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Abstract

The Atmospheric Coupling and Dynamics Across the Mesopause (ACaDAMe)

is a mission designed to uniquely address critical questions involving multi-scale

wave dynamics at key space weather (SWx) “gateway altitudes” of the meso-

sphere and lower thermosphere (MLT) at ∼70–150 km. ACaDAMe observes

with a nadir-pointing resonant lidar that utilizes the fluorescence of atomic Na

present in the MLT. By tuning a laser to the Na absorption wavelength (589

nm), ACaDAMe would perform very high resolution measurements of tempera-

ture and Na densities across the mesopause during both day and night. In this

manner, Na is used as tracer for observing and characterizing MLT waves gen-

erated by tropospheric weather that represent the dominant terrestrial source

of energy and momentum affecting space weather and transport of mesospheric

species.
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1. Introduction

Due to an ongoing lack of observational knowledge of key dynamical wave

drivers, our ability to model and predict the Earth’s upper atmosphere above

∼100 km altitude lags far behind the atmosphere below ∼60 km. Like lower at-

mospheric weather prediction, the ability to predict the “space weather” (SWx)

of the thermosphere-ionosphere (TI) system from ∼80-500 km altitude is es-

sential, and now urgently needed, to support and protect our interconnected

technological society, as has been recognized through the recent creation of a

National Space Weather Strategy and Action Plan (Jonas and McCarron, 2016).

Intense radiation and energetic particles from the Sun are absorbed in the ther-

mosphere, providing not only a protective barrier sustaining life on the surface,

but also ions and electrons that form the ionosphere. For many years it was

widely believed that solar and geomagnetic variations in extraterrestrial energy

inputs to the TI dominated its SWx. In recent years, however, that conven-

tional wisdom has been upended by new research showing that atmospheric

waves propagating into the TI from the lower atmosphere provide the dominant

energy and momentum inputs relevant to its SWx. Such waves are now thought

to account for up to 70% of the total energy injected into the TI (Liu, 2016) and

for at least 50% of the ionosphere’s observed space-time “weather-related” vari-

ability (Forbes et al., 2000; Rishbeth and Mendillo, 2001). Even under highly

disturbed geomagnetic conditions, atmospheric waves from lower atmospheric

sources remain critical drivers and regulators of the TI’s global response and

variability (Pedatella, 2016; Pedatella and Liu, 2018).

Solar energy absorbed in the lower atmosphere leads to the generation of

upward-propagating solar tides and Rossby waves, which have planetary scale,

and of smaller-scale gravity waves (GWs) with horizontal wavelengths of 20-

500 km. Some of these planetary waves (PWs), tides and GWs propagate deep

into the TI to drive its large-scale flow, structure, and variability (Figure 1).

Thus atmospheric dynamics driven by solar inputs at lower altitudes represent

“reprocessed” solar energy inputs into the TI that are competitive with direct
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solar inputs from above. These PWs and tides are now believed to drive intense

TI responses to stratospheric sudden warmings and trigger formation of sporadic

ion layers closely related to contemporaneous sporadic sodium (Na) layers.

Small-scale GWs are the primary energy and momentum inputs from below,

whose propagation into the TI is modified to a great degree by variations in PWs

and tides. Key GW-driven TI SWx phenomena, such as traveling ionospheric

disturbances and plasma bubbles, can affect electromagnetic wave propagation

between ground sites and satellites, and hence disrupt communication, navi-

gation and geolocation technologies essential to many aspects of modern life.

Because these GWs and PWs are generated primarily by lower atmospheric

weather events, lower atmospheric weather has strong influences on the SWx of

the TI. Understanding the SWx of the TI is important not just for general scien-

tific research and discovery, but also critical for applications such as spacecraft

