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ON FINITE DIFFERENCE SCHEMES FOR PARTIAL

INTEGRO-DIFFERENTIAL EQUATIONS OF LÉVY TYPE

KONSTANTINOS DAREIOTIS

Abstract. In this article we introduce a finite difference approxima-
tion for integro-differential operators of Lévy type. We approximate
solutions of possibly degenerate integro-differential equations by treat-
ing the nonlocal operator as a second-order operator on the whole unit
ball, eliminating the need for truncation of the Lévy measure which is
present in the existing literature. This yields an approximation scheme
with significantly reduced computational cost, especially for Lévy mea-
sures corresponding to processes with jumps of infinite variation.

1. Introduction

In the present article we consider a finite difference approximation scheme
for partial integro-differential equations (PIDEs) of the form

dut(x) = [(Lt + J)ut(x) + ft(x)] dt, (t, x) ∈ [0, T ]× R,

u0(x) = ψ(x), x ∈ R,
(1.1)

where the operators are given by

Ltφ(x) = at(x)∂
2
xφ(x) + bt(x)∂xφ(x) + ct(x)φ(x),

Jφ(x) =

∫

R

(

φ(x+ z)− φ(x)− I|z|≤1z∂xφ(x)
)

ν(dz).

The coefficient of the second derivative in Lt is allowed to degenerate. Here
ν denotes a Lévy measure on R, that is, a Borel measure on R such that

ν({0}) = 0,

∫

R

1 ∧ z2 ν(dz) <∞.

Equations of of the type (1.1) arise, for example, in mathematical finance
for pricing derivatives in models with Lévy noise (for further reading on the
subject we refer to [1]). Simple examples of Lévy measures are

να(dz) := |z|−(1+α) dz,

for α ∈ (0, 2). Notice that for α ∈ (1, 2) these measures correspond to
Lévy processes whose jumps have infinite variation and the analysis typically
becomes more challenging.

Finite difference schemes for equations of this form have previously been
studied in [2], [5], and [14]. In addition to the standard space (time, resp.)

2000 Mathematics Subject Classification. 35R09, 65M06, 60G51.

1



2 KONSTANTINOS DAREIOTIS

discretization parameter h (τ , resp.), they introduced a further approxi-
mation parameter δ for truncation of the Lévy measure. In [2], using this
approach and an explicit in time scheme, the error estimates obtained are
of the form

‖u− uδ,h,τ‖ .

∫

|z|≤δ |z|3ν(dz)
∫

|z|≤δ z
2ν(dz)

+ ν({|z| ≥ δ})(√τ + h),

which in the case of ν = να yields an error of order δ + δ−α(
√
τ + h).

A simple calculation shows that in order to achieve an accuracy of order
ε > 0, the computational cost is of order O(ε−4(α+1)), which for α ∼ 2 is
arbitrarily close to O(ε−12). In [14] only spatial discretization is considered,
δ is a function of h, and the corresponding error estimates for the spatial
approximation, in the case of infinite activity, are of the form

‖u− uh‖ . h

∫

(−1,1)\(−h/2,h/2)
|z|ν(dz).

Again, in the case ν = να, a simple computation shows that the rate of
convergence is of order h2−α, which for α ∼ 2 is arbitrarily slow. The
approach in [5] is also similar (truncation of the integro-differential operator
near zero). Under some technical conditions posed on the Lévy measure (it
is assumed to have a density of a particular form, that is twice continuously
differentiable and has a prescribed behaviour near zero), similar estimates
are obtained (with constants blowing up as the truncation parameter δ → 0).

In contrast to these works, in the present article we do not truncate the
operator near the origin. We introduce a negative semi-definite approxima-
tion that treats the integro-differential operator as a second order operator
on the whole unit ball. Using this approximation and an implicit in time
scheme we obtain estimates of the form

‖u− uh,τ‖ . (h+
√
τ).

Despite the fact that our scheme is implicit in time, the gain from not
truncating the operator near the origin allows us to reduce the computational
cost to O(ε−4) if the coefficients of L are independent of t and O(ε−5)
otherwise. Moreover, under some more spatial regularity of the data, we
show that

‖u− uh,τ‖ . (h+ τ).

This further reduces the computational cost to O(ε−3) and O(ε−4), respec-
tively. Hence, while for Lévy measures with finite mass near zero the explicit
algorithm from [2] is faster, in the case of measures with infinite mass near
zero, in particular for measures with behavour similar to να for α ∈ (1, 2),
our scheme significantly reduces the computational cost.

