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H I G H L I G H T S

• Multi-objective algorithm applied to
the self-optimisation of complex
pharmaceutical processes.

• Algorithm targeted automated reactor
productivity and downstream pur-
ification.

• Pareto front rapidly generated for
three competing objectives.
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A B S T R A C T

There has been an increasing interest in the use of automated self-optimising continuous flow platforms for the
development and manufacture in synthesis in recent years. Such processes include multiple reactive and work-up
steps, which need to be efficiently optimised. Here, we report the combination of multi-objective optimisation
based on machine learning methods (TSEMO algorithm) with self-optimising platforms for the optimisation of
multi-step continuous reaction processes. This is demonstrated for a pharmaceutically relevant Sonogashira
reaction. We demonstrate how optimum reaction conditions are re-evaluated with the changing downstream
work-up specifications in the active learning process. Furthermore, a Claisen-Schmidt condensation reaction
with subsequent liquid-liquid separation was optimised with respect to three-objectives. This approach provides
the ability to simultaneously optimise multi-step processes with respect to multiple objectives, and thus has the
potential to make substantial savings in time and resources.

1. Introduction

Since the industrial revolution, the use of mechanised tools to im-
prove manufacturing processes has been a predominant feature in many
areas of technology. With the goal of transferring the concept of

automation to chemical synthesis, closed-loop reaction systems have
become more commonplace, providing advantages such as greater re-
action control and process safety [1]. Examples of using feedback loops
for the automated optimisation of chemical reactions dates back to the
late 1970s, and the pioneering work of Winicov et al. [2]. In this work,
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reaction parameters such as temperature, stirring and reagent addition
were optimised using a Nelder-Mead SIMPLEX algorithm. Since then,
developments in the areas of automated laboratory hardware and
control software have driven these systems to significantly evolve [3].
More recently, continuous flow systems have been combined with on-
line/in-line analytics and optimisation algorithms to automate reaction
optimisation (commonly referred to as ‘self-optimisation’) [4,5]. The
ability of self-optimisation to efficiently identify optimal operating
conditions in a multivariate parameter space has presented many op-
portunities for more efficient process development. Such advantages
align with the rising interest in continuous flow chemistry towards the
‘greener’ synthesis of active pharmaceutical ingredients (APIs), and
offer the potential to reduce the drug development timeline [6–8].

Process development in the pharmaceutical industry must simulta-
neously consider multiple performance criteria based on conflicting
economic and environmental objectives [9]. This applies to the whole
process including non-reactive unit operations, such as work-up. De-
spite this, the majority of self-optimisation applications to date have
focused on single-objective optimisation of single-step reactions, uti-
lising the following algorithms: model-based design of experiments
[10–12], SNOBFIT [13–16], Nelder-Mead SIMPLEX or variations
thereof [17–23]. Further, these algorithms are not data-efficient as they
do not utilise all the available experimental data to build a global
surrogate model. Thus, they are not well-suited for expensive-to-eval-
uate chemical synthesis problems, particularly those involving complex
multi-step, and pharmaceutically relevant processes [24].

In our previous work, we investigated the use of a data efficient
Bayesian optimisation algorithm for the self-optimisation of chemical
reactions with two competing performance criteria [25]. The
Thompson sampling efficient multi-objective (TSEMO) algorithm
[26,27] builds machine learning surrogate models, i.e. Gaussian pro-
cesses (GPs), based on all available data and compares favourably with
other algorithms such as EHI [28] and ParEGO [29]. TSEMO was in-
tegrated with our automated experimental platform and enabled the
simultaneous optimisation of space–time yield (STY) with E-factor or
impurity content for two exemplar reactions. Notably, the complete
trade-off curve (Pareto front [30]) highlighting the compromise be-
tween the objectives was identified in a practical number of experi-
ments, overcoming the issues associated with the scalarisation of mul-
tiple objectives [31]. TSEMO was also effectively used in the workflow
on solvent selection for optimal reactivity and selectivity [32], and in
the context of optimisation of life cycle environmental impacts vs.
process economics for computer-aided process design [33]. Based on
these results, we hypothesised that the TSEMO algorithm would be
well-suited for the optimisation of multi-step continuous reaction pro-
cesses. Herein, we describe the application of this methodology to: (i) a
pharmaceutically relevant Sonogashira reaction; (ii) a multi-step
Claisen-Schmidt condensation reaction with in-line liquid–liquid ex-
traction.

