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Data augmentation for intelligent manufacturing
with generative adversarial framework

Yanxia Wang, Kang Li, Shaojun Gan, Che Cameron, and Min Zheng

Abstract—Motivated by the global economy greatly
shaped by the manufacturing technology, more research on
the intelligent manufacturing is studied. This paper firstly
introduces an energy monitoring and data acquisition sys-
tem namely the Point Energy Technology, which has been
developed by the team and installed in a local bakery.
While there is always lack of data because of various
reasons, such as measurement or transmission mistakes
during data collection. To solve this problem, we intro-
duce a generative adversarial framework which is based
on a game theory for data augmentation. This framework
consists of two multi-layer perceptron networks– generator
and discriminator. The upgrade framework with Q-net that
extracts the latent variables from real data is proposed.
To control the number of parameters, Q-net shares the
structure with discriminator except the last layer. In ad-
dition, the two optimization methods, mini-batch gradient
descent and adaptive moment estimation are adopted to
tune the parameters. To evaluate the performance of these
algorithms, the collected data from baking process is used
in the experiment. Considering the reality, the missing data
is processed into the state of missing completely at random
(non-time series missing data). The experimental results
illustrate that the latent generative adversarial framework
with adaptive moment estimation could generated samples
of good quality for non-time series missing data.

Index Terms—monitoring system, data augmentation,
generative adversarial framework, optimization algorithm

I. INTRODUCTION

O
VER recent years, the issues associated with global

warming and the limitation of energy resource have been

of worldwide concern [1]. Consequently, the UK government

has committed to reduce its greenhouse gas/carbon dioxide

emissions (GHG) by 80% by 2050 (compared to the 1990’s

level) which is a huge leap from the current emissions level

[2]. As a part of commitment to lower GHG emissions,

the government has made the reduction of industrial energy

consumption a priority [3]. Industrial manufacturing is one of

the heavy energy consuming sectors, accounting for 16% of

annual usage, and should consider the GHG reduction target

as a priority [4]. The bakery industry, which produces staple

foods such as fresh and frozen bread, cakes and other pastries
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to meet people’s daily dietary demand, consumes a lot of

energy from gas and electricity [5]. The UK-based government

organization, the Carbon Trust reports that the total energy

consumption is 2,000 GWh per year for UK baking industries

[6]. Therefore, it is of significant importance to research

the status of energy consumption and seek opportunities to

improve the energy efficiency of baking process.

Data analysis on improvement of energy efficiency has

created unprecedented performance on many tasks, given

sufficient data [7]. While in realities, we need to achieve

goals with limited datasets or incomplete data sets, which

might happen because of various reasons, such as mechanical

breakdowns unrelated to the experimental process [8]. In those

cases, poor generalisation occurs easily and we could not

analyse the circumstances abundantly. Techniques have been

developed over the years to generate more data from the

original data set by various technologies [9]. Single Imputation

requires a method of creating a predictive distribution of the

missing values based on the observed data [10]. There are two

generic approaches to generate distribution, explicit modelling

which is based on a formal statistical model and implicit

modelling which implies an underlying model. An obvious

limitation of single imputation approaches is that the standard

variance formulas used to filled-in values may underestimate

the systematic variance of estimates [11]. Various methods

of estimation for missing data could be implemented based

on the likelihood function. The maximum likelihood (ML)

approaches for treating missing data have been known in

the technical literature [12]. Given a statistical model of a

distribution including an unknown parameter, the method of

ML finds the value of parameter that maximize the likelihood

function. Intuitively, the selected parameter makes the data

most probable. The expectation maximization algorithm is an

efficient iterative procedure to compute ML estimation [13],

[14]. This algorithm has less conceptuality and computation

complexity but may converge to a local minimum [15].

Multiple imputation is a general approach based on Bayesian

estimation to the problem of incomplete data [16]. The three

basic steps of this method are: i) introduce random variation

into the process and generate several different datasets; ii)

perform an analysis on each dataset; iii) combine the results

into a single set of parameter estimates, standard errors and

test statistics [17]. There is an indeterminacy in the results due

to the random samples. Additionally, many parameters have to

be decided during the implementation, which is complicated

[18]. Generative adversarial network (GAN) could represent

probability distributions over observed data via an adversarial



process [19]. It is a framework with two models, a generative

model that captures the data distribution, and a discriminative

model that estimates the probability that a sample comes from

the real data rather than generator. This method has been

achieved great success at artificial intelligence applications,

such as generating realistic images and stabilizing sequence

learning methods [20]. By building a large invariance space,

the GAN captures the cross-class transformations and move

data points to other points of equivalent distribution, thus it

can be applied to the data augmentation without known classes

[21].