launch and reentry, suborbital experimental vehicles, and orbit prediction

2. The ACaDAMe Mission of Opportunity

ACaDAMe is a Mission of Opportunity proposal to deploy a high-power

Na resonance lidar on the International Space Station (ISS). In doing so, the

ACaDAMe mission would be the first to quantify critical multi-scale wave dy-

namics at the key SWx “gateway altitudes” of the mesosphere and lower ther-

mosphere (MLT) at ∼70–150 km. These wave processes drive the weather and

climate of the entire MLT and, in the process, control and define the morphol-

ogy of the surviving wave spectrum that propagates deep into the TI to drive

SWx from below. Through near-global targeted measurement of the critical

gateway altitudes from ∼70–150 km, ACaDAMe would quantify the complex

nonlinear multi-scale wave interactions that drive the entire transport circula-

tion, chemical composition, climate and weather of the MLT across scales (Fritts

and Alexander, 2003; Garcia and Solomon, 1985; Garcia et al., 2014), and, in

the process, determine the surviving PW and GW spectrum that propagates to

higher altitudes to drive TI SWx from below (Liu, 2016; Pedatella et al., 2014).
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ACaDAMe observations would answer fundamental questions about wave-driven

dynamics and species transport in the MLT, such as momentum and energy de-

position and associated diffusive transport, while also clarifying how these multi-

scale wave dynamics organize the morphology of a surviving wave spectrum that

propagates deep into the TI to drive SWx from below. In particular, ACaDAMe

measurements would address the following overarching Science Goals (SGs):

• Quantify for the first time the near-global distribution of GWs, including

their amplitudes, scales, and energy and momentum fluxes (MFs), that

impact the MLT and are major terrestrial drivers of SWx.

• Quantify for the first time the near-global interactions of MLT GWs with

tides and PWs that impact these larger-scale motions and determine the

spectrum of GWs entering and impacting the TI.

• Characterize the impact of wave-induced transport on the main meso-

spheric Na layer, the chemical-dynamical drivers of sporadic Na layers

and thermospheric Na plumes.

ACaDAMe would measure MLT temperatures (T) and Na densities (ρNa) with

high vertical and horizontal resolution, night and day, primarily at altitudes

z ∼75–105 km. These measurements would capture not only the characteristics

of waves that propagate through the MLT and drive the TI from below, but also

the characteristics of GWs that deposit the dominant momentum and energy

in the MLT and determine its weather and climate across scales. ACaDAMe

would also provide considerable insight on the dominant role that these waves

play in transporting key species like atomic oxygen, nitric oxide and the meteoric

metals to lower altitudes where they have important impacts on chemical and

radiative balance, stratospheric cloud formation, ozone depletion and possibly

the global CO2 cycle. The unique combination of T and ρNa measurements from

ACaDAMe would quantify eddy transport and chemical-dynamical coupling by

GWs. ACaDAMe would also measure thermospheric Na plumes that extend

above the mesopause, allowing additional determinations of neutral temperature
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and wave activity up to ∼170 km altitude (Chu et al., 2011).

3. Instrument Description

ACaDAMe employs a nadir-pointing lidar (see Figure 2) with a single 589

nm transmitter with a field-of-view (FOV) of 150 µrad, co-boresighted with

the receiver aperture. The receiver aperture provides a 200 µrad FOV. The

transceiver assembly accommodates the laser transmitter and telescope receiver,

as well as the thermal control system. As depicted in Figure 3, the Payload

Interface Unit (PIU) attaches to the Japanese Experiment Module-External

Facility (JEM-EF) on the ISS, and within the JEM-EF.

ACaDAMe’s functional block diagram as shown in Figure 3, consists of a

laser transmitter, an optical receiver, an electronics box and thermal control

mounted on an optical bench. ACaDAMe uses laser pulses tuned to three fre-

quencies within the 589-nm-wavelength Na D2 absorption-line, to resonantly

excite fluorescence of Na atoms in the MLT. The backscattered fluorescence

signals are collected by a telescope, passed through an optical filter assembly

to reject background noise, and captured by eight photon-counting detectors.

The photon counts are range-resolved via time-of-flight measurements. Altitude

profiles of T, ρNa, and Doppler shift are derived from the photon count profiles

measured at the three different laser frequencies.

The lidar requirements to meet the engineering (cost, schedule, ISS platform)

and science objectives described earlier are listed in Table 1.