2. Experimental

2.1. TSEMO algorithm

The TSEMO algorithm is designed to solve expensive-to-evaluate
black-box multi-objective optimisation problems. The algorithm utilises
a Bayesian methodology employing GPs as the surrogate model. The
surrogate models are coupled with acquisition functions which are
optimised in lieu of the real process to suggest the next point of eva-
luation. TSEMO makes use of Thompson Sampling to determine the
next point of evaluation through random sampling of the posterior
distribution of the GPs. The sample is then optimised through use of the
NSGA-II algorithm to propose a set of candidate points. NSGA-II is an
elitist genetic algorithm which solves multi-objective optimisation
problems using Pareto ranking and crowding distance computations.
The candidate which maximises the hypervolume improvement is

selected as the next point to sample. This process continues until the
algorithm reaches a pre-defined maximum number of process/function
evaluations.

The TSEMO algorithm was combined with an automated continuous
flow platform to enable the closed-loop multi-objective optimisation of
chemical processes. The algorithm was operated in batch-sequential
mode, which proposes multiple sampling points at each iteration. In
previous work, we demonstrated that there was a minimal reduction in
performance when batches of four evaluations were used compared to
single evaluations [26]. Therefore, batches of four experiments were
used in these case studies, as this enabled faster optimisations by par-
allelising the start of an experiment with the analysis of the previous
experiment.

2.2. Self-optimising platform

Reagents were pumped using JASCO PU980, HiTec Zang SyrDos
and/or Knauer AZURA HPLC pumps, and were mixed in Swagelok SS-
100-3 tee-pieces. Tubular reactors were constructed from Polyfon PTFE
tubing (0.1 cm ID) and fitted to a Cambridge Reactor Design Polar Bear
Flow Synthesiser. Miniature continuous stirred tank reactor (CSTR)
cascades were custom-built and are detailed below. The reactor was
maintained under a fixed back pressure using an Upchurch Scientific
back pressure regulator. A Zaiput SEP-10 liquid–liquid membrane-
based separator fitted with a PTFE membrane (0.5 μm pore size) was
used for in-line phase separation when required. Sampling of the or-
ganic phase was achieved using a VICI Valco EUDA-CI4W.06 sample
loop with a 0.06 μL injection volume. Quantitative analysis was per-
formed on an Agilent 1100 series HPLC instrument (HPLC methods for
each case study are provided in the ESI). Steady state was monitored
using a Kaiser RxN1 785 nm Raman System when required. The auto-
mated reactor was controlled by a custom written MATLAB program,
within which the TSEMO algorithm was implemented.

2.3. General optimisation procedure

An optimisation program was written in MATLAB that controlled
the pump flow rates and reactor temperature, determined steady state,
calculated the responses and controlled the inputs and outputs to and
from the TSEMO algorithm (TSEMO repository: https://github.com/
Eric-Bradford/TS-EMO). The reactant flow rates were reduced to a
minimum (dead-time conditions) during heating/cooling of the reactor
to minimise the amount of material used. The algorithm was operated
in batch-sequential mode, such that each iteration included four ex-
periments. The responses for each objective were calculated from the
HPLC chromatograms at the end of each iteration, and the results used
to update the surrogate models and generate the next set of operating
conditions.

2.4. Sonogashira reaction

Reactor: tubular reactor (3 mL, 5 bar). Reservoir solutions were
prepared by dissolving the desired reagents in solvent under stirring at
ambient conditions. Reagent 1 pump: 3,5-dibromopyridine (143.55 g,
0.61mol, 0.61mol L−1), Pd(PPh3)4 (10.40 g, 0.009mol, 0.009mol
L−1), CuI (11.61 g, 0.061mol, 0.061mol L−1), pyrrolidine (131.50 g,
1.85mol, 1.85mol L−1) and biphenyl (18.80 g, 0.122mol, 0.122mol
L−1) in Toluene/MeCN (2:1, 1 L); Reagent 2 pump: 1-hexyne (68.58 g,
0.84mol, 0.84mol L−1) in PhMe (1 L); Dilution pump: MeCN.
Reactions were left for 3.5 reactor volumes to reach steady state.
Average quantities per experiment: 3,5-dibromopyridine (718.1 mg,
3.03mmol), Pd(PPh3)4 (51.7mg, 0.04mmol), CuI (57.7 mg,
0.30mmol), pyrrolidine (653.8 mg, 9.19mmol) and 1-hexyne
(381.6 mg, 4.65mmol).
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2.5. Claisen-Schmidt condensation reaction