In this paper, a generative adversarial framework that could

generate industrial data samples corresponding to game theory

is discussed for data augmentation. We firstly introduce the

point energy monitoring system developed by our research

team (www.pointenergy.org), which is used with different

industrial partners, including a local bakery company. The

system collects voltage, current, power factor and frequency

data from one of the core production lines used in the produc-

tion process. The generative adversarial framework adopts two

multi-layer perceptron networks as generator and discriminator

respectively. Considering the latent variables, the Q-net is

introduced into this framework. Q-net shares the layers with

discriminator except the last layer. The mini-batch gradient

descent and adaptive moment estimation are both used to

optimise the parameters. To evaluate the performance of these

algorithms, the industrial data set collected by our monitoring

system is analysed in the experiment. The reminder of this

paper is organised as follows. The preliminary/related work is

introduced in section 2. In section3, the generative adversar-

ial framework is presented in details. The two optimisation

algorithms are described in section 4. Section 5 discusses

the experimental procedure. Finally, section 6 concludes this

paper.

II. ENERGY MONITORING SYSTEM

A desire for more detailed knowledge of power consump-

tion, both in terms of increased sample rate and different

granularity of use location has driven the development of

the Point Energy monitoring system (www.pointenergy.org).

Measurements of whole-factory power consumption as well

as individual plant is achieved using a combination of current

transformers, interfaces to existing power meters and cus-

tomised smart meters for different energy and power sources.

The system has been field-tested in different industrial sectors

including working with a local bakery company which is eager

to know how much energy they use daily and more specifically,

how much energy is consumed by each production line or

even each manufacturing process. The two parts of the system

can be considered as the Data Acquisition layer and the Data

Analytics layer, bridged by an on-site base station, detailed in

Figure 1. The data acquisition layer is composed of a series

of microcontroller nodes that form a wireless sensor network

(WSN) using LoRa as the radio interconnect. These nodes are

responsible for continuously measuring power, voltage, current

and power factor for the three phase systems in the factory

[22]. The management of the WSN is done by an on-site base

Data processing and analysis

I-IOT cloud service
On-site server

LoRa Concentrator

Production lines in factory

LTE modem

Fig. 1. The Energy monitoring system

station which is composed of a server, a LoRa concentrator and

a 3G/4G internet connection. The LoRa concentrator bridges

the local LoRa network to the server which then manages

node inventory, concatenates and pre-processes data, and then

sends the measurements on to various cloud services using

the MQTT protocol. The data analysis layer is made up of

a private server and I-IOT platforms which are used to run

analytics on the dataset, as well as present a combination of

real-time and historical energy usage information in a user-

friendly format.

III. GENERATIVE ADVERSARIAL FRAMEWORK

In this section, a specific generative adversarial framework

of two competitive multi-layer networks is proposed, aiming

to learn the data distribution from a set of samples implicitly

and then generate new samples from the learned distribution.

A. Generative adversarial framework

Assume the real data distribution is Preal(x). The generative

adversarial framework is an approach for generating new

samples based on random noise Pnoise(z). As depicted in

figure 2, this framework consists of two multi-layer networks

as generator and discriminator separately. The generator takes

the form as follows:

V = f(z) (1)

where the function f is implemented by a multi-layer network;

V is the vector data produced, which should match the real

data in distribution; z is statistical noise having a continuous

uniform distribution with lower and upper endpoints specified

by 0 and 1. The generated and original data are input to the

discriminator which outputs the probability of being a real

sample.

The two multi-layer perceptron are trained simultaneously.

They learn and train their structures by minimizing the dis-

tribution discrepancy between the true data and generated

data. The mixmax game could be written by the following

expression:
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Fig. 2. The architecture of generative adversarial framework

min
G

max
D

V (D,G) = E[logD(x)] + E[1− logG(z)] (2)

During training process, the generator could improve its

ability to synthesize more realistic data. At the same time,

the discriminator could improve its ability to distinguish the

real from the generated data. Hence, this adversarial training

could be thought as a kind of game theory.

B. Latent generative adversarial framework

As is shown in figure 3, there are three multi-layer networks

in latent generative adversarial framework: generator, discrim-

inator and Q-net. Assume the discriminator has a L-layer

architecture, then the Q-net shares the layers {1, 2, · · · , L−1}
with discriminator except the last layer. In the last layer, the

activation function is softmax for Q-net while sigmoid for

discriminator. The latent variables are inferred automatically

by Q-net and then put into generator, which could be regarded

as prior information. Thus, in latent generative adversarial

framework, instead of using a single noise vector, the input of

generator could be decomposed into two parts: i) noise vector

z, which brings the variation to the new generations; ii) the

latent variable b, which is related to the distribution features.