Our approximation is similar to the one that we introduced in [3], [4].
However, in these works the results and their proofs rely on the non-degeneracy
of the second order differential operator. We show that the approximate op-
erator Jh that we suggest here is negative semi-definite, and this combined
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with estimates obtained in [9] for the difference operators lead to apriori
estimates of the solution of the scheme independent of the discretization pa-
rameters without posing a non-degeneracy condition. This combined with
consistency estimates for the operators leads to the desired error estimates.
The analysis of the spatial approximation is done in the spirit of [15]. The
equations are first discretized in space and solved as equations in Sobolev
spaces over R (uh) and as equations on the grid (vh). Error estimates are
obtained in Sobolev norms for the difference u − uh. By using embedding
theorems, the restriction of uh on the grid is shown to agree with vh. Hence,
the error estimates in Sobolev norm imply pointwise error estimates for the
difference u− vh by virtue of Sobolev embedding theorems. The discretized
equations are further discretized in time (see also [7]), they are solved in
Sobolev spaces (uh,τ ) and on the grid (vh,τ ), and estimates are obtained for
uh − uh,τ , which in turn imply estimates for vh − vh,τ .

For degenerate equations not involving non-local operators we refer to
[12], [10], [9], and [6]. In the last three articles the results are obtained in a
more general, stochastic setting, but they remain optimal for deterministic
equations as well. Moreover, in these articles Richardson’s extrapolation is
used in order to accelerate the convergence in the spatial approximation.
This is left as future work for the non-local case.

In conclusion let us introduce some notation. By ut(x) we denote the
value of a function u : [0, T ] × R → R at (t, x) ∈ [0, T ] × R, and when u is
understood as a function of t with values in some function space (function
of x ∈ R) we will write ut := ut(·) for t ∈ [0, T ]. By ∂x we denote the
derivative operator with respect to the spatial variable. The notation C∞

c

stands for the set of all smooth, compactly supported, real functions on R.
We denote by (·, ·)L2

and ‖·‖L2
the inner product and the norm respectively

in L2(R). For an integer l ≥ 0 , H l will be the Sobolev space of all function
in L2(R) having distributional derivatives up to order l in L2(R), with the

inner product (f, g)Hl =
∑l

j=0(∂
j
xf, ∂

j
xg)L2

, where ∂0xf := f , and we denote

the corresponding norm by ‖ · ‖Hl . If X is a Hilbert space, C([0, T ];X) will
denote the set of all functions that are norm-continuous in t ∈ [0, T ], and
Cw([0, T ];X) will denote the set of all functions that are weakly-continuous
in t ∈ [0, T ]. For real numbers α, β, we use the notation α∧ β := min{α, β}
and α ∨ β := max{α, β}. We use the notation N for constants that may
change from line to line. In the proofs of lemmas/theorems the dependence
of N to certain parameters is given at the statement of the corresponding
lemma/theorem.

2. Formulation of the main results

In this section we introduce our scheme and we state our main results.
From now on we will use the following notations

µ0 := ν(R \ [−1, 1]), µ2 :=

∫

|z|≤1
z2 ν(dz).



4 KONSTANTINOS DAREIOTIS

Assumption 2.1. Let m ≥ 1 be an integer.

i) The functions a, b, c : [0, T ]×R → R are measurable in (t, x). More-
over, the functions b and c are m-times continuously differentiable
in x, the function a is m ∨ 2-times continuously differentiable in
x, and there exists a constant K such that for all l ∈ {1, . . . ,m},
q ∈ {1, . . . ,m ∨ 2}, (t, x) ∈ [0, T ]× R it holds that

|∂qxat(x)|+ |∂lxbt(x)|+ |∂lxct(x)| ≤ K.

ii) The initial condition ψ belongs to Hm and f : [0, T ] → Hm is a
measurable function such that

K2
m = ‖ψ‖2Hm +

∫ T

0
‖ft‖2Hm dt <∞.

Assumption 2.2. For all (t, x) ∈ [0, T ]× R, we have at(x) ≥ 0.

Notice that for φ, ϕ ∈ C∞
c , by virtue of Taylor’s formula and integration

by parts we have

(Jφ, ϕ)L2
=−

∫

|z|≤1

∫ 1

0
(1− θ)z2(∂xφ(·+ θz), ∂xϕ)L2

dθ ν(dz)

+

∫

|z|>1
(φ(·+ z)− φ, ϕ)L2

ν(dz).

The solution of (1.1) is understood in the following sense.

Definition 2.1. A solution of (1.1) is function u ∈ Cw([0, T ];H
1) such that

for all φ ∈ C∞
c and t ∈ [0, T ] we have

(ut, φ)L2
= (ψ, φ)L2

+

∫ t

0
(∂xus,−φ∂xas − as∂xφ+ bsφ)L2

+ (csus, φ)L2
ds

−
∫ t

0

∫

|z|≤1

∫ 1

0
(1− θ)z2(∂xus(·+ θz), ∂xφ)L2

dθν(dz)ds

+

∫ t

0

∫

|z|>1
(us(·+ z) + us, φ)L2

ν(dz)ds.

The following well-posedness result can be found in for example in [13].

Theorem 2.1. Let Assumptions 2.1 and 2.2 hold. Then (1.1) has a unique
solution u ∈ Cw([0, T ];H

1). Moreover, u ∈ Cw([0, T ];H
m)∩C([0, T ];Hm−1),

and there exists a constant N , depending only on T , m, K, µ0 and µ2, such
that

sup
t≤T

‖ut‖2Hm ≤ NK2
m.