3.1. Mesospheric T and ρNa Measurements

Vertical profiles of T and ρNa in the MLT, as well as the Doppler shift asso-

ciated with off-nadir pointing, are obtained by probing the thermally broadened

absorption cross-section of meteoric Na (Figure 4) at three different frequencies,

specifically 1) the D2a peak (νpk), 2) the minimum between the D2a and D2b

peaks (νmin), and 3) at the frequency (νint) between νpk and νmin. This value

of νmin varies with T and so it is chosen for 190 K, the mean mesopause value at
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mid-latitudes. The detected photon counts are proportional to the product of

ρNa and the absorption cross-section, which depends on T and the Doppler shift

associated with off-nadir pointing. T , ρNa, and Doppler shift are derived from

the signal counts using well-known techniques for solving sets of nonlinear equa-

tions. The approach is equivalent to solving the lidar equation for the values

of T , ρNa, and Doppler shift for which the theoretically calculated signal count

equals the measured count, simultaneously at all three laser frequencies (Gard-

ner and Vargas, 2014). The calculation of associated errors in T and ρNa is well

established (Papen et al., 1995; Chu and Papen, 2005; Gardner and Vargas,

2014). In particular, the Root Mean Square (RMS) T and ρNa errors for the

nadir-pointing three-frequency ACaDAMe configuration are

∆TRMS =















387K√
SNRpk

at night

695K√
SNRpk

at day

(1)

(∆ρNa)RMS

ρNa

=















127%√
SNRpk

at night

150%√
SNRpk

at day

(2)

SNRpk =
N2

pk

Npk +Nn +ND

=
(0.164ρNa/cm

−3)2(∆z/km)(∆s/km)

(0.164ρNa/cm−3 + 261(RB +RD)/MHz)
(3)

where NB is the background count per resolution cell, ND is the corre-

sponding dark count, Npk is the signal count when the laser is tuned to νpk,

RD ∼0.02 MHz is the detector dark count rate and RB is the background count

rate. RB depends on the Earth’s albedo, solar zenith angle and the ACaDAMe

optical bandwidth and is ∼12 MHz for an albedo of 0.3, solar zenith angle of

45o and optical full-width half-maximum (FWHM) bandwidth of 30 GHz. Note

that the background noise for ACaDAMe was estimated by assuming that the

Earth is a Lambertian reflector of the incident sunlight and by taking into ac-

count the strong solar Fraunhofer line centered at the Na D2 wavelength. These

noise contributions must be measured and subtracted from the backscattered

signal and the results normalized by the Rayleigh backscattered signal from the
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lower stratosphere. ACaDAMe measures the noise level between 190 and 250

km altitude and the Rayleigh signal between 30 and 42 km (Figure 5). The low

Rayleigh signal can only be measured at night, which is acceptable, as it is used

to calibrate the overall throughput of the transmitter and receiver, which varies

slowly with time. The pulse energies are also measured and used to normalize

the backscattered signals.

ACaDAMe’s performance on ISS is comparable to the highest-performance

ground-based systems currently in use. For example, the Na Doppler lidar at

Tromsø, Norway employs the same solid-state laser technology (4.15 W at 589

nm) as that proposed for ACaDAMe (Kawahara et al., 2017). This lidar has

a power-aperture product of about 0.40 Wm2, compared to ACaDAMe’s 1.22

Wm2. When the effects of the increased target distance for ACaDAMe on

ISS (factor of 3) and the 2-way atmospheric attenuation and detector quantum

efficiency (QE) of the Tromsølidar (∼0.33) are considered, the signal-to-noise

ratios (SNRs) of the two systems are comparable. Additionally, ACaDAMe’s

background noise is ∼4 times smaller than that of a space-based aerosol/cloud

lidar with a similar aperture, FOV, and etalon bandwidth operating at 532

nm, where there is no Fraunhofer line. Thus, ACaDAMe’s laser technology

and measurement performance (SNR) are comparable to the best ground-based

systems currently in operation (Kawahara et al., 2017) but would provide near-

global high resolution observations. Additionally, its daytime noise performance

would be better (∼6 dB smaller) than similar space-based aerosol/cloud lidars

like the Cloud-Aerosol Transport System (CATS) (Storm et al., 2016).