In the training process of latent GA framework, in addition

to generator G(z, b) and discriminator D(x) which are similar

to that of GA framework, Q-net Q(b|x) is also trained due to

the mutual information. Considering the mutual information

I(b;G(z, b)) between the latent variables b and the real

samples x, the overall loss of latent GA framework is then

as follows [23]:

min
G

max
D

VI(D,G) =E[logD(x)] + E[1− logG(z, b)]−

λI(b;G(z, b))
(3)

where λ is an extra hyper parameter.

I(b;G(z, b)) represents the amount of information learned

from G(z, b) about latent variables b, which is difficult to

optimal without the distribution of P (b|x). According to

literature [24], the loss function could be rewritten as:

min
G

max
D

VI(D,G) =E[logD(x)] + E[1− logG(z, b)]−

λLI(G,Q)
(4)
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Fig. 3. The structure of latent generative adversarial framework

IV. OPTIMIZATION ALGORITHM

A. Mini-batch gradient descent

Mini-batch gradient decent takes the best of batch gradient

descent [25] and stochastic gradient descent [26], performing

an update for every mini-batch as follows:

θj = θj−1 − η · ▽θj · J(θj) (5)

where θ is the parameter to be updated; η means the learning

rate; ▽θj · J(θj) represents the gradient of current mini-batch

(i.e. the vector of partial derivatives of los function J).

Assume there are m samples in the data set and n samples

in every mini-batch, thus there are m/n mini-batches. Let ωk

represent the k-th mini-batch and Ωj be all mini-batches in

j-th iteration (Num is the maximum number of iteration),

then:

Ωj = {ωk : k = 1, 2, · · · ,m/n} (6)

The flow of mini-batch gradient descent algorithm could be

described as follows:

Algorithm: mini-batch gradient descent

For j = 1 : Num
While each ωk in Ωj do:

Update parameters with equation (5)
End while

End for

Mini-batch gradient descent is a typical algorithm to op-

timise neural networks. It could reduce the variance of pa-

rameter updates to achieve more stable convergence. The

mini-batch is very efficient to make computing the gradient

compared with batch gradient descent. While it also offers

a challenge that it is difficult to choose a proper learning

rate. Additionally, adjusting learning rate to adapt different

parameters’ features is another barrier.

B. Adaptive moment estimation

The adaptive moment estimation is an advanced method that

computes adaptive learning rate for different parameter. This

algorithm updates exponential moving averages of gradient

mj (also named the first moment estimation) and squared

gradients vj (also named the second moment estimation)

respectively as follows:



f(x) =







mj = β1mj−1 + (1− β1) · gj
vj = β2vj−1 + (1− β2) · g

2
j

gj = ▽θj · J(θj)
(7)

where β1 and β2 both belong to [0,1), controlling the ex-

ponential decay of these moving averages; mj and vj are

initialized with zeros. When the decay rates are small (i.e. βs

close to 1), these moving averages are biased towards zeros.

To counteract the biases, the bias-corrected first and second

moment estimates could be computed:

f(x) =

{

m̂j = mj/(1− βj
1)

v̂j = vj/(1− βj
2)

(8)

Hence, the parameters could be updated as following:

θj+1 = θj −
η

√

v̂j + ε
· m̂j (9)

where η represents the learning rate; ε is a very small number

(e.g. 10−8) to avoid any division by zero in the implementa-

tion.

Similarly, let ωk represent the k-th mini-batch and Ωj mean

all mini-batches in j-th iteration. Then based on the equation

(6), the flow of adaptive moment estimation method could be

described as follows:

Algorithm: adaptive moment estimation

For j = 1 : Num
While each ωk in Ωj do:

Calculate the gradient of the k-th mini-batch gj
Update mj and vj with equation (7)
Compute m̂j and v̂j with equation (8)
Update parameter θ with equation (9)

End while
End for

V. EXPERIMENT

A. Industrial data set

In the factory, a large portion of electricity, about 30-35%

is consumed for the baking process. This paper documents

the initial energy consumption data set of the baking process

working with three-phase 415V AC power over a randomly

selected period. The following features are monitored at a

ten-minute interval across all three phases: voltage, current,

power, power factor, frequency and temperature. Each of these

dimensions in the collected data represents different signals

with different scales. Thus, normalisation is required so that

all the inputs are at a comparable range [27]. In the experiment,

the data set is collected from baking process covering ten-day

time, beginning from Thursday 10th May. 2018. As is shown

in figure 4, the normalised data set consists of 2246 samples,

and the number of dimension is 14 for each sample.

B. Experimental setup

There are four algorithms conducted in the experiment,

namely the generative adversarial framework combined with

mini-batch gradient descent (GAF-MNGD), the generative
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Fig. 4. The samples of original baking data

adversarial framework combined with adaptive moment esti-

mation (GAF-Adam), the latent generative adversarial frame-

work combined with mini-batch gradient descent (LGAF-

MNGD) and the generative adversarial framework combined

with adaptive moment estimation (LGAF-Adam). To evaluate

the performance of these four approaches, the parameters are

set as follows.