Remark 2.1. If Assumption 2.1 holds with m ≥ 2 in the above theorem,
then the solution is strongly continuous H1 valued function, which by the
continuous embedding H1 →֒ C0,1/2 (space of bounded 1/2-Hölder contin-
uous functions with the usual norm) implies that the solution ut(x) is a
continuous function of (t, x) ∈ [0, T ]× R.
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For λ ∈ R \ {0} we define the following operators

δλφ(x) :=
φ(x+ λ)− φ(x)

λ
, δλφ(x) :=

(δλ + δ−λ)φ(x)

2
.

We continue with the approximation of the integro-differential operator. For
h ∈ (0, 1), we will denote our grid by Gh := hZ, and for integers k ≥ 1 we
define

Bh
k := ((k − 1)h, kh],

while for integers k ≤ −1 we define

Bh
k := [kh, (k + 1)h).

Notice that Bh
0 is not defined. From now on we assume that h ∈ {1/n :

n ∈ N+} =: N. We set Ah := {m ∈ Z : |m| ≤ 1/h,m 6= 0} and Bh :=
Z \ (Ah ∪ {0}). Let us define the operators

Jh
1 φ(x) :=

∑

k∈Ah

ζhk

|k|−1
∑

l=0

θlkδ−hδhφ(x+ sklh),

Jh
2 φ(x) :=

∑

k∈Bh

(φ(x+ hk)− φ(x)) ν(Bh
k ),

where

sk =
k

|k| , ζ
h
k :=

∫

Bh
k

z2 ν(dz), θlk :=

∫ (l+1)/|k|

l/|k|
(1− θ) dθ.

We denote Jh := Jh
1 + Jh

2 .

Example 2.1. In the case that the Lévy measure ν is given by ν(dz) =

|z|−(1+α) dz the operator Jh takes the following form

Jhφ(x)

=

⌊ 1

h⌋
∑

k=1

|k|−1
∑

l=0

Cα(h, k) (φ(x+ lh+ h)− 2φ(x+ lh) + φ(x+ lh− h))

+
−1
∑

k=−⌊ 1

h⌋

|k|−1
∑

l=0

Cα(h, k) (φ(x− lh+ h)− 2φ(x− lh) + φ(x− lh− h))

+
∑

k
|k|>⌊ 1

h⌋

1

α

(

1

|(|k| − 1)h|α − 1

|kh|α
)

(φ(x+ hk)− φ(x)) , (2.1)

where the coefficients Cα(h, k) are given by

Cα(h, k) :=
(

|k|2−α − (|k| − 1)2−α
)

(2(|k| − l)− 1)

2(2− α)hαk2
.
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The differential operator Lt is approximated by Lh
t , given by

Lh
t φ(x) := at(x)δ

hδhφ(x) + bt(x)δ
hφ(x) + ctφ(x).

We will write l2(Gh) for the set of all real valued function φ on Gh such
that

‖φ‖2l2(Gh)
:= h

∑

x∈Gh

|φ(x)|2 <∞.

We will denote the corresponding inner product by (·, ·)l2(Gh). Let us now
consider in l2(Gh) the scheme

dvht =
(

(Lh
t + Jh)vht + ft

)

dt

vh0 = ψ.
(2.2)

Definition 2.2. A solution of (2.2) is a function vh ∈ C([0, T ]; l2(Gh)) such
that for all t ∈ [0, T ]

vht = φ+

∫ t

0
(Lh

t + Jh)vhs + fs ds,

where the equality is understood in l2(Gh).

Remark 2.2. For l ≥ 1 we have the continuous embedding H l →֒ l2(Gh) (see
[9]). Therefore under Assumption 2.1 we have

‖φ‖2l2(Gh)
+

∫ T

0
‖ft‖2l2(Gh)

dt <∞.

Under the same assumption it is easy to see that Lh
t +J is a bounded linear

operator on l2(Gh) into itself (with norm bounded by a constant uniformly
in t ∈ [0, T ]). Hence, under Assumption 2.1, (2.2) has a unique solution.

Next is our main result concerning the spatial approximation.

Theorem 2.2. Let Assumptions 2.1 and 2.2 hold with m ≥ 4. Let u and vh

be the unique solutions of (1.1) and (2.2) respectively. Then there exists a
constant N , depending only on m,K, µ0, µ2, and T , such that for all h ∈ N

we have

sup
t∈[0,T ]

sup
x∈Gh

|ut(x)− vht (x)|2 + sup
t∈[0,T ]

‖ut − vht ‖2l2(Gh)
≤ Nh2K2

m.

We now move to the temporal discretization. Let n ≥ 1 be an integer and
let τ = T/n. In l2(Gh) we consider the implicit scheme

vi = vi−1 + τ [(Lh
iτ + Jh)vi + fiτ ], i = 1, ..., n

v0 = ψ.
(2.3)

Definition 2.3. A solution of (2.3) is a function vh,τ : {0, . . . , n} → l2(Gh)
such that the equalities in (2.3) are satisfied.
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Theorem 2.3. Let Assumptions 2.1 and 2.2 hold. Then there exists a
constant N0, depending only on K and T , such that for all n > N0 and
h ∈ N there exists a unique solution vh,τ of (2.3).

