of alpine glaciation mechanisms.
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5. Conclusions

We have identified and examined 320 SGLFs throughout the mid-latitudes of Mars. These

SGLFs—debouching from alcoves and crater walls onto underlying VFFs—have previously been noted in

a few locations along the northern dichotomy boundary. Their apparent superposition on underlying VFFs

indicates that SGLFs formed more recently in Mars's history than their underlying VFFs, but the formation

age differences between these forms have hitherto not been quantified. Using crater-dating, we confirm

the relative age difference in terms of crater density and assign absolute model ages to date the formation

of 162 SGLFs (in 35 aggregates) and the corresponding underlying VFFs for which crater populations

were recorded. Whereas the underlying-VFF ages appear to be spread diffusively over the last 300 Ma, the

SGLF ages are bimodal, clustering at ∼2–20 Ma and ∼45–65 Ma. Despite potential limitations of the dating

method, the qualitative aspects of these results are considered to be robust. Based on our interpretation

of SGLFs as relict features formed from the decline and stagnation of alpine-style glaciers, we interpret

the two clusters as evidence of two growth-recession cycles in the martian mid-latitude glaciation record.

These growth-recession cycles evidence climatic changes on Mars on timescales of 101 to 102 Myr, before

its period of reconstructible astronomical forcing and before the earliest times recorded in its north polar

ice cap. The SGLF age results suggest ∼65 Ma as the latest possible time at which widespread ice sheet

submergence ended in the mid-latitudes to expose hillslopes for alpine glaciation. Our first glimpse of the

last stages of mid-latitude glaciation highlights a spatiotemporal complexity that is probably common in

Mars's cryospheric evolution—similar to Earth's. Future work should extend the tentative mid-latitude

glacial chronology presented here by dating the many remaining GLFs as well as LDAs and LVFs to form

an integrated reconstruction.

References
Arvidson, R., Boyce, J., Chapman, C., Cintala, M., Fulchignoni, M., Moore, H., et al. (1979). Standard techniques for presentation and

analysis of crater size-frequency data. Icarus, 37(2), 467–474. https://doi.org/10.1016/0019-1035(79)90009-5

Baker, D. M. H., & Carter, L. M. (2019). Probing supraglacial debris onMars 1: Sources, thickness, and stratigraphy. Icarus, 319(September

2018), 745–769. https://doi.org/10.1016/j.icarus.2018.09.001

Baker, D. M. H., Head, J. W., & Marchant, D. R. (2010). Flow patterns of lobate debris aprons and lineated valley fill north of Ismeniae

Fossae, Mars: Evidence for extensive mid-latitude glaciation in the Late Amazonian. Icarus, 207(1), 186–209. https://doi.org/10.1016/j.

icarus.2009.11.017

Berman, D. C., Crown, D. A., & Joseph, E. C. S. (2015). Formation and mantling ages of lobate debris aprons on Mars: Insights from

categorized crater counts. Planetary and Space Science, 111, 83–99. https://doi.org/10.1016/j.pss.2015.03.013

Brough, S., Hubbard, B., & Hubbard, A. (2016). Former extent of glacier-like forms on Mars. Icarus, 274, 37–49. https://doi.org/10.1016/j.

icarus.2016.03.006

Brough, S., Hubbard, B., Souness, C., Grindrod, P. M., & Davis, J. (2015). Landscapes of polyphase glaciation: eastern Hellas Planitia, Mars.

Journal of Maps, 12(June), 1–13. https://doi.org/10.1080/17445647.2015.1047907

Conway, S. J., & Balme, M. R. (2014). Decameter thick remnant glacial ice deposits on Mars. Geophysical Research Letters, 41, 5402–5409.

https://doi.org/10.1002/2014GL060314

Conway, S. J., Butcher, F. E. G., de Haas, T., Deijns, A. A. J., Grindrod, P. M., & Davis, J. M. (2018). Glacial and gully erosion on Mars:

A terrestrial perspective. Geomorphology, 318, 26–57. https://doi.org/10.1016/j.geomorph.2018.05.019

Conway, S. J., Harrison, T. N., Soare, R. J., Britton, A. W., & Steele, L. J. (2017). New slope-normalized global gully density and orientation

maps for Mars. Geological Society, London, Special Publications, 467(1), 187–197. https://doi.org/10.1144/sp467.3

Cuffey, K. M., & Paterson, W. S. B (2010). The Physics of Glaciers (Fourth). Amsterdam: Academic Press.