Equations 1 and 2 provide a theoretical estimate of the measurement errors

which are summarized in Table 2, where ∆z and ∆s represent the vertical and

along-the-track resolutions and λz and λs are the GWs vertical and horizon-

tal wavelengths. We also assessed ACaDAMe’s performance with an end-to-end

simulation, taking into account all instrument parameters and atmospheric phe-

nomena of interest, and simulating the detected signals. ACaDAMe acquires

data at high resolution that can then be additionally averaged along track or in

altitude to yield lower errors for studies of the waves specific to the individual
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wave regimes. Figure 6 shows the expected errors in T retrieval (∆TMean), aver-

aged from 86 to 98 km altitude, where ρNa is largest, as a function of vertical and

horizontal integration. These errors are computed using a typical annual-mean

ρNa profile and are plotted in Figure 6. The dotted areas in Figure 6 represent

the combination of ground post-processing resolutions which would satisfy sci-

ence requirements. Thus the errors would be lower than required to achieve the

SGs and ACaDAMe would exceed both the error and resolution requirements

of the science mission. These end-to-end error estimates are consistent with the

error in Eq. 1 and 2 averaged over 86-99 km and can be approximated by

∆TMean =
16.9K(km−1)

√

∆z(km)∆s(km)
(4)

3.2. Detection of Gravity Waves (GWs)

To study GW dynamics in the MLT, we characterize the perturbations in

T and ρNa induced by individual GWs and by a spectrum of GWs. Individual

GW amplitudes typically vary from several K to over 30 K in the MLT (Cao

and Liu, 2016) while the temperature variance induced by the full spectrum

of GWs can vary between 30 and 150 K2 (Gardner and Liu, 2007). Decades

of MLT observations have shown that ρNa and T are usually dominated by

one or two prominent waves, which can be readily characterized using spectral

techniques such as the S-Transform (Stockwell et al., 1996). In these cases the

measurement precision is usually limited by photon and background noise. The

GW polarization and dispersion relations can be used to relate the temperature

amplitude T ′ of a GW to its MF per unit mass, as follows

2N0T0

g

√
MF = 0.882K

√

MF (m2/s2) ≤ T ′(K) (5)

where N0 is the background buoyancy frequency, T0 is the background

temperature and MF is the momentum flux . Both N0 and T0 would

be measured by ACaDAMe. To confirm that ACaDAMe can characterize the

scientifically important waves, we assume that the GW amplitude is determined
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by fitting sinusoids to T at each altitude along the orbit track and then average

the results. We focus on the altitude range where SNR is largest, and assume

the sinusoidal fit is made over 3 along-track oscillations of the wave. To achieve

the scientific goals, requires the measurement precision of T ′ to be less than

20% at night, in which case it would also be possible to determine the other

wave parameters (e.g. λz, λs and MF) with adequate precision. Thus, using

the lower bound on T ′ given by the left hand side (LHS) of Eq. 5, we find

that

∆TMean(∆z,∆s) ≤ 0.938K

√

λh(km)MF (m2/s2)

∆z(km)∆s(km)
(6)

The right hand side (RHS) of Eq. 6 represents the scientific requirement

for GW observations (Figure 6 and Table 2).

An extensive database of MLT GWs observed over Maui, HI and Cerro

Pachón (Cao and Liu, 2016), showed that the most probable GWs had λh ∼30

km, λz ∼25 km and intrinsic periods ∼7 min. Approximately 67% of the GWs

had MF magnitudes exceeding ∼20 m2s−2. Thus, to characterize 67% of GWs at

night, ACaDAMe must resolve MFs as low as 20 m2s−2 and λh ∼ as short as 20

km. According to Eq. 6, to accomplish this the average measurement precision

(between 86 and 98 km at ∆z=2 km and ∆s=3 km) must be 7.7 K or smaller.

At night, according to Eq. 4, ACaDAMe would achieve 6.9 K so that even for

the smallest scale (λs=20 km) and smallest amplitude GW (MF=20 m2s−2 and

T ′=3.9 K), its amplitude would be determined with a precision better than 20%

(less than 0.8 K). The science requirements and performance capabilities for the

full range of phenomena studied by ACaDAMe are summarized in Table 2.

In addition to the theoretical estimates given by Eqs. 5 and Eq. 6, we

also estimated the atmospheric response to GWs via a simulation in which we

added prescribed wave-induced perturbations to a background T0 profile. The

resulting T field was then probed using a model of the ACaDAMe measurement.

The T profile was retrieved from the output of this model, and binned in the

same way as ACaDAMe level 0 data. The retrieved T were high-pass filtered
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to isolate GWs. Finally, we determined T ′, λz, and λs using harmonic fits and

compared to the original GW parameter (Figure 7). A series of these simulations

show that ACaDAMe can characterize GWs with amplitudes as low as 3.5 K at

altitudes where ρNa is highest if there is a coherent wave pattern with at least

three along-track oscillations.