Assumption 2.3. Let l ≥ 0 be an integer. There exist constants C and
γ > 0 such that for all x ∈ R, t, s ∈ [0, T ], and 0 ≤ j ≤ l we have

|∂jxat(x)− ∂jxas(x)|2 + |∂jxbt(x)− ∂jxbs(x)|2 + |∂jxct(x)− ∂jxcs(x)|2 ≤ C|t− s|γ

and

‖ft − fs‖2Hl ≤ C|t− s|γ .
Assumption 2.4. There exists a constant K ′ such that for all t ∈ [0, T ] we
have ‖ft‖2Hm−2 ≤ K ′.

Next is our result concerning the temporal approximation.

Theorem 2.4. Let Assumptions 2.1, 2.2 and 2.4 hold with m ≥ 4, and let
Assumption 2.3 hold with l ≥ 1. Let vh and vh,τ be the unique solutions
of equations (2.2) and (2.3) respectively (for n > N0). Then there exists a
constant N ′

0 such that for all n > N ′
0 and h ∈ N

(i) the following estimate holds,

max
i≤n

sup
x∈Gh

|vhiτ (x)− vh,τi (x)|2 +max
i≤n

‖vhiτ − vh,τi ‖2l2(Gh)
≤ τ1∧γN(K ′ +K2

m)

(ii) if moreover m ≥ 5, then

max
i≤n

sup
x∈Gh

|vhiτ (x)− vh,τi (x)|2 +max
i≤n

‖vhiτ − vh,τi ‖2l2(Gh)
≤ τ2∧γN(K ′ +K2

m),

where N is a constant depending only on K,C, T , m, µ0 and µ2.

A direct consequence of the theorem above is the following:

Theorem 2.5. Under the assumptions of Theorem 2.4, for all n > N ′
0 and

all h ∈ N we have

(i) the following estimate holds,

max
i≤n

sup
x∈Gh

|uiτ (x)− vh,τi (x)|2 +max
i≤n

‖uiτ − vh,τi ‖2l2(Gh)
≤ N(h2 + τ1∧γ)N 2

m

(ii) if moreover m ≥ 5, then

max
i≤n

sup
x∈Gh

|uiτ (x)− vh,τi (x)|2 +max
i≤n

‖uiτ − vh,τi ‖2l2(Gh)
≤ N(h2 + τ2∧γ)N 2

m,

where N 2
m = K ′ +K2

m, and N is a constant depending only on K,C, T , m,
µ0 and µ2.

Remark 2.3. Consider the case ν(dz) = |z|−(1+α) dz, where the operator Jh

is given by (2.1). It is clear from the above theorem that while the constant
N depends on α, the rate of converge does not.
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3. Auxiliary Facts

In this section we prove some results that will be used in order to prove
the main theorems.

Lemma 3.1. For any integer l ≥ 0, φ ∈ H l, and any j ∈ {0, ..., l}, we have

(∂jxJ
hφ, ∂jxφ)L2

≤ 0.

Proof. Since ∂xJ
hφ = Jh∂xφ, it clearly suffices to show the conclusion with

l = j = 0. We have

(Jh
2 φ(x), φ(x))L2

=
∑

k∈Bh

(

(φ(·+ hk), φ)L2
− ‖φ‖2L2

)

ν(Bh
k )

≤
∑

k∈Bh

(

‖φ‖2L2
− ‖φ‖2L2

)

ν(Bh
k ) = 0,

where the inequality is due to Hölder’s inequality and the translation invari-
ance of the Lebesgue measure. In order to show that (Jh

1 φ, φ) ≤ 0, clearly
it suffices to show that for each k ∈ Ah





|k|−1
∑

l=0

θlkδ−hδhφ(x+ sklh), φ(x)





L2

≤ 0. (3.1)

If sk = 1, then a simple calculation shows that

|k|−1
∑

l=0

θlkδ−hδhφ(x+ sklh)

=

|k|−1
∑

l=0

2|k| − (2l + 1)

2k2h2
[φ(x+ (l − 1)h)− 2φ(x+ lh) + φ(x+ (l + 1)h)]

=
1

2k2h2
(φ(x+ kh) + φ(x+ (k − 1)h) + (2k − 1)φ(x− h)− (2k + 1)φ(x)) ,

which combined with Hölder’s inequality imply (3.1). If sk = −1, then

|k|−1
∑

l=0

θlkδ−hδhφ(x+ sklh)

=

|k|−1
∑

l=0

2|k| − (2l + 1)

2k2h2
[φ(x− (l + 1)h)− 2φ(x− lh) + φ(x− (l − 1)h)]

=
1

2k2h2
(φ(x+ kh) + φ(x+ (k + 1)h) + (2|k| − 1)φ(x+ h)− (2|k|+ 1)φ(x)) ,

which again by virtue of Hölder’s inequality implies (3.1). �

Lemma 3.1 combined with Lemma 3.4 from [9] implies the following:
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Lemma 3.2. Suppose Assumption 2.1 (i) holds. Then there exists a con-
stant N , depending only on K and m, such that for all l ∈ {0, ..,m} and all
φ ∈ Hm we have

(∂lx(L
h
t + Jh)φ, ∂lxφ)L2

≤ N‖φ‖2Hm .