For GAF-MNGD and GAF-Adam, the architectures of

generator and discriminator are same, both with three layers.

The number of nodes in each layer of generator is [100, 512,

14], while being [14, 512, 1] for discriminator. The activation

functions in hidden and last layers are sigmoid function and

Relu function respectively. For LGAF-MNGD and LGAF-

Adam, the generator and discriminator also both have a three-

layer structure. The number of nodes in each layer of generator

is [100+Nl, 512, 14] (where Nl means the number of latent

variables obtained by Q-net), while being [14, 512, 1] for

discriminator. The activation functions in the second and third

layers are sigmoid function and Rule function respectively.

The Q-net shares the same structure with discriminator except

the last layer. The number of nodes in last layer is Nl and

set to be five. For mini-batch gradient descent and adaptive

moment estimation, there are 100 samples in each mini-batch.

The number of iteration is 100 and the learning rate is 0.001. In

the experiment, 100 samples would be randomly selected from

the original data set to be real data. Monte Carlo simulation

is a computational technique based on constructing a random

process for a problem, which could understand the impact of

risk and uncertainty due to the randomness [28]. Therefore, the

experiment will be repeated for 200 times with Monte Carlo

method, and then one of them will be picked out as the final

result which is closest to the average value of outputs.

The expert assessment is calculated as the total root mean

squared error (RMSE), an effective measure of the deviations

in distances between the real and produced point coordinates.

The formula for RMSE is shown as follows:

RMSE =

√

√

√

√

1

R

R
∑

i=1

(yi − ŷi)2 (10)

where given R dimensions to the output, yi is the i-th
dimension of the real data and ŷi is the i-th dimension of
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Fig. 5. The experimental result

the generated data.

C. Results and discussion

In view of the reality of data collection during industrial

application, we define missing completely at random (i.e. non-

time series missing data) as state 1. To simulate the actual

situations, the real data set contains 100 samples which are

selected completely at random.

According to the Monte Carlo method, the result of state

1 is obtained from the 97th Monte Carlo simulation and

illustrated in figure 5. The four subplots (a)-(d) display the

RMSEs of 100 samples associated with GAF-Adam, GAF-

MBGD, LGAF-Adam and LGAF-MBGD respectively. The

mean values of RMSEs of these four methods are 0.080,

0.093, 0.072, and 0.087 respectively. The average RMSE of

LGAF-Adam is 10.7%, 29.2% and 20.8% smaller than that

of the other three algorithms. Therefore, the effectiveness

of the Latent Generative Adversarial Framework with Adam

algorithm is the best for data augmentation in State 1.

Furthermore, we use the generated data samples produced

by LGAF-Adam to fill in the missing data for State 1, and

then calculate the energy consumption based on the produced

data, which is compared with the real energy usage during the

chosen ten days. In figure 6, the hourly energy consumptions

during the missing data period based on the generated data and

real data are illustrated for State 1. It is obvious that although

there is a little degree of gap between real data and generated

data with regard to the hourly energy usage for the baking

process, the maximum difference is less than 1kwh hourly,

which is acceptable to the technician in local bakery.

VI. CONCLUSION

In this paper, the energy monitoring system developed

by Point Energy Technology (www.pointenergy.org) is intro-

duced, which monitors and records the operating conditions

of industrial machinery. During the data collection procedure,

we found there is always missing data due to various reasons.

Hence, a Generative Adversarial Framework based on Game

Theory is proposed for data augmentation. There are two

competitive multi-layer perceptron networks, Generator and
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Discriminator. They are not updated directly with data sam-

ples, but rather use back propagation to obtain gradients for

parameter learning. To extract the distribution features of the

industrial data, the framework is upgraded with a Q-net which

shares its structure with the Discriminator except for the last

layer. The sigmoid cross entropy is computed as the cost func-

tion. In addition, Mini-Batch Gradient Descent and Adaptive

Moment Estimation are adopted to optimise the parameters. To

compare the effectiveness of the frameworks and optimisation

methods, baking data over a randomly selected ten-day period

in May 2018 is used in the experiment. The type of missing

data, missing completely at random, is discussed in details.

The experimental results are summarised as follows: i)

the effectiveness of the four algorithms yields no significant

difference for data augmentation on the missing data. ii)

The Latent Generative Adversarial Framework with Adaptive

Moment Estimation optimisation has better performance than

the other three algorithms. iii) Based on the data augmentation,

we could make data analysis sufficiently rigorous to propose

professional recommendations for industrial partners.
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