3.3. Doppler Shifts and ACaDAMe Performance

ACaDAMe would point approximately perpendicular to the ISS velocity

vector and would experience a small relativistic transverse Doppler effect (160

MHz), given the ∼7 km/s ISS orbit speed, which would be considered in the T

retrieval. The ISS pitches, yaws and rolls around the velocity vector, changing

the pointing direction of the laser. Changes in pitch would tilt the laser off-

nadir and induce a Doppler shift, detuning the Na-absorption from the source

wavelength. During space shuttle docking, the ISS changed attitude by up to

±122 mrad (±7o) (Treder, 1999; Budzien et al., 2011), but this no longer occurs.

Figure 4b shows the Doppler Na absorption cross-section in the ISS reference

frame for different off-nadir angles. Detuning is significant for large angles

(∼800 MHz at 3.5o). However, the chosen frequency separation guarantees

that ACaDAMe measurements are highly sensitive to thermal broadening of

the Na absorption, and thus T , over a large range of off-nadir angles. Figure

8 illustrates simulated ACaDAMe performance as a function of off-nadir angle.

Between -1o and +4o, temperature errors vary by less than 30%. Our initial

calculations show that ACaDAMe can tolerate changes in the ISS pitch angle

over a range of about 4-5 degrees and still achieve a measurement precision

sufficient to address the SGs. The Na fluorescence received by ACaDAMe’s

receiver telescope would also be Doppler-shifted but the etalon filter bandwidth

is many times wider, and thus the transmission is essentially constant over this

small range. The intensity-dependent Doppler effect is also very small at orbital

velocities and contributes less than a 0.01% change in intensity when the velocity

vector and source direction are parallel.
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3.4. Na Vapor Physics

Saturation, radiation pressure, and optical pumping can all limit fluorescence

return and require corrections for the T and ρNa calculations. For saturation,

as the laser pulse energy increases, the fraction of Na atoms in excited states

increases to a limiting value. There are three approaches to reduce saturation:

1) increase the laser bandwidth, 2) increase the beam width, or 3) increase

the pulse length. Considerable research exists (Holzlöhner et al., 2010; Rampy

et al., 2015; Hellemeier et al., 2017) on the engineering of laser parameters for

optimizing the Na fluorescence for laser guide stars. For ACaDAMe, the goal

is to limit saturation effects to minimize T and ρNa errors. Initial calculations

show saturation effects are minimal.

4. ACaDAMe Design

4.1. ACaDAMe Laser Transmitter

The ACaDAMe design includes a single-frequency tunable laser transmitter.

The transmitter consists of a Laser Optics Module (LOM) and a Laser Electron-

ics Module (LEM). To produce the required 589 nm laser light, the transmitter

mixes the outputs of two diode-pumped Nd:YAG lasers – one at 1064 nm and

one at 1319 nm, since 1/589 = 1/1064 + 1/1319. The sum frequency generation

(SFG) is performed in a nonlinear optical crystal of Lithium triborate (LiB3O5),

denoted LBO. The Ice, Cloud, and land Elevation / Geoscience Laser Altime-

ter System (ICESat/GLAS) (Afzal et al., 2007), CATS (Chuang et al., 2013;

Storm et al., 2016) and ICESat-2/ Advanced Topographic Laser Altimeter Sys-

tem (ATLAS) (Konoplev et al., 2016) spaceflight laser transmitters also used

an LBO crystal to produce 532 nm light. NASA-GSFC solid-state Q-switched

Nd:YAG lasers were designed, built and tested in-house for the GLAS (Afzal

et al., 2007), Mercury Laser Altimeter (MLA) (Krebs et al., 2005), Lunar Or-

biter Laser Altimeter (LOLA) (Yu et al., 2008) and Global Ecosystem Dynamics

Investigation (GEDI) (Coyle et al., 2015) missions. Each ICESat/GLAS space-
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flight Nd:YAG laser transmitter produced 4.5W of total optical power at 1064

nm and 532 nm (Afzal et al., 2007).