The following is very well known (see e.g. [9], [11]).

Lemma 3.3. For each integer l ≥ 0, there is a constant N depending only
on l, such that for all u ∈ H l+2, v ∈ H l+3, and λ ∈ R \ {0} we have

‖δλu− ∂xu‖Hl + ‖δλu− ∂xu‖Hl ≤ N |λ|‖u‖Hl+2 ,

‖δλδλv − ∂2xv‖Hl + ‖δλδ−λv − ∂2xv‖Hl ≤ N |λ|‖v‖Hl+3 .

We have the following consistency estimates for our approximation.

Lemma 3.4. Let l ≥ 0 be an integer. Then there exists a constant N ,
depending only on l, µ0, and µ2, such that for all φ ∈ H l+3 we have

‖Jhφ− Jφ‖Hl ≤ Nh‖φ‖l+3. (3.2)

Proof. Again, we can and we will assume that l = 0. We have

Jh
2 φ(x)− J2φ(x) =

∑

k∈Bh

∫

Bh
k

(φ(x+ hk)− φ(x+ z)) ν(dz)

=
∑

k∈Bh

∫

Bh
k

∫ 1

0
(hk − z)∂xφ(x+ z + θ(hk − z) dθν(dz),

which combined with the fact that |hk − z| ≤ h for z ∈ Bh
k gives

‖Jh
2 φ− J2φ‖L2

≤ hµ0‖φ‖H1 (3.3)

by virtue of Minkowski’s integral inequality. For Jh
1 − J1, we have

Jh
1 φ− J1φ

=
∑

k∈Ah

ζhk

|k|−1
∑

l=0

θlkδ−hδhφ(x+ sklh)−
∫

|z|≤1

∫ 1

0
(1− θ)z2∂2xφ(x+ θz) dθν(dz)

=
∑

k∈Ah

∫

Bh
k

|k|−1
∑

l=1

∫ (l+1)/|k|

l/|k|
z2(1− θ)

(

δ−hδhφ(x+ sklh)− ∂2xφ(x+ θz)
)

dθν(dz).

(3.4)

Then we have for the integrand in the above quantity

δ−hδhφ(x+ sklh)− ∂2xφ(x+ θz)

=δ−hδhφ(x+ sklh)− δ−hδhφ(x+ θz) + δ−hδhφ(x+ θz)− ∂2xφ(x+ θz)

=

∫ 1

0
(sklh− θz)δ−hδh∂xφ(x+ θz + η(sklh− θz)) dη

+ δ−hδhφ(x+ θz)− ∂2xφ(x+ θz). (3.5)
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Notice that for θ ∈ [l/|k|, (l + 1)/|k|) and z ∈ Bh
k we have

|sklh− θz| ≤ |sklh− θkh|+ |θkh− θz| ≤ 2h.

Hence, for the first term at the right hand side of (3.5) we have

∥

∥

∫ 1

0
(sklh− θz)δ−hδh∂xφ(·+ θzη(sklh− θz))dη

∥

∥

L2
≤ 2h‖φ‖H3 ,

while for the second one we have by Lemma 3.3

‖δ−hδhφ(·+ θz)− ∂2xφ(·+ θz)‖L2
≤ h‖φ‖H3 .

Therefore,

‖δ−hδhφ(·+ sklh)− ∂2xφ(·+ θz)‖L2
≤ Nh‖φ‖H3 ,

which combined with 3.4 and Minkowski’s inequality gives

‖Jh
1 φ− J1φ‖L2

≤ Nh‖φ‖H3 .

By this inequality and (3.3) we obtain (3.2). �

Lemma 3.5. Let (i) from Assumption 2.1 hold. Then there exists a constant
N , depending only on K,m, µ0, and µ2, such that for all l ∈ {0, . . . , },
φ ∈ H l+2, and t ∈ [0, T ] we have

‖Lh
t φ‖2Hl + ‖Jhφ‖2Hl ≤ N‖φ‖2Hl+2

.

Proof. Clearly it suffices to show the inequality for φ ∈ C∞
c . We have for

λ 6= 0

δλφ(x) =

∫ 1

0
∂xφ(x+ θλ) dθ.

Hence, by Minkowski’s inequality we get ‖δλφ‖L2
≤ ‖∂xφ‖L2

, which implies

‖δλφ‖L2
≤ N‖φ‖H1 , ‖δλδλφ‖L2

≤ N‖φ‖H2 , ‖δλδ−λφ‖L2
≤ N‖φ‖H2 .

Hence, by Assumption 2.1 (i) we have

‖Lh
t φ‖2Hl ≤ N‖φ‖2Hl+2 .