Reactor: CSTR cascade (8mL, 75 psi). Reservoir solutions were
prepared by dissolving the desired reagents in solvent under stirring at
ambient conditions. Reagent 1 pump: benzaldehyde (25.5mL,
0.25mol, 0.50mol L−1) in toluene (500mL); Reagent 2 pump: acetone
(neat); Reagent 3 pump: sodium hydroxide (4.0 g, 0.10mol, 0.10mol
L−1) in deionised water (1 L). Reservoir solutions were replenished
when required. Reactions were left for two reactor volumes to reach
steady state. Average quantities per experiment: benzaldehyde
(307.8 mg, 2.90mmol), acetone (3.857 g, 66.40mmol) and sodium
hydroxide (43.2mg, 1.08mmol).

2.6. Miniature CSTR cascade

Each CSTR had a stainless steel base, equipped with a polyacetal lid.
The reaction chamber was cylindrical with a 2mL volume, containing a
PTFE coated cross stirrer bar (10mm diameter) to provide mechanical
mixing. A convex glass lens (viewing window) and PTFE gasket were
clamped down between the base and lid using three bolts to form a seal.
The CSTRs were connected using Polyfon PTFE tubing (1/8″ OD, 1/16″
ID) to form a cascade of desired length and volume. An aluminium
heating mantle was designed to inset four CSTRs (volume=8mL).
Channels were made in the mantle to provide inlet/outlet flow streams
to each CSTR. The mantle was heated using two nickel heating element
inserts. The temperature was monitored using a thermocouple and
controlled using a Eurotherm temperature controller, which was coded
into the control software of the self-optimising system. The compact
design ensured that mixing could be achieved in all four CSTRs using a
single conventional stirrer plate. Separate thermocouples were placed
in the additional inlet of each CSTR, to directly monitor the internal
temperature of each reactor using a Pico logger.

3. Results and discussion

3.1. Towards the synthesis of lanabecestat

Lanabecestat (AZD3293) is a potent inhibitor of β-site amyloid
cleaving enzymes [34], which break down β-amyloid proteins into
neurotoxic fragments [35]. Hence, lanabecestat was identified as a
potential drug candidate for Alzheimer’s disease, reaching Phase III
clinical trials. Despite a growing interest in the use of flow chemistry in
the pharmaceutical industry, there have been very few reports re-
garding the self-optimisation of synthetic steps in API production [13].

A key step in the original batch synthesis was the alkynylation of
3,5-dibromopyridine with TMS-propyne [36]. The motivations for
transferring this step to flow included: (i) TMS-propyne could be safely
exchanged for propyne gas, removing the need for additional additives;
(ii) downstream lithiation/borylation chemistry is well suited for flow
which would enable a telescoped synthesis, providing a significant
manufacturing cost saving; (iii) precise control of reaction parameters
in flow would give more consistent product quality [37].

To optimise this process, we studied a model Sonogashira reaction
between 3,5-dibromopyridine 2 and 1-hexyne 3 (Scheme 1). 1-Hexyne
3 was selected as a model substrate as it is cheaper and easier to handle
at room temperature compared to propyne. Due to current difficulties
removing 2 during the downstream work-up, the aim of the optimisa-
tion was to simultaneously minimise the amount of 2 remaining and
maximise the space–time yield (STY) with respect to the mono-alkyne 4
product [Eq. (1)]. The continuous variables which were optimised are:
residence time (tR), 1-hexyne 3 equivalents and temperature.