Numerous 589 nm lasers using SFG have been constructed, including the

fielded Na-lidar SFG diode-pumped laser with very similar architecture and re-

quirements to ACaDAMe, operating in Tromsø (Kawahara et al., 2017). This

TRL-5 lidar has a laser output power of ∼4 W at one of 3 tunable wave-

length and a laser pulse width of 35 ns with linewidth <200 MHz, similar to

ACaDAMe’s specifications (Table 1) (Kawahara et al., 2017; Krainak et al.,

2018). ACaDAMe’s SFG laser transmitter wavelength outputs scheme, mix-

ing specific wavelengths output from the 1064 nm and 1319 nm lasers, by al-

ternatively operates each of the acousto-optic frequency shifters (AOFS) for

individual seed lasers as shown in Figure 9 and schematically in Figure 10.

ACaDAMe’s SFG Q-switched laser operates at 300 Hz to ensure no range ambi-

guity. The SFG Q-switched laser wavelength is rapidly tuned between successive

laser pulses (Figure 9) so the laser alternates between three closely-spaced wave-

lengths (Table 1). This is accomplished via injection-seeding and locking. At

the receiver, this allows measurement of the Na-resonant lidar signal returns in

time bins, such that returns from each wavelength are separated and sorted in

the time domain.

4.2. Laser Optics Module (LOM)

The LOM is a robust platform that houses all of the laser optical and opto-

mechanical components (Figure 11). To rapidly tune three fixed laser wave-

lengths at the Na-resonant D2 line, each of the Nd:YAG lasers were injection

seeded with electronically-switchable seed lasers near 1064 nm and 1319 nm.

The wavelength stability of the 589 nm laser pulses is achieved by locking the

wavelength of the injection seeder to the D2a absorption line (Figure 10). The

D2a absorption line is detected by the modulation transfer spectroscopy (MTS)

technique. The signal is fed back to one of the seed lasers to ensure the summed

frequency (wavelength) is always at 589.15900 nm (D2a or λpk). Wavelength

switching to λmin at 589.15790 nm is achieved by frequency-shifting the 1064
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nm seed laser using AOFS1, which is designed to provide a shift of frequency

of 951 MHz (see table in Figures 9 and 10), and an optical switch. Wavelength

switching to the intermediate wavelength, λint at 589.15846 nm, is achieved

by frequency-shifting the 1319 nm seed laser using AOFS2, which is designed

to provide a frequency shift of 467 MHz, and an optical switch. Through the

operating conditions of the AOFS1and AOFS2 in the ON and OFF state for

the each of the seed lasers as shown in Figure 9, the wavelengths of the seed

lasers would then be used to injection seed the corresponding Nd:YAG cavities

as shown in Figure 11. The cavities are locked to the incoming laser frequency

by the Pound-Drever-Hall method (Drever et al., 1983). Figure 12 shows experi-

mental absolute frequency-locking performance demonstrated by our prototype

system (Numata et al., 2011; Riris et al., 2017; Abshire et al., 2018). It has

achieved <5 MHz drift over >24 hours, satisfying the <40 MHz requirement for

<2K temperature measurement accuracy.

4.3. Laser Electronics Module (LEM)

The LEM serves as the electrical interface between the laser and the in-

strument power and data systems. Its primary function is to deliver regulated

200 µs, 100 A pulses to the laser diodes. The LEM is composed of four major

subassemblies, each with a dedicated printed circuit card: 1) the internal con-

verter; 2) the boost converter; 3) the control electronics, and; 4) the thermal

control board. These four cards, the energy storage capacitor bank, the field-

effect-transistor (FET) heat sink structure, and associated internal harnessing

are packaged within the electronics cavity of the laser assembly chassis.

4.4. Transmission Optics

The ACaDAMe transmission optics consist of a Beam Expander telescope

and a Boresight Alignment Mechanism (BAM). The BAM, which is a set of

Risley prisms mounted in an opto-mechanical rotation mechanism, ensures the

instrument boresight alignment by applying post-launch pointing corrections to

the transmitted beam. The boresight alignment requirement is ±5 µrad.
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4.5. Receiver Telescope, Aft Optics and Detector System Module

ACaDAMe would use a Ritchey-Chretien beryllium telescope as a receiver

telescope. A 0.6 m beryllium primary mirror collects the resonant-Na fluo-

rescence and background. A secondary mirror directs the beam towards the

aft-optics (Figure 13).