By Minkowski’s inequality, we have

‖Jh
1 φ‖L2

≤
∑

k∈Ah

ζhk

|k|−1
∑

l=0

θlk‖δ−hδhφ(·+ sklh)‖L2
≤ 1

2
µ2‖φ‖H2

and

‖Jh
2 φ‖L2

≤
∑

k∈Bh

‖φ(x+ hk)− φ‖L2
≤ 2µ0‖φ‖L2

.

These estimates combined with the fact that ∂xJ
h = Jh∂x give

‖Jhφ‖Hl ≤ N‖φ‖Hl+2 .

This finishes the proof. �
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Next we consider in L2(R) the following scheme

duht =
(

(Lh
t + Jh)uht + ft

)

dt

uh0 = ψ.
(3.6)

An L2-solution of (3.6) is a function uh ∈ C([0, T ];L2(R)) such that for all
t ∈ [0, T ]

uht = ψ +

∫ t

0

(

(Lh
s + Jh)uhs + fs

)

ds.

Lemma 3.6. Let Assumption 2.1 hold with some integer l ≥ 1 instead of m.
Then (3.6) has a unique L2-solution u

h which also belongs to C([0, T ];H l).
If moreover Assumption 2.2 holds, then there exists a constant N , depending
only on l,T , and K, such that for all h ∈ N

sup
t≤T

‖uht ‖2Hl ≤ NK2
l . (3.7)

Proof. Equation (3.6) is a differential equation on L2 with Lipschitz continu-
ous coefficients, and it therefore has a unique L2-valued continuous solution
uh. Similarly, it is a differential equation on H l with Lipschitz continuous
coefficients, and it therefore has a unique H l-valued continuous solution wh.
Since H l ⊂ L2 we have that wh = uh.

For (3.7), we have for any t ∈ [0, T ]

‖uht ‖2Hl
= ‖ψ‖2Hl +

∫ t

0

[(

(Lh
s + Jh)uhs , u

h
s

)

Hl
+ (fs, u

h
s )Hl

]

ds

≤ ‖ψ‖2Hl +N

∫ t

0
‖uhs‖2Hl ds+

∫ T

0
‖fs‖2Hl ds <∞,

where the last inequality is by virtue of Lemma 3.2 and Young’s inequality.
Gronwall’s lemma finishes the proof. �

Theorem 3.7. Let Assumptions 2.1 and 2.2 with m ≥ 4, and let uh and u
be the unique solutions of (3.6) and (1.1) respectively. Then there exists a
constant N , depending only on m,T, µ0, µ2, and K, such that for all h ∈ N

we have
sup
t≤T

‖ut − uht ‖2Hm−3 ≤ NK2
mh

2. (3.8)

Proof. We have that uh − u satisfies the conditions of Lemma 3.6 with l =
m− 3, ψ = 0, and ft = (Lh

t − Lt)ut + (Ih − I)ut. Therefore, we have

sup
t≤T

‖uht − ut‖2Hm−3 ≤N
∫ T

0
‖(Lh

t − Lt)ut + (Jh − J)ut‖2Hm−3 dt (3.9)

≤Nh2
∫ T

0
‖u‖2Hm dt ≤ Nh2K2

m. (3.10)

where the second inequality follows from Lemmata 3.3 and 3.4. This finishes
the proof. �
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Next we continue with the time discretization. Let us consider on L2(R)
the following implicit scheme.

ui = ui−1 + τ [(Lh
iτ + Jh)ui + fiτ ], i = 1, ..., n

u0 = ψ.
(3.11)

An L2-solution of the above scheme is a function uh,τ : {0, . . . , n} → L2(R).
The following is well known (see Proposition 3.4 in [8] for a statement

that is in fact more general).

Lemma 3.8. Let D be a bounded linear operator on a Hilbert space X into
itself. If there exists δ > 0 such that (Dφ, φ)X ≥ δ‖φ‖2X for all φ ∈ X, then
for each f ∈ X there exists a unique g ∈ X such that Dg = f .

Theorem 3.9. Let Assumptions 2.1 and 2.2 hold. Then there exists a
constant N ′, depending only on K, T , and m, such that for all n > N ′ and
h ∈ N there exists a unique L2-solution uh,τ of (3.11) which in addition

satisfies uh,τi ∈ Hm for each i = 0, ..., n.

Proof. Let us write (3.11) in the form

Diui = Fi, i = 1, ..., n,

where

Di = I − τ(Lh
iτ + Jh), Fi = vi−1 + τfiτ .

For each i = 1, ..., n, Di is a bounded linear operator from Hk to Hk for all
k = 0, ...,m. By Lemma 3.2 we have

(Diφ, φ)Hk = ‖φ‖2Hk − τ
(

(Lh
iτ + Jh)φ, φ

)

Hk
≥ ‖φ‖2Hk − τN‖φ‖2Hk ,

for all k = 0, ..,m, with N depending only on K and m. Hence, if n > TN ,
then we have with λ := 1− (τ/N) > 0

(Diφ, φ)Hk ≥ λ‖φ‖2Hk .