−2minimise [ln(% ), ln(STY)] (1)

∈

∈

° ∈

3subject to:
tR/min [1, 8]
equiv. of [1.2, 1.6]
Temp/ C [120, 150]

The optimisation was initialised with 20 Latin hypercube (LHC)
experiments, followed by a subsequent 60 experiments designed by the
TSEMO algorithm. The algorithm converged to a Pareto front consisting
of 20 solutions (Fig. 1). The maximum STY found was
3198.8 kgm−3 h−1 with 10.9% 2 remaining. In contrast, the maximum
conversion corresponds to 1.9% 2 remaining and a STY of
315.4 kgm−3 h−1. Between those two edge points, the Pareto front
highlights the inherent trade-off between conversion and productivity.
Notably, the Pareto front dominates the feasible region. This means that
for all points to the left of the Pareto front there exist at least one Pareto
point where both objectives are better. Vice versa, one objective of the
Pareto optimal points cannot be improved without worsening another
objective.

The reaction profiles for the % of 2 remaining and STY are shown in
Fig. 2a and b respectively. Notably, inspection along the z-axis indicates
that varying the temperature between 120 and 150 °C has little effect on
either objective. In contrast, reducing the residence time corresponds to
a large increase in STY, due to both a reduction in process time and
conversion of mono-alkyne 4 to bis-alkyne 5 (Fig. 2c). This correlates
with a relatively small increase in 2 remaining. For example, the STY
can be increased from 657 to 1586 kgm−3 h−1 by reducing the re-
sidence time from 4.1 to 1.8min, whilst only increasing the 2 remaining
from 2.1 to 3.7%. The STY can be further increased at the lower limits
of residence time by reducing the equivalents of 1-hexyne 3, which
reduces conversion of mono-alkyne 4 to bis-alkyne 5. However, this
correlates with a relatively large increase in % of 2 remaining. For

Scheme 1. Model Sonogashira reaction used in the study of the synthesis of the
3-alknyl-pyridine moiety of lanabecestat 1. 3,5-dibromopyridine 2 reacts with
1-hexyne 3 to form the desired mono-alkyne 4 and the undesired bis-alkyne 5.
Reservoir concentrations: 2=0.61M, 3=0.84M.

Fig. 1. Results for the multi-objective self-optimisation of the Sonogashira re-
action.

A.D. Clayton, et al. Chemical Engineering Journal 384 (2020) 123340

3



example, the STY can be increased from 3009 to 3199 kgm−3 h−1 by
reducing the equivalents of 1-hexyne 3 from 1.60 to 1.46 when
tR= 1min, but causes an increase in 2 remaining from 7.4 to 10.9%.

The results from this optimisation enable process chemists to vi-
sualise the trade-off between conversion and productivity. In this case,
the best STY can readily be selected under the current work-up lim-
itations with respect to 2. Unlike targeted or weighted objective opti-
misation, the TSEMO algorithm identifies the complete trade-off, such

that the data can be re-evaluated without further experimentation if
process parameters are altered. This is particularly beneficial in the
pharmaceutical industry, where the specifications of the downstream
work-up are dynamic during process development. Therefore, with
most pharmaceutical processes having competing objectives, the use of
such algorithms is clearly a beneficial tool for flexible project scenario
planning.

One of the challenges associated with expensive-to-evaluate black-
box optimisation problems is determining an appropriate termination
criterion. Too few experiments can yield suboptimal solutions and in-
accurate surrogate models, whereas too many experiments are wasteful
in terms of time and materials. In terms of multi-objective optimisation,
one could envisage automatically terminating the optimisation once the
hypervolume improvement between successive iterations falls below a
pre-defined level, where the hypervolume is the volume in the objective
space between the current Pareto front and a reference point. However,
as there is no guarantee that the hypervolume will improve between
each iteration, there is a risk of premature termination of the optimi-
sation (see ESI). Thus, we monitored the progress of the optimisation
via visual inspection of changes to the predicted Pareto front (Fig. 3).
The predicted Pareto front is found by performing a multi-objective
optimisation of the GP surrogate model predictions using the NSGA-II
algorithm [38]. It is evident that the initial 20 LHC experiments are
insufficient for creating GP surrogate models that accurately describe
the final Pareto front. The shape of the Pareto front is significantly
changed after the initial exploration by the TSEMO algorithm and the
subsequent updating of the GP surrogate models with new data. The
optimisation was terminated after 80 experiments, as we were satisfied
that there were no significant changes to the GP surrogate models be-
tween experiments 60–80.

3.2. Multi-step self-optimisation

In the previous example, we demonstrated that a reaction in a
continually developing process can be optimised whilst considering
subsequent work-up operations. An alternative approach would be to
optimise the reaction and work-up steps simultaneously. This would
reduce the overall development time and enable the impact of down-
stream processes on economic and environmental objectives to be si-
multaneously considered. To test this hypothesis, we selected a multi-
step process involving the Claisen-Schmidt condensation reaction be-
tween benzaldehyde 6 and acetone 7 (Scheme 2), and its subsequent
work-up step, targeting benzylideneacetone 8 as the desired product
[39]. To the best knowledge of the authors, this is the first report of

Fig. 2. Plots of experiments performed during the optimisation for different
responses: (a) % of 2 remaining, (b) STY with respect to mono-alkyne 4, (c) %
of bis-alkyne 5, rotated to depict data as viewed along the z-axis.
Equiv.= equivalents of 1-hexyne 3, ☆=optimum.

Fig. 3. Pareto fronts found by optimisation using the NSGA-II algorithm of the
GP surrogate model predictions after 20, 40, 60 and 80 executed experiments.
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simultaneous automated optimisation of a multi-step reaction-separa-
tion sequence.

The reaction was conducted in a toluene/acetone/water solvent
mixture, resulting in a biphasic organic-aqueous reaction medium.
Multiphasic reactions require effective mixing to overcome mass
transfer limitations. This can be achieved in tubular reactors by using
static inserts (passive mixing), however relatively high flow rates and
large reactor volumes are required [40], which are unsuitable for ex-
pensive-to-evaluate optimisations. In contrast, miniature CSTRs provide
active mixing which decouples mixing performance and flow rates [41],
thus enabling laboratory-scale optimisation of multiphasic reactions
with varying residence times. Given this, a temperature-controlled
version of our previously reported laboratory-scale CSTR [42] was se-
lected as an appropriate reactor for this reaction.

The subsequent separation of the organic and aqueous phases was
facilitated using an in-line liquid–liquid membrane-based separator
[43]. The process was optimised by simultaneously maximising purity,
STY and reaction mass efficiency (RME) with respect to benzylidenea-
cetone 8 in the organic phase [Eq. (2)]. The optimisation was conducted
in terms of flow rates (ν) and ratios,

where aq= aqueous and org= organic [ν(6)+ ν(7)]. Changing
flow rates in this system affects the process in two ways: (i) the reaction
in terms of residence time and acetone/sodium hydroxide equivalents;
(ii) the solvent ratio and, therefore, the separation in terms of parti-
tioning between the organic and the aqueous phases.

− − −minimise[ ln(purity), ln(STY), ln(RME)] (2)

∈

∈

∈

° ∈

−ν
ν ν
ν ν

6
7 6

subject to:

( )/mL min [0.2, 0.4]
( ): ( ) [0.5, 1.1]
(aq): (org) [0.5, 1.2]

Temp/ C [50, 110]

1

The optimisation was initialised with 20 LHC experiments, followed
by a subsequent 89 experiments designed by the TSEMO algorithm. Of
the 109 experiments conducted, 18 Pareto-optimal solutions were
identified. A comparison of the responses at the optimum for each
function identified conflicts between all three objectives (Table 1). In
this case, the purity was ≈10% lower, the STY was ≈2.5× lower and
the RME was ≈1.5× lower at the optima of the other objectives
compared to their own. Inspection of the optimum conditions for each
objective showed that they were located at three different corners of the
experimental space (see ESI for plots). In general, all of the objectives

favoured high temperatures, as formation of the dibenzylideneacetone
9 by-product was negligible (< 1%) in the presence of a large excess of
acetone 7 [44]. Although the optimum conditions for each objective
were identified, this method provided limited process knowledge re-
garding the influence of the variables on each individual step. This was
due to confounding between the reaction and work-up steps, caused by
monitoring of the multi-step process using a single downstream ana-
lytical source. Therefore, systems optimised using this method are best
treated as a black-box, where the inputs and outputs are described but
without knowledge of how they are related. In cases where a higher
degree of process understanding is required, additional process analy-
tical technologies should be integrated downstream of each individual
step [45].