The light from the receiver telescope output is collimated by two lenses and

directed through an Optical Filter Assembly (OFA; Figure 13). The OFA is

critical to reduce the background sunlight reflected by the Earth and scattered

by the atmosphere, enabling daytime measurements. The OFA consists of a 0.2

nm FWHM optical bandpass filter and a 0.028 nm FWHM temperature-tuned

etalon interference filter in series (Troupaki et al., 2015; Zaun et al., 2004). The

OFA also provides a means to monitor the etalon-to-laser wavelength tracking.

Three additional lenses focus the filtered light onto a fiber optic, which relays

it to the detector system electronics module (DSEM).

ACaDAMe uses eight solid-state single-photon-counting modules (SPCMs)

to detect the Na-resonant fluorescence signal. The SPCMs use a low-noise Si

avalanche photodiode operated in Geiger mode. The dynamic range of the re-

ceived signal and background light require eight SPCMs to prevent saturation

during daytime measurements. The optical signal output from the filter assem-

bly is equally divided into eight SPCMs by a set of non-polarizing beam-splitters.

A compound lens focuses the light onto the SPCMs. The DSEM Data Capture

Card (DCC): 1) ingests the SPCM data up to a maximum total photon count

rate of 160 Mcps = 20 Mcps/SPCM x 8 SPCMs, 2) implements Multichannel

Scaler (MCS) time binning, and 3) implements the SPCM Gate Control. This

system may be optimized to achieve more uniform error responses (Figure 5)

or, if needed, to increase the range of pitch angles that ACaDAMe can tolerate.

5. Conclusions

The proposed ACaDAMe Mission of Opportunity would focus on the full

spectrum of atmospheric waves, with scales from local to global, that travel

14



from the troposphere upwards towards geospace. On their way these waves

will interact with each other and the background atmosphere. Some will be

absorbed, driving the winds and temperatures in the MLT and determining

the distribution of energetically important chemicals and metals, while others

will continue upward to interact and modify the TI, and have SWx impacts.

The ISS provides an ideal combination of altitude, geographic, and local time

(LT) coverage to accomplish the ACaDAMe science goals, through near-global

measurements. Most ACaDAMe subsystems leverage technology validated dur-

ing the successful Clouds and Aerosol Transport System (CATS) mission. A

high Technology Readiness Level (TRL) design, ample ISS-provided resources

within margin, and technological innovation leveraging NASA GSFC expertise

in space-based laser measurements, offer a low-cost solution to providing the

necessary measurements to achieve this high-impact ACaDAMe science.
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Holzlöhner, R., Rochester, S.M., Bonaccini Calia, D., Budker, D., Higbie, J.M.,

Hackenberg, W., 2010. Optimization of cw sodium laser guide star efficiency.

A&A 510, A20. doi:10.1051/0004-6361/200913108, arXiv:0908.1527.

17

http://dx.doi.org/10.1016/S1364-6826(00)00029-8
http://dx.doi.org/10.1016/S1364-6826(00)00029-8
http://dx.doi.org/10.1029/2001RG000106
http://dx.doi.org/10.1029/2001RG000106
http://dx.doi.org/10.1002/2013JD021208
http://dx.doi.org/10.1364/AO.53.004100
http://dx.doi.org/10.1364/AO.53.004100
http://dx.doi.org/10.1029/2005JD006179
http://dx.doi.org/10.1364/JOSAA.34.001376
http://dx.doi.org/10.1051/0004-6361/200913108
http://arxiv.org/abs/0908.1527


Jonas, S., McCarron, E.D., 2016. White House Releases National Space

Weather Strategy and Action Plan. Space Weather 14, 54–55. doi:10.1002/

2015SW001357.

Kawahara, T.D., Nozawa, S., Saito, N., Kawabata, T., Tsuda, T.T., Wada, S.,

2017. Sodium temperature/wind lidar based on laser-diode-pumped Nd:YAG

lasers deployed at Tromsø, Norway (69.6oN, 192oE). Optics Express 25, A491.

doi:10.1364/OE.25.00A491.