Dickson, J. L., Head, J., & Marchant, D. R. (2008). Late Amazonian glaciation at the dichotomy boundary on Mars: Evidence for glacial

thickness maxima and multiple glacial phases. Geology, 36(5), 411–414. https://doi.org/10.1130/G24382A.1

Dickson, J. L., Head, J., & Marchant, D. R. (2010). Kilometer-thick ice accumulation and glaciation in the northern mid-latitudes of Mars:

Evidence for crater-filling events in the Late Amazonian at the Phlegra Montes. Earth and Planetary Science Letters, 294(3-4), 332–342.

https://doi.org/10.1016/j.epsl.2009.08.031

Dickson, J. L., Kerber, L. A., Fassett, C. I., & Ehlman, B. L. (2018). A global, blended CTX mosaic of Mars with vectorized seam mapping:

A new mosaicking pipeline using principles of non-destructive image editing. In 49th lunar and planetary science conference.

Everitt, B., Landau, S., Leese, M., & Stahl, D. (2011). Cluster Analysis (Fifth). Chichester, UK: John Wiley & Sons, Ltd.

Fastook, J. L., Head, J. W., Forget, F., Madeleine, J.-B., & Marchant, D. R. (2011). Evidence for Amazonian northern mid-latitude regional

glacial landsystems onMars: Glacial flowmodels using GCM-driven climate results and comparisons to geological observations. Icarus,

216(1), 23–39. https://doi.org/10.1016/j.icarus.2011.07.018

Fastook, J. L., Head, J. W., & Marchant, D. R. (2014). Formation of lobate debris aprons on Mars: Assessment of regional ice sheet collapse

and debris-cover armoring. Icarus, 228, 54–63. https://doi.org/10.1016/j.icarus.2013.09.025

Feldman, W. C., Prettyman, T. H., Maurice, S., Plaut, J. J., Bish, D. L., Vaniman, D. T., et al. (2004). Global distribution of near-surface

hydrogen on Mars. Journal of Geophysical Research, 109, E09006. https://doi.org/10.1029/2003JE002160

Forget, F., Haberle, R. M., Monmessin, F., Levrard, B., & Head, J. W. (2006). Formation of glaciers on Mars by atmospheric precipitation at

high obliquity. Science, 311(5759), 368–371. https://doi.org/10.1126/science.1120335

Hartmann,W. K. (2005). Martian cratering 8: Isochron refinement and the chronology of Mars. Icarus, 174(2 SPEC. ISS.), 294–320. https://

doi.org/10.1016/j.icarus.2004.11.023

Hartmann, W. K. (2007). Martian cratering 9: Toward resolution of the controversy about small craters. Icarus, 189(1), 274–278. https://

doi.org/10.1016/j.icarus.2007.02.011

Acknowledgments
We thank T. Kneissl and G. Michael for

making available their CraterTools and

Craterstats software packages; J.

Chambers and G. Bigg for their

comments on the manuscript; S.J.

Conway for discussion concerning the

calculation of surface slope; and D.

Berman, J. Dickson and the editor for

critical and constructive reviews. A.J.H

is funded by a PhD scholarship at

Aberystwyth University. A.J.H.

performed all mapping,

crater-counting measurements, and

dating work. A.J.H. and F.S.L.N.

designed the study and analysed the

results and produced the manuscript

with input from S.J.L., T.O.H., and

B.H. All authors discussed the results

and commented on the writing. All

data derived from our mapping (the

inventory of SGLFs and their

morphometry, and ArcGIS shapefiles

of SGLF boundaries and all craters

discussed) and all data used in our

dating procedure (impact crater

counts) are given in an online data

repository (Hepburn et al., 2019). The

crater size-frequency distribution plots

for our 35 SGLF aggregates and their

underlying VFFs are provided in the

supporting information.

HEPBURN ET AL. 19 of 21

https://doi.org/10.1016/0019-1035(79)90009-5
https://doi.org/10.1016/j.icarus.2018.09.001
https://doi.org/10.1016/j.icarus.2009.11.017
https://doi.org/10.1016/j.icarus.2009.11.017
https://doi.org/10.1016/j.pss.2015.03.013
https://doi.org/10.1016/j.icarus.2016.03.006
https://doi.org/10.1016/j.icarus.2016.03.006
https://doi.org/10.1080/17445647.2015.1047907
https://doi.org/10.1002/2014GL060314
https://doi.org/10.1016/j.geomorph.2018.05.019
https://doi.org/10.1144/sp467.3
https://doi.org/10.1130/G24382A.1
https://doi.org/10.1016/j.epsl.2009.08.031
https://doi.org/10.1016/j.icarus.2011.07.018
https://doi.org/10.1016/j.icarus.2013.09.025
https://doi.org/10.1029/2003JE002160
https://doi.org/10.1126/science.1120335
https://doi.org/10.1016/j.icarus.2004.11.023
https://doi.org/10.1016/j.icarus.2004.11.023
https://doi.org/10.1016/j.icarus.2007.02.011
https://doi.org/10.1016/j.icarus.2007.02.011


Journal of Geophysical Research: Planets 10.1029/2019JE006102

Hartmann, W. K., Ansan, V., Berman, D. C., Mangold, N., & Forget, F. (2014). Comprehensive analysis of glaciated martian crater Greg.

Icarus, 228, 96–120. https://doi.org/10.1016/j.icarus.2013.09.016

Hartmann, W. K., & Daubar, I. J. (2017). Martian cratering 11. Utilizing decameter scale crater populations to study Martian history.

Meteoritics and Planetary Science, 52(3), 493–510. https://doi.org/10.1111/maps.12807

Head, J. W., Marchant, D. R., Agnew, M. C., Fassett, C. I., & Kreslavsky, M. A. (2006). Extensive valley glacier deposits in the northern

mid-latitudes of Mars: Evidence for Late Amazonian obliquity-driven climate change. Earth and Planetary Science Letters, 241(3-4),

663–671. https://doi.org/10.1016/j.epsl.2005.11.016

Head, J. W., Marchant, D. R., Dickson, J. L., Kress, A. M., & Baker, D. M. (2010). Northern mid-latitude glaciation in the Late Amazonian

period of Mars: Criteria for the recognition of debris-covered glacier and valley glacier landsystem deposits. Earth and Planetary Science

Letters, 294(3-4), 306–320. https://doi.org/10.1016/j.epsl.2009.06.041

Head, J.W.,Mustard, J. F., Kreslavsky,M.A.,Milliken, R. E., &Marchant, D. R. (2003). Recent ice ages onMars.Nature, 426(6968), 797–802.

https://doi.org/10.1038/nature02114

Head, J. W., Nahm, A. L., Marchant, D. R., & Neukum, G. (2006). Modification of the dichotomy boundary on Mars by Amazonian

mid-latitude regional glaciation. Geophysical Research Letters, 33, L08S03. https://doi.org/10.1029/2005GL024360

Head, J. W., Neukum, G., Jaumann, R., Hiesinger, H., Hauber, E., Carr, M., et al. & the HRSC Co-Investigator Team (2005). Tropical to

mid-latitude snow and ice accumulation, flow and glaciation on Mars. Nature, 434(7031), 346–351.

Hepburn, A. J., Ng, F. S. L., Livingstone, S. L., Holt, T. O., & Hubbard, B. (2019). Supporting information for “Polyphase mid-latitude

glaciation onMars: Chronology of the formation of superposed glacier-like forms from crater-count dating” (Version 3). https://doi.org/

10.6084/m9.figshare.10007708.v3

Holt, J. W., Safaeinili, A., Plaut, J. J., Head, J. W., Phillips, R. J., Seu, R., et al. (2008). Radar sounding evidence for buried glaciers in the

southern mid-latitudes of Mars. Science, 322(5905), 1235–1238.

Hubbard, B., Souness, C., & Brough, S. (2014). Glacier-like forms on Mars. Cryosphere, 8(6), 2047–2061. https://doi.org/10.5194/

tc-8-2047-2014

Kargel, J. S. (2004).Mars - A Warmer, Wetter Planet. Verlag London: Springer.

Karlsson, N. B., Schmidt, L. S., & Hvidberg, C. S. (2015). Volume of Martian midlatitude glaciers from radar observations and ice flow

modeling. Geophysical Research Letters, 42, 2627–2633. https://doi.org/10.1002/2015GL063219

Kleinhans, M. G., Markies, H., De Vet, S. J., In't Veld, A. C., & Postema, F. N. (2011). Static and dynamic angles of repose in loose granular

materials under reduced gravity. Journal of Geophysical Research, 116, E11004. https://doi.org/10.1029/2011JE003865

Kneissl, T., Van Gasselt, S., & Neukum, G. (2011). Map-projection-independent crater size-frequency determination in GIS

environments—New software tool for ArcGIS. Planetary and Space Science, 59(11-12), 1243–1254. https://doi.org/10.1016/j.pss.2010.03.

015

Kowalewski, D. E., Marchant, D. R., Levy, J. S., & Head, J. W. (2006). Quantifying low rates of summertime sublimation for buried glacier

ice in Beacon Valley, Antarctica. Antarctic Science, 18(3), 421–428. https://doi.org/10.1017/S0954102006000460

Kreslavsky, M. A., & Head, J. (2002). Mars: Nature and evolution of young latitude-dependent water-ice-rich mantle. Geophysical Research

Letters, 29(15), 14–1–14–4. https://doi.org/10.1029/2002gl015392

Kress, A. M., & Head, J. (2008). Ring-mold craters in lineated valley fill and lobate debris aprons on Mars: Evidence for subsurface glacial

ice. Geophysical Research Letters, 35, L23206. https://doi.org/10.1029/2008GL035501

Landis, M. E., Byrne, S., Daubar, I. J., Herkenhoff, K. E., & Dundas, C. M. (2016). A revised surface age for the North Polar layered deposits

of Mars. Geophysical Research Letters, 43, 3060–3068. https://doi.org/10.1002/2016GL068434

Laskar, J., Correia, A. C. M., Gastineau, M., Joutel, F., Levrard, B., & Robutel, P. (2004). Long term evolution and chaotic diffusion of the

insolation quantities of Mars. Icarus, 170, 343–364. https://doi.org/10.1016/j.icarus.2004.04.005

Laskar, J., Levrard, B., & Mustard, J. F. (2002). Orbital forcing of the martian polar layered deposits. Nature, 419, 375–377.

Levrard, B., Forget, F., Montmessin, F., & Laskar, J. (2007). Recent formation and evolution of northern Martian polar layered deposits as

inferred from a global climate model. Journal of Geophysical Research, 112, E06012. https://doi.org/10.1029/2006JE002772

Levy, J. S., Fassett, C. I., Head, J. W., Schwartz, C., & Watters, J. L. (2014). Sequestered glacial ice contribution to the global Martian water

budget: Geometric constraints on the volume of remnant, midlatitude debris-covered glaciers. Journal of Geophysical Research, 119,

2188–2196. https://doi.org/10.1002/2014JE004685

Levy, J. S., Head, J., &Marchant, D. R. (2007). Lineated valley fill and lobate debris apron stratigraphy in NilosyrtisMensae, Mars: Evidence

for phases of glacial modification of the dichotomy boundary. Journal of Geophysical Research, 112, E08004. https://doi.org/10.1029/

2006JE002852

Madeleine, J. B., Forget, F., Head, J. W., Levrard, B., Montmessin, F., & Millour, E. (2009). Amazonian northern mid-latitude glaciation on

Mars: A proposed climate scenario. Icarus, 203(2), 390–405. https://doi.org/10.1016/j.icarus.2009.04.037

Malin, M. C., Bell, J. F., Cantor, B. A., Caplinger, M. A., Calvin, W. M., Clancy, R. T., et al. (2007). Context camera investigation on board

the Mars Reconnaissance Orbiter. Journal of Geophysical Research, 112, E05S04. https://doi.org/10.1029/2006JE002808

Mangold, N. (2003). Geomorphic analysis of lobate debris aprons on Mars at Mars Orbiter Camera scale: Evidence for ice sublimation

initiated by fractures. Journal of Geophysical Research, 108(E4), 8021. https://doi.org/10.1029/2002JE001885

McEwen, A. S., Eliason, E. M., Bergstrom, J. W., Bridges, N. T., Hansen, C. J., Delamere, W. A., Grant, J. A., Gulick, V. C., Herkenhoff, K.

E., Keszthelyi, L., Kirk, R. L., Mellon, M. T., Squyres, S. W., Thomas, N., & Weitz, C. M. (2007). Mars Reconnaissance Orbiter's High

Resolution Imaging Science Experiment (HiRISE). Journal of Geophysical Research, 112, E05S02. https://doi.org/10.1029/2005JE002605

Mellon, M. T., & Jakosky, B. M. (1995). The distribution and behavior of Martian ground ice during past and present epochs. Journal of

Geophysical Research, 100(E6), 11,781–11,799. https://doi.org/10.1029/95JE01027

Michael, G. G., & Neukum, G. (2010). Planetary surface dating from crater size-frequency distribution measurements: Partial resurfacing

events and statistical age uncertainty. Earth and Planetary Science Letters, 294(3-4), 223–229. https://doi.org/10.1016/j.epsl.2009.12.041

Milliken, R. E, Mustard, J. F., & Goldsby, D. L. (2003). Viscous flow features on the surface of Mars: Observations from high-resolution

Mars Orbiter Camera (MOC) images. Journal of Geophysical Research, 108(E6), 5057. https://doi.org/10.1029/2002JE002005

Morgan, G. A., Head, J., & Marchant, D. R. (2009). Lineated valley fill (LVF) and lobate debris aprons (LDA) in the Deuteronilus Mensae

northern dichotomy boundary region, Mars: Constraints on the extent, age and episodicity of Amazonian glacial events. Icarus, 202(1),

22–38. https://doi.org/10.1016/j.icarus.2009.02.017

Mustard, J. F., Cooper, C. D., & Rifkin, M. K. (2001). Evidence for recent climate change on Mars from the identification of youthful

near-surface ground ice. Nature, 412(1971), 411–414. https://doi.org/10.1038/35086515

Plaut, J. J., Safaeinili, A., Holt, J. W., Phillips, R. J., Head, J. W., Seu, R., et al. (2009). Radar evidence for ice in lobate debris aprons in the

mid-northern latitudes of Mars. Geophysical Research Letters, 36, L02203. https://doi.org/10.1029/2008GL036379

HEPBURN ET AL. 20 of 21

https://doi.org/10.1016/j.icarus.2013.09.016
https://doi.org/10.1111/maps.12807
https://doi.org/10.1016/j.epsl.2005.11.016
https://doi.org/10.1016/j.epsl.2009.06.041
https://doi.org/10.1038/nature02114
https://doi.org/10.1029/2005GL024360
https://doi.org/10.6084/m9.figshare.10007708.v3
https://doi.org/10.6084/m9.figshare.10007708.v3
https://doi.org/10.5194/tc-8-2047-2014
https://doi.org/10.5194/tc-8-2047-2014
https://doi.org/10.1002/2015GL063219
https://doi.org/10.1029/2011JE003865
https://doi.org/10.1016/j.pss.2010.03.015
https://doi.org/10.1016/j.pss.2010.03.015
https://doi.org/10.1017/S0954102006000460
https://doi.org/10.1029/2002gl015392
https://doi.org/10.1029/2008GL035501
https://doi.org/10.1002/2016GL068434
https://doi.org/10.1016/j.icarus.2004.04.005
https://doi.org/10.1029/2006JE002772
https://doi.org/10.1002/2014JE004685
https://doi.org/10.1029/2006JE002852
https://doi.org/10.1029/2006JE002852
https://doi.org/10.1016/j.icarus.2009.04.037
https://doi.org/10.1029/2006JE002808
https://doi.org/10.1029/2002JE001885
https://doi.org/10.1029/2005JE002605
https://doi.org/10.1029/95JE01027
https://doi.org/10.1016/j.epsl.2009.12.041
https://doi.org/10.1029/2002JE002005
https://doi.org/10.1016/j.icarus.2009.02.017
https://doi.org/10.1038/35086515
https://doi.org/10.1029/2008GL036379


Journal of Geophysical Research: Planets 10.1029/2019JE006102

Robbins, S. J., & Hynek, B. M. (2012). A new global database of Mars impact craters≥ 1 km: 2. Global crater properties and regional varia-

tions of the simple-to-complex transition diameter. Journal of Geophysical Research, 117, E06001. https://doi.org/10.1029/2011JE003967

Shean, D. E., Head, J. W., & Marchant, D. R. (2005). Origin and evolution of a cold-based tropical mountain glacier on Mars: The Pavonis

Mons fan-shaped deposit. Journal of Geophysical Research, 110, E05001. https://doi.org/10.1029/2004JE002360

Smith, I. B., Putzig, N. E., Holt, J.W., & Phillips, R. J. (2016). An ice age recorded in the polar deposits ofmars. Science, 352(6289), 1075–1078.

https://doi.org/10.1126/science.aad6968

Souness, C., Hubbard, B., Milliken, R. E., & Quincey, D. (2012). An inventory and population-scale analysis of martian glacier-like forms.

Icarus, 217(1), 243–255. https://doi.org/10.1016/j.icarus.2011.10.020

Squyres, S. W. (1978). Martian fretted terrain: Flow of erosional debris. Icarus, 34(3), 600–613. https://doi.org/10.1016/0019-1035(78)

90048-9

Sugden, D. E., Marchant, D. R., Potter Jr, N., Souchez, R. A., Denton, G. H., Swisher III, C. C., & Tison, J.-L. (1995). Preservation ofMiocene

glacier ice in East Antarctica. Nature, 376, 412–414.

Warner, N. H., Gupta, S., Calef, F., Grindrod, P., Boll, N., & Goddard, K. (2015). Minimum effective area for high resolution crater counting

of martian terrains. Icarus, 245, 198–240. https://doi.org/10.1016/j.icarus.2014.09.024

Williams, J.-P., van der Bogert, C. H., Pathare, A. V., Michael, G. G., Kirchoff, M. R., & Hiesinger, H. (2018). Dating very young planetary

surfaces from crater statistics: A review of issues and challenges. Meteoritics and Planetary Science, 53(4), 554–582. https://doi.org/10.

1111/maps.12924

HEPBURN ET AL. 21 of 21

https://doi.org/10.1029/2011JE003967
https://doi.org/10.1029/2004JE002360
https://doi.org/10.1126/science.aad6968
https://doi.org/10.1016/j.icarus.2011.10.020
https://doi.org/10.1016/0019-1035(78)90048-9
https://doi.org/10.1016/0019-1035(78)90048-9
https://doi.org/10.1016/j.icarus.2014.09.024
https://doi.org/10.1111/maps.12924
https://doi.org/10.1111/maps.12924

	Abstract
	Plain Language Summary