A surface was fitted to the non-dominated solutions to provide a
visual representation of the Pareto front (See Fig. 4). This successfully
highlighted the complete trade-off between all three objectives, which
could be used to aid decision making during process design. For ex-
ample, the Pareto front indicates that a purity of 82.8%, STY of
166 kgm−3 h−1 and RME of 5.66 can be obtained, which represents an
approximately equal compromise between all three objectives. Alter-
natively, a greater importance could be placed on one or more of the
objectives, and the process conditions selected accordingly post-opti-
misation. In this case, the reagents were all cheap and readily available.
Hence, the termination criterion was based on practical time limita-
tions, and the optimisation stopped after 65 h. Although the number of
experiments was relatively high (> 100), a two-step process was suc-
cessfully optimised with respect to three-objectives without human
intervention, and the trade-off between the objectives was identified to
aid decision making during process design. Therefore, the efficiency of
this approach is favourable when considered against other optimisation
strategies.

The majority of existing automated optimisation techniques are
focused on single objective optimisation (e.g. Nelder-Mead SIMPLEX,
SNOBFIT etc.), where global optimisers require a larger number of
experiments per objective compared to this approach. For example, the
SNOBFIT optimisation of two steps with respect to three objectives and
four variables would require between 252 and 420 experiments based

Scheme 2. Reactor set-up for the Claisen-Schmidt condensation reaction be-
tween benzaldehyde 6 and acetone 7 to form the desired benzylideneacetone 8
and the undesired dibenzylideneacetone 9. P= pump, BPR=back pressure
regulator, SL= sample loop.

Table 1
Comparison of the three optimised functions (row headings) and the yield, STY
and RME at these optimised conditions (column headings). Figures in bold are
the values for the function that have been optimised.

Objective Purity/% STY/kg m−3 h−1 RME

Purity 87.9 98 4.74
STY 76.1 260 4.42
RME 78.8 108 7.16

Fig. 4. Results for the multi-objective self-optimisation of the Claisen-Schmidt
condensation reaction.
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on previous reports [13,39], compared to 109 experiments in this study.
Furthermore, single objective optimisation does not provide the trade-
off curve between conflicting performance criteria. In contrast, the
multi-objective TSEMO algorithm identifies the Pareto front, notably
within a more practical number of experiments. An additional draw-
back of single objective optimisation is that the data is not suitable for
reevaluation in cases where specifications are dynamic during process
development, such as continuous processes with downstream unit op-
erations. In these examples, identification of the trade-off curve was
shown to be essential for the active learning process during multi-step
process design. Although this work optimises only continuous variables,
TSEMO has also been used for discrete variables, i.e., solvent selection
for asymmetric chemistry [32] and, the extension to mixed-integer
decisions (e.g. catalysts, bases, solvents and simultaneous reaction
conditions) is an ongoing area of research in our laboratories.

4. Conclusions

In conclusion, we have successfully combined multi-objective opti-
misation based on machine learning methods with self-optimising
platforms for the optimisation of multi-step continuous reaction pro-
cesses. The benefits of this approach compared to other methods in-
clude the ability to reevaluate data post-optimisation during dynamic
process development, and the identification of a trade-off curve to aid
the active learning process during multi-step process design.
Application of this method enabled the optimisation of a pharmaceu-
tically relevant Sonogashira reaction in just 13 h, removing the need to
conduct further experiments if the downstream work-up process spe-
cifications were changed. This corresponded to a significant reduction
in the quantity of high-value catalytic reagents required during process
development. Furthermore, a multi-step reaction and work-up process
were simultaneously optimised with respect to three-objectives in just
65 h, which would conventionally require six separate optimisations
carried out over multiple weeks with no guarantee that the trade-off
would be obtained. Hence, this method provides a highly efficient and
sustainable approach for the development of multi-step continuous flow
processes, and aligns with the increasing utilisation of multi-step flow
chemistry for the synthesis of active pharmaceutical ingredients.
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