The conclusion follows from the lemma above.
�

Theorem 3.10. Let Assumptions 2.1, 2.2 and 2.4 hold with m ≥ 4 and
let uh and uh,τ be the unique L2-solutions of equations (3.6) and (3.11)
respectively (for n > N ′). Then there exists a constant N1 such that for all
n > N1 and h ∈ N the following hold

(i) if Assumption 2.3 holds with l = m− 3, then

max
i≤n

‖uhiτ − uh,τi ‖2Hm−3 ≤ τ1∧γN(K ′ +K2
m) (3.12)

(ii) if Assumption 2.3 holds with l = m− 4, then

max
i≤n

‖uhiτ − uh,τi ‖2Hm−4 ≤ τ2∧γN(K ′ +K2
m), (3.13)

where N is a constant depending only on K,C, T , m, µ0 and µ2.
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Proof. In order to ease the notation, let us introduce ei = uhiτ − uh,τi . We
have that (ei)

n
i=0 satisfies

ei = ei−1 + τRiei + Fi, i = 1, , , .n,

e0 = 0,

where

Ri = Lh
iτ + Jh, Fi :=

∫ τ

(i−1)τ
Ft dt

Ft := (Lh
t + Jh)uht − (Lh

k(t) + Jh)uhk(t) + ft − fk(t),

and

k(t) = lτ for t ∈ ((l − 1)τ, lτ ], l = 1, ..., n, k(0) = 0. (3.14)

By the identity ‖b‖2 − ‖a‖2 = 2(b, b− a)− ‖b− a‖2, we have for j ≤ m− 3
and i ≥ 1,

‖∂jxei‖2L2
− ‖∂jxei−1‖2L2

≤ 2τ(∂jxei, ∂
j
xRiei)L2

+ 2(∂jxei, ∂
j
xFi)L2

(3.15)

By Lemma 3.2 we have

2τ(∂jxei, ∂
j
xRiei)L2

≤ τN‖∂jxei‖2L2
,

while by Young’s inequality we have

2(∂jxei, ∂
j
xFi)L2

≤ τ‖∂jxei, ‖2L2
+ τ−1‖

∫ iτ

(i−1)τ
∂jxFt dt‖2L2

≤ τ‖∂jxei, ‖2L2
+

∫ iτ

(i−1)τ
‖∂jxFt‖2L2

dt.

By using these inequalities and summing up (3.15) over 0 ≤ j ≤ q, where
q ∈ {m− 4,m− 3}, and over i ≤ ρ ≤ n, we get

‖eρ‖2Hq ≤ τN

ρ
∑

i=1

‖ei‖2Hq +N

∫ T

0
‖Ft‖2Hq dt <∞,

where N is a constant depending only on m and K. Let us set N1 := TN .
By the discrete Gronwall inequality we have for n > N1 (i.e. for τ < 1/N)

max
ρ≤n

‖eρ‖2Hq ≤ N

∫ T

0
‖Ft‖2Hq dt,

where N depends only on m,K and T . We only have to estimate the term
at the right hand side of the above inequality. We have

∫ T

0
‖Ft‖2Hqdt ≤N

∫ T

0
‖(Lh

t − Lh
k(t))u

h
t ‖2Hq dt

+N

∫ T

0
‖(Jh + Lh

k(t))(u
h
t − uhk(t))‖2Hq dt

+N

∫ T

0
‖ft − fk(t)‖2Hq dt, (3.16)
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where kn(t) is given by (3.14). Let us show first (3.12) under Assumption
2.3 with l = m− 3. By Assumption 2.3 and (3.7) we have with q = m− 3

∫ T

0
‖(Lh

t − Lh
k(t))u

h
t ‖2Hq dt ≤ τγN

∫ T

0
‖uht ‖2Hq+2 dt ≤ τγNK2

q+2 (3.17)

∫ T

0
‖ft − fk(t)‖2Hq dt ≤ τγT. (3.18)

By Lemma 3.5 we have
∫ T

0
‖(Jh + Lh

k(t))(u
h
t − uhk(t))‖2Hq dt ≤ N

∫ T

0
‖uht − uhk(t)‖2Hq+2 dt.

Therefore, in order to show (i) we only need to show that
∫ T

0
‖uht − uhk(t)‖2Hm−1 dt ≤ Nτ(K2

m +K ′). (3.19)

For φ ∈ Hm−1 and φ′ ∈ Hm, one has |(φ′, φ)m| ≤ ‖φ′‖Hm‖φ‖Hm−2 . By
using this and Young’s inequality, we obtain for s, t ∈ [0, T ] with s ≤ t

‖uht − uhs‖2m−1 = 2

∫ t

s

(

uhr − uhs , (L
h
r + Jh)ur + fr

)

m−1
dr

≤ N

∫ t

s
‖uhr − uhs‖2Hm + ‖(Lh

r + Jh)uhr‖2Hm−2 + ‖fr‖2Hm−2dr

≤ N

∫ t

s
sup
t′≤T

‖uht′‖2Hm + ‖fr‖2Hm−2dr

≤ N(K2
m +K ′)(t− s),

where the last inequality follows by Lemma 3.6 and Assumption 2.4. This
shows (3.19) which combined with (3.17) and (3.18) (with q = m− 3) imply
(3.12) by virtue of (3.16). In order to show (3.13) under Assumption 2.3
with l = m − 4, by virtue of (3.16), (3.17) and (3.18), with q = m − 4, it
suffices to show

∫ T

0
‖uht − uhk(t)‖2Hm−2 dt ≤ Nτ2(K2

m +K ′).