Konoplev, O.A., Chiragh, F.L., Vasilyev, A.A., Edwards, R., Stephen, M.A.,

Troupaki, E., Yu, A.W., Krainak, M.A., Sawruk, N., Hovis, F., Culpepper,

C.F., Strickler, K., 2016. Three-year aging of prototype flight laser at 10 kHz

and 1 ns pulses with external frequency doubler for ICESat-2 mission, in:

Laser Technology for Defense and Security XII, p. 98340A. doi:10.1117/12.

2225985.

Krainak, M.A., Yu, A.W., Li, S.X., Bai, Y., Numata, K., Chen, J.R., Fahey,

M.E., Micalizzi, F., Konoplev, O.A., Janches, D., Gardner, C.S., Allan, G.R.,

2018. Progress on laser technology for proposed space-based sodium lidar,

in: Solid State Lasers XXVII: Technology and Devices, p. 105111E. doi:10.

1117/12.2290471.

Krebs, D.J., Novo-Gradac, A.M., Li, S.X., Lindauer, S.J., Afzal, R.S., Yu,

A.W., 2005. Compact, passively Q-switched Nd:YAG laser for the MES-

SENGER mission to Mercury. Applied Opt. 44, 1715–1718. doi:10.1364/AO.

44.001715.

Liu, H.L., 2016. Variability and predictability of the space environment as

related to lower atmosphere forcing. Space Weather 14, 634–658. doi:10.

1002/2016SW001450.

Numata, K., Chen, J.R., Wu, S.T., Abshire, J.B., Krainak, M.A., 2011. Fre-

quency stabilization of distributed-feedback laser diodes at 1572 nm for li-

dar measurements of atmospheric carbon dioxide. Applied Opt. 50, 1047.

doi:10.1364/AO.50.001047.

18

http://dx.doi.org/10.1002/2015SW001357
http://dx.doi.org/10.1002/2015SW001357
http://dx.doi.org/10.1364/OE.25.00A491
http://dx.doi.org/10.1117/12.2225985
http://dx.doi.org/10.1117/12.2225985
http://dx.doi.org/10.1117/12.2290471
http://dx.doi.org/10.1117/12.2290471
http://dx.doi.org/10.1364/AO.44.001715
http://dx.doi.org/10.1364/AO.44.001715
http://dx.doi.org/10.1002/2016SW001450
http://dx.doi.org/10.1002/2016SW001450
http://dx.doi.org/10.1364/AO.50.001047


Papen, G.C., Pfenninger, W.M., Simonich, D.M., 1995. Sensitivity analysis of

Na narrowband wind-temperature lidar systems. App. Opt. 34, 480. doi:10.

1364/AO.34.000480.

Pedatella, N.M., 2016. Impact of the lower atmosphere on the ionosphere re-

sponse to a geomagnetic superstorm. Geophys. Res. Lett. 43, 9383–9389.

doi:10.1002/2016GL070592.

Pedatella, N.M., Fuller-Rowell, T., Wang, H., Jin, H., Miyoshi, Y., Fujiwara, H.,

Shinagawa, H., Liu, H.L., Sassi, F., Schmidt, H., Matthias, V., Goncharenko,

L., 2014. The neutral dynamics during the 2009 sudden stratosphere warm-

ing simulated by different whole atmosphere models. Journal of Geophysical

Research (Space Physics) 119, 1306–1324. doi:10.1002/2013JA019421.

Pedatella, N.M., Liu, H.L., 2018. The Influence of Internal Atmospheric Vari-

ability on the Ionosphere Response to a Geomagnetic Storm. Geophys. Res.

Lett. 45, 4578–4585. doi:10.1029/2018GL077867.

Rampy, R., Gavel, D., Rochester, S.M., Holzlöhner, R., 2015. Toward opti-
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Table 1: Set of lidar parameters and the necessary performance requirements in order to meet

the all objectives, including science, technical, programmatic, as well as safety.

Lidar Parameter Requirements

Laser Wavelength (interleaved pulses) 589.1579 nm, 589.1583 nm, 589.1590 nm

Pulse Energy, Full power beam energy 15 mJ, 4.5 W single beam

Laser pulse width and repetition rate ∼30 ns at 300Hz

Laser Power (Electrical Total) 123W

Beam divergence angle 150 µrad FWHM

Single Receiver telescope 60 cm diameter

Optical Receiver FOV 200 µrad FW

Receiver optics transