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A B S T R A C T   

Background: Changes in body posture cause changes in morphological properties at different skin sites. Although 
previous studies have reported the thickness of the skin, the details of the postures are not generally given. This 
paper presents the effect of a change in posture on parameters such as thickness and surface roughness in 21 
load-bearing and non-load-bearing sites. 
Materials and methods: A total of 12 volunteers (8 males and 4 females) were selected in an age group of 18–35 
years and of Fitzpatrick skin type I-III. Images were captured using a clinically-approved VivoSight® optical 
coherence tomography system and analysed using an algorithm provided by Michelson Diagnostics. 
Results: Overextension (extending joints to full capacity) resulted in changes to thickness, roughness and un-
dulation of the skin around the body. 
Discussion and conclusion: The load-bearing regions have thicker skin compared to non-load-bearing sites. This is 
the irst time that undulation topography of the stratum corneum–stratum lucidum and the dermal–epidermal 
junction layers have been measured and reported using statistical values such as Ra. The data presented could 
help to deine new skin layer models and to determine the variability of the skin around the body and between 
participants.   

1. Introduction 

The skin is a complex system made up of different layers, namely the 
epidermis (E), dermis (D) and hypodermis. The epidermis is itself made 
up of various layers including the stratum corneum (SC) and stratum 
lucidum (SL). Although abundant research exists on the chemistry, 
composition and function of the skin, little is known about morpho-
logical parameters such as thickness, roughness and undulation at 
different anatomical locations. The thickness of the layers varies with 
age (Li et al., 2006; Tsugita et al., 2013; Vashi et al., 2016), ethnicity 
(Vashi et al., 2016), gender (Lee and Hwang, 2002), anatomical location 
(Tsugita et al., 2013; Lee and Hwang, 2002; Barker, 1951) and presence 
of conditions such as atopic dermatitis and psoriasis (Byers et al., 2017). 

Methods to measure morphological parameters include ultrasonog-
raphy (Pellacani and Seidenari, 1999; Laurent et al., 2007; Bleve et al., 
2012; Bloemen et al., 2011; Dzwigalowska et al., 2013), surface mi-
croscopy (Lee and Hwang, 2002; Therkildsen et al., 1998; Egawa et al., 
2002; Sandby-Moller et al., 2003; Agache and Humber, 2004; Robertson 
and Rees, 2010; Cucumel et al., 2012; Dabrowska et al., 2016), optical 
devices (such as Optical Coherence Tomography (OCT) (O’Leary et al., 
2018; Adabi et al., 2017), Visioscan and PRIMOS (Tsugita et al., 2013; 
Segger and Sch€onlau, 2004; Gambichler et al., 2006; Josse et al., 2011; 
Pe�na et al., 2014; Trojahn et al., 2015; Maiti et al., 2016), contact pro-
ilometers (Li et al., 2006; Barker, 1951; Schrader and Bielfeldt, 1991; 
Ha et al., 2004; Eberlein-K€onig et al., 2000; Mait et al., 2014; Maiti et al., 
2017; Nunes et al., 2019) and other methods such as rubber replicas of 
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Table 1 
Measurement protocol for quantifying skin morphological parameters in overextended and relaxed 
states for a) upper torso, b) upper limbs and c) lower limbs. 
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the skin, micrometer (Lock-Anderson et al., 1997; Ohtsuki et al., 2013). 
Skin roughness is used to detect conditions such as actinic keratosis, 
verrucae and skin cancers, and also to determine responses to topical 
treatments (Dhadwal et al., 2013). Direct measurement of roughness is 
more accurate than using replicas of the skin (Tchvialeva et al., 2010). 
Previous research has identiied E and SC thickness (TSC/TE), skin sur-
face roughness (RSS) and junction layer undulation topography of 17 
sites (including the forearm, neck and buttock); however at most 
anatomical sites various morphological measurements are still un-
known, including E and SC thickness, skin surface roughness and un-
dulation topography of the D-E (RDEJ) and SC-SL junctions (RSCLJ). This 
prevents the creation of detailed skin models and comparison of skin in 
conditions such as psoriasis and atopic dermatitis at sites including the 
cubital fossa, suborbicularis oculi fat, carpus and popliteal fossa. 

Two previous studies (Maiti et al., 2016; Beaudette et al., 2017) 
found that morphological parameters of the skin layers changed when 
the forearm was stretched, meaning that variation in skin layer mea-
surements depend on body segment position. Therefore, comparing 
studies and individuals is challenging due to variations in measurement 
protocols, intra-individual body site and inter-individual hormonal dif-
ferences. Inter-individual hormonal variations involve differences in 
fatty acid, lipids and cholesterols that inluence skin properties among 
individuals (Norlen et al., 1999). The aims of the project are therefore: 
1) to determine differences in skin measurements at two extreme pos-
tures of the body (relaxed and overextension); and 2) quantify 
morphological parameters such as SC or E thickness (TSC/TE), roughness 
of the skin surface (RSS) and SC-SL/D-E (RSCLJ/RDEJ) junction layers. The 
data presented in this paper could help in proposing new skin layer 
models, determining variability of the skin in the body, understanding 
skin differences between individuals and testing the eficacy of phar-
maceutical products on the skin. 

2. Materials and methods 

Skin sites of 12 volunteers were captured using OCT to obtain the 
thickness of the epidermis (E) and stratum corneum (SC); skin surface 

roughness (RSS); and undulation topographies of the dermal-epidermal 
(RDEJ) and stratum corneum-stratum lucidum (RSCLJ) junction layers 
at two different postures: relaxed and in overextension. 

2.1. Volunteers and the OCT system 

Twelve volunteers aged 18–35 years old, with Fitzpatrick skin type I- 
III and with no previous history of skin ailments, were recruited. The 
effect of change in posture on skin parameters was investigated for same 
three out of the total 12 volunteers. The study was approved by the 
Ethics committee of the University of Shefield Medical School. Images 
of 28 skin sites around the body were captured using a clinically- 
approved VivoSight® OCT system (Michelson Diagnostics, Kent, UK). 
The VivoSight® is a Fourier domain OCT system with a 20 kHz swept 
source laser at 1300 nm centre wavelength, 7.5 μm lateral and 5 μm 
axial resolution. It captures 20 frames per second with an image size of 
1342 � 460 pixels. The OCT image volume obtained from each skin site 
was 6 � 6 � 2 mm3 (width x length x depth). 

2.2. Measurement protocol 

Informed consent was irst obtained from the volunteers. The skin 
sites were cleaned with Medipal alcohol wipes (Pal, Leicestershire) to 
remove sebum and then acclimatised for a period of 15 min at 19–21 �C 
room temperature and 30–40% humidity. A non-permanent tattoo skin 
marker pen (Shenzhen Badamu Keji Ltd, China) was used to mark a 
point at every site where measurements were taken (Table 1). Over-
extension was deined as the maximum angle of extension a joint could 
sustain without causing pain, and was taken as the lowest angle 
measured across all volunteers. 

The skin sites of all 12 volunteers were then measured at the over-
extended position. Skin sites of three of the 12 volunteers were also 
captured in the relaxed state to compare with the same volunteers in 
overextended. The angles obtained during both states (�5�) are reported 
in Table 1. There was no contact between the OCT probe and the skin 
sites during either the relaxed or overextended state. 
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Facial sites were also captured using OCT: the frontalis (above 
eyebrow), superior orbital (below eyebrow), external meatus (ear 
canal), post auricular (behind ear), malar region (cheek) and sub-
orbicularis oculi fat (eye bag). Overextension was achieved using a force 
applied to the skin (for example, below the eyebrow) by the investigator 
as shown in Fig. 1. The force applied was based on lexibility of the sites 
and therefore this method could not be repeated accurately. Hence, the 
measurements of facial sites were analysed and represented in the range 
of two values. 

2.3. Data analysis 

The SC/E thickness (TSC/TE), average skin roughness (RSS) and SC- 
SL/D-E Junction (RSCLJ/RDEJ) layers were analysed using a Michelson 
Diagnostics algorithm (Maiti et al., 2016; ISO 3274-2, 1996; ISO 4287-1, 
1997). 

A total of 50 images were captured per site at each position for each 
participant, of which six good quality images were analysed using the 
algorithm to obtain statistical differences. The maximum thickness 
measured was limited by the depth resolution of the laser. Hence, for 
load-bearing sites such as the heels, ingertips and feet, only SC thickness 
and SC-SL junction layer undulations are presented. Skin surface 
roughness and undulation topography of the junction layer deines ir-
regularities in terms of smoothness, peaks and troughs. These parame-
ters were calculated by averaging the height of peaks and troughs over 
the sample length, and are given as mean � SEM. 

Statistical analysis for the normally-distributed data was carried out 
using paired t-tests and 2-way ANOVA tests in GraphPad Prism 7 
(GraphPad Software, San Diego, USA) with signiicance as p < 0.05. 
Pearson correlation was performed between thickness, roughness and 
undulation and skin type. Only data with strong relationships (r > 0.6 
and p < 0.05) are presented in the results section. All the p values be-
tween morphological parameters are reported in brackets. 

3. Results 

Mean weight and height of the volunteers were 63.3�15 kg and 
176.1�12 cm (Table 2). 

3.1. Differences in skin morphology between load-bearing and non-load- 
bearing sites 

The SC was thicker in load-bearing sites such as the ingertip 
(297 μm), heel (311 μm) and foot (601 μm) compared to non-load- 
bearing sites (Fig. 2). 

The TE, RSS and RDEJ of all non-load-bearing sites varied from 80- 
126 μm, 2–5 μm and 2–10 μm respectively. The TSC, RSS and RSC-SL for 

Fig. 1. Methods to overextend a facial site such as eye bag: (a) relaxed state and 
(b) overextended state (force applied represented as white arrow). 

Table 2 
Cohort demographics.  

Volunteers 
(number) 

Mean 
weight (kg) 

Mean 
height (cm) 

Mean skin type (Fitzpatrick skin 
types: number of volunteers) 

Male (8) 68.8 180.8 2.4 (type 1, 1; type 2, 3; type 3, 4) 
Female (4) 52.5 166.8 2.5 (type 1,1; type 2, 0; type 3,3) 
All (12) 63.3 176.1 2.4 (type 1, 2; type 2, 3; type 3,7)  

Fig. 2. Representation of the thickness (TSC: SC thickness and TE: E thickness), skin surface roughness (RSS) and undulation at the SC-SL (RSCLJ) or D-E (RDEJ) 
junctions. Load was provided either by overextending (non-facial sites) or manually (facial sites). Values given are mean � SEM. A red dotted outline box represents 
dorsal skin sites. 
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load-bearing sites varied from 295-601 μm, 2.7–3.3 μm and 7-8 μm 
respectively. 

There was no signiicant relationship between skin type and any 
morphological parameter except for SC thickness at the heel (r ¼�0.86, 
p ¼ 0.0004) and D-E junction layer undulation of the back of the knee 
(r ¼ 0.78, p ¼ 0.003), Fig. 3. 

No signiicant difference (p > 0.99) was seen in any morphological 
parameters between volar forearm skin and other sites. This supports the 
methodology of using the forearm instead of the cheek for the design and 
development of shaving devices, sensors etc. 

3.2. Effect of posture loading: difference between relaxed and 
overextended states 

Posture loading was applied to the sites below the neck (non-facial 
regions) to investigate morphological changes in the skin between the 
relaxed and overextended states (Fig. 4). Overextension caused a sig-
niicant reduction of SC thickness (Fig. 4a) in sites such as the foot 
(450 μm–347 μm; p ¼ 0.02); and E thickness (Fig. 4b) in sites such as the 
back of the knee (115 μm–86 μm; p ¼ 0.04), neck (127 μm–102 μm; 
p ¼ 0.03) and hand (130 μm–107 μm; p ¼ 0.02). The only site that 
increased in thickness with overextension was the SC of the heels, from 
267 μm to 316 μm (p ¼ 0.02); the underarm and volar forearm did not 
show a signiicant change. 

Overextension caused a signiicant decrease in roughness for the 
hand (3.63 μm–3.00 μm; p ¼ 0.03) and back of the knee 
(6.32 μm–2.92 μm; p ¼ 0.01), Fig. 4d. Creased sites such as the neck, 
wrist, underarm, volar elbow and back of the knee showed signiicantly 
higher roughness (p < 0.01) than non-creased sites (Fig. 4d). 

The hand and the back of the knee showed a signiicant decrease 
(p < 0.01) in D-E Junction layer undulation with overextension (Fig. 4f). 

The thickness of load-bearing sites (mean 315 μm) such as the foot, 
ingertip and heel was signiicantly (p < 0.01) higher than the E thick-
ness of non load-bearing sites (Fig. 4b) in both types of postures. 

Fig. 3. Correlation of morphological parameters (in μm) with skin type. a) 
Stratum corneum (SC) thickness of the heel and b) D-E junction layer un-
dulations of the back of the knee in the overextended state against skin type. 

Fig. 4. Changes in morphological parameters in relaxed (n ¼ 3) and over-
extended (n ¼ 12) states. Thickness of stratum corneum (a) and epidermis (b); 
average skin surface roughness of stratum corneum (c) and epidermis (d); 
average undulation of stratum corneum-stratum lucidum junction layer (e) and 
dermal-epidermal junction layer (f). * represents a signiicant difference (p <
0.05) between the postures. SC: stratum corneum; SL: stratum lucidum; D: 
dermis; E: epidermis. 
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However, the SC is part of the epidermis so thickness should not be 
compared. The mean roughness of all load-bearing sites (2.9 μm; Fig. 4c) 
was signiicantly (p < 0.01) lower than non load-bearing sites (4.1 μm; 
Fig. 4d). 

3.3. Effect of manual loading 

Manual loading was applied to the facial regions (Fig. 5a, b and c). 
There was a lack of repeatability between two consecutive measure-
ments on any facial sites during manual loading. The E thickness of the 
above-eyebrow site increased with overextension from 110.5 to 
132.3 μm. However, E thickness in the below-eyebrow site changed with 
overextension from 112.4 to 89.0 μm. Opposite trends to thickness were 
seen in roughness and junction layer undulation for the above-eyebrow 
site (RSS: 2.7 to 2.4 μm; RDEJ junction: 2.8 to 2.6 μm). 

3.4. Comparison between males and females 

Males had signiicantly higher SC thickness in the heel (male: 
366.4 � 30.0 μm, female: 210.1 � 36 μm; p ¼ 0.01; Fig. 6a). Females had 
signiicantly higher E thickness in the ear canal (female: 123.0 � 8 μm, 
male: 102.0 � 4 μm; p ¼ 0.02). Females also had higher E thickness in 
the chest, lower back, neck, underarm and above the eyebrow (Fig. 6b). 

There was no difference between males and females in terms of skin 

surface roughness (Fig. 6c and 6d) or junction undulation (Fig. 6e and 
6f); except for undulation of the D-E junction in the chest, which was 
signiicantly (p ¼ 0.02) smaller in males (2.8 � 0.3 μm) than females 
(4.4 � 0.7 μm). There was no signiicant difference between male and 
female skin surface roughness of either load-bearing (3.0 � 0.7 μm) or 
non-load bearing (3.3 � 0.5 μm) sites. 

4. Discussion 

Overextension generally decreased skin thickness, due to muscle 
activation and bulging that initiated stretching and contraction of the 
skin. In addition, the orientation of Langer’s lines (Langer, 1861) affects 
the epidermal layer thickness: a higher decrease was seen when Langer’s 
lines were perpendicular to the direction of skin extension such as back 
of knee, shoulder blade (Ni Annaidh et al., 2012) i.e., the skin will better 
resist deformation when the force is aligned with ibre direction. In the 
current paper, not all posture movements were in the direction of 
Langer’s lines. Hence, the thickness of the skin decreases with over-
extension as seen in most of the load bearing and non-load bearing sites 
except heels, underarm and volar forearm. In the current study, there 
were no signiicant differences in the underarm or volar forearm. The SC 
thickness in the heel increased with overextension, possibly because of 
calluses on the heels. Although similar observations were reported in 
earlier studies (Maiti et al., 2016; Beaudette et al., 2017), comparison is 

Fig. 5. Comparison of morphological parameters (n ¼ 3). Thickness of epidermis (a); skin surface roughness (b); and dermal-epidermal junction layer undulations (c) 
in relaxed and overextended states. * represents a signiicant difference (p < 0.05) between sites. E: epidermis; D: dermis. 
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dificult as only one participant was studied in one study and the sites 
reported were forearm and lower back. 

The forces applied in manual loading did vary with elasticity of the 
skin, and the lack of repeatability resulted in inaccuracy of the loading 
protocol. For example, on application of force on an eye bag (Fig. 7a) the 

thickness did not change signiicantly. However, the roughness of the 
skin surface and E-DE junction layers did change signiicantly. In 
posture-type loading (Fig. 7b), overextension decreased thickness and 
roughness parameters. Efforts to standardise the applied force on the 
facial sites will be developed in the future to attain repeatable 
measurements. 

The higher SC thickness in female ingertips, feet and heels might be 
due to the greater number of corneocytes (Machado et al., 2010) or 
higher pH content (Danby et al., 2016). Although the difference was not 
signiicant, epidermal layers in the female lower back and chest were 
thicker than in males; this may be due to the larger hip size and presence 
of mammary glands. 

The SEM for skin roughness in the heels of the female participants 
was very high, possibly because of the low numbers in this study or 
lifestyle differences between the male and female cohorts. 

Thickness of the epidermis was consistent with the literature at sites 
such as the volar forearm (Tsugita et al., 2013; Lee and Hwang, 2002; 
Cucumel et al., 2012; Gambichler et al., 2006; Josse et al., 2011; Maiti 
et al., 2016), neck (Lee and Hwang, 2002; O’Leary et al., 2018), buttock 
(Lee and Hwang, 2002; Therkildsen et al., 1998; Sandby-Moller et al., 
2003; Gambichler et al., 2006; Lock-Anderson et al., 1997), chest (Lee 
and Hwang, 2002; Robertson and Rees, 2010; O’Leary et al., 2018; 
Gambichler et al., 2006), upper arm (Lee and Hwang, 2002; Robertson 
and Rees, 2010; Josse et al., 2011) and hand (Tsugita et al., 2013; Lee 
and Hwang, 2002; Robertson and Rees, 2010). Although SC thickness of 
the foot (Lee and Hwang, 2002; O’Leary et al., 2018) and ingertip (Pe�na 
et al., 2014) were consistent with previous studies, other sites were not. 
For example, thickness at the back of knee in the current study was 
around half that reported by Lee et al. (Lee and Hwang, 2002), although 
some details about the posture used by Lee et al. (Lee and Hwang, 2002) 
are missing. 

Skin roughness values were lower than when compared with the 
previous studies: the volar forearm was 67% lower (Li et al., 2006; 
Egawa et al., 2002; Dabrowska et al., 2016; O’Leary et al., 2018; Adabi 
et al., 2017; Segger and Sch€onlau, 2004; Trojahn et al., 2015; Maiti et al., 
2016; Schrader and Bielfeldt, 1991; Eberlein-K€onig et al., 2000), the 
cheek was 80% lower (Egawa et al., 2002; Ohtsuki et al., 2013), buttock 
98% (Bleve et al., 2012), hand 85% (Li et al., 2006) and above the 
eyebrow 90% lower (Dhadwal et al., 2013). However, none of these 
studies reported the posture of the body used during thickness, rough-
ness and undulation measurements. 

Junction layer undulation could not be compared to previous studies 
due to lack of data in the literature. One study found a higher undulation 
in the lower forearm (Maiti et al., 2016), although this might have been 
due to the small number of volunteers used in the two studies. 

The limitation of the maximum depth that the VivoSight® could 
measure meant that SC thickness of load-bearing sites was compared to 
epidermal thickness of non-load-bearing sites. Future studies could be 
conducted with higher depth (lower resolution) OCT to compare 
epidermal thickness of these sites. 

Skin data was calculated based on the assumption that the partici-
pant maintained their posture during imaging. However, muscle bulging 
and activation is also inluenced by muscle strength. Future studies 
could quantify muscle strength, skin top surface stretching using DIC 
while measuring thickness and roughness similar to earlier reported 
studies (Maiti et al., 2016; Panchal et al., 2019). A 3D skin model built 
through DIC surface strain and OCT sub surface will be useful for cli-
nicians for diagnosis of skin tumour in future. In addition, the data 
collected in the current study is limited to Fitzpatrick skin type I-III and 
age group 18–35 years. Future studies will be conducted on a broader 
range of skin types/ethnicities and age groups with visco-elastic varia-
tion among the volunteers. 

5. Conclusions 

The study demonstrated the in vivo variation of skin properties such 

Fig. 6. Comparison of morphological parameters. Thickness of stratum cor-
neum (a) and epidermis (b); skin surface roughness for load-bearing (c) and non 
load-bearing (d) sites; undulations at the stratum corneum-stratum lucidum (e) 
and dermal-epidermal junction layer (f) in the overextended state. * represents 
signiicance difference (p < 0.05) between males and females. SC: stratum 
corneum; SL: stratum lucidum; D: dermis; E: epidermis. 
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as thickness and roughness with posture, gender and site. Change in 
posture led to signiicant differences in the thickness and roughness of 
non-facial sites. However, these changes cannot easily be compared to 
previous literature due to lack of detail in the measurement protocol. 
The stratum corneum thickness, roughness and undulation in load- 
bearing sites are different from non load-bearing sites. This is the irst 
time that stratum corneum-stratum lucidum roughness and epidermal- 
dermal junction layer undulation topography have been measured and 
reported using statistical values such as Ra for 21 sites. These morpho-
logical parameters lay a foundation for future work such as modelling 
the biomechanics of the skin, investigating the structure of unaffected 
skin compared to affected skin for eczema and skin cancer treatment, 
and studying drug infusion therapies. 
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