For t, s ∈ [0, T ] we have

‖uht − uhs‖2Hm−2 ≤
∥

∥

∫ t

s
(Lh

r + Jh)uhr + fr dr
∥

∥

2

Hm−2

≤
(

∫ t

s
N sup

t′≤T
‖uht′‖Hm + ‖fr‖Hm−2 dr

)2

≤ N(t− s)2(K2
m +K ′).

This brings the proof to an end.
�
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4. Proofs of the main results

We are now ready to prove the main theorems.

Proof of Theorem 2.2. Let I, K denote the continuous embeddingsHm−3 →֒
l2(Gh) and H

m−3 →֒ C0,1/2. Let uh and vh denote the solutions of (3.6) and
(2.2) (the same equation, considered on l2(Gh) and L2(Gh)). By applying I

to both sides of (3.6) we see that Iuh satisfies (2.2). Therefore Iuh = vh by
uniqueness. Notice also that Kuht (x) = Iuht (x) and ut(x) = Iut(x) = Kut(x),
for all t ∈ [0, T ] and x ∈ Gh. Hence

sup
x∈Gh

|vht (x)− ut(x)| = sup
x∈Gh

|Iuht (x)− ut(x)|

= sup
x∈Gh

|Kuht (x)− Kut(x)|

≤ N‖uht − ut‖Hm−3 ,

and

‖vht − ut‖l2(Gh) = ‖Iuht − Iut‖l2(Gh)

≤ N‖uht − ut‖Hm−3 ,

where N depends only on m. The conclusion now follows from Theorem
3.7. �

We move to the proof of Theorem 2.3. Notice that the existence part
follows easily from Theorem 3.9. Namely, if uh,τ solves (3.11), then Iuh,τ

solves (2.3). Also, the uniqueness part is immediate if for example one
poses a Courant–Friedrichs–Lewy condition on τ and h (that is, τ/h2 being
sufficiently small). However, such a condition is obviously not necessary,
therefore, in order to prove Theorem 2.3, we will proceed as in the proof of
Theorem 3.9. Hence, we need the following, whose proof is essentially given
in [10] but we give a sketch for the convenience of the reader.

Lemma 4.1. Let Assumptions 2.1 and 2.2 hold with m = 1. Then there
exists a constant N , depending only on K, such that for all φ ∈ l2(Gh) we
have

(

(Lh
t + Jh)φ, φ

)

l2(Gh)
≤ N‖φ‖2l2(Gh)

.

Proof. One can replace (·, ·) with (·, ·)l2(Gh) in the proof of Lemma 3.1 to
obtain

(Jhφ, φ)l2(Gh) ≤ 0.

Consequently we only need that (Lh
t φ, φ)l2(Gh) ≤ N‖φ‖2l2(Gh)

. This is proved

in [10]. In the proof of Lemma 3.3 in that article, one can replace (·, ·) with
(·, ·)l2(Gh) to obtain

|(δhφ, (δhat)T hφ)l2(Gh)|+ |(btδhφ, φ)l2(Gh)|+ |(ctφ, φ)l2(Gh)| ≤ N‖φ‖2l2(Gh)
,

(4.1)
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where T hφ(x) = (φ(x + h) + φ(x − h))/2, and N depends only on K. It is
shown also in [10] (see (3.3)) that for functions u, v

δh(uv) = (δhu)T hv + (δhv)T hu.

Therefore,

(atδ
hδhut, ut)l2(Gh) =− (δhut, δ

h(atut))l2(Gh)

=− (δhut, (δ
hat)T

hut)l2(Gh) − (δhut, (T
hat)δ

hut)l2(Gh).
(4.2)

Notice that by virtue of Assumption 2.2, we have

−(δhut, (T
hat)δ

hut)l2(Gh) ≤ 0.

Hence, (4.2) and (4.1) imply

(Lh
t φ, φ)l2(Gh) ≤ N‖φ‖2l2(Gh)

.

�

Proof of Theorem 2.3. The proof is the same as the one of Theorem 3.9, this
time using Lemma 4.1 instead of Lemma 3.2. �

Proof of Theorem 2.4. The conclusion follows by Sobolev embeddings and
Theorem 3.9 similarly to the proof of Theorem 2.2. �

References

[1] R. Cont, P. Tankov, Financial modelling with jump processes. Chapman &
Hall/CRC Financial Mathematics Series. Chapman & Hall/CRC, Boca Raton, FL,
2004. xvi+535 pp.

[2] R. Cont, E. Voltchkova, A finite difference scheme for option pricing in jump diffusion
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[6] M. Gerencsér, I. Gyöngy, Finite difference schemes for stochastic partial differential
equations in Sobolev spaces. Appl. Math. Optim. 72 (2015), no. 1, 77-100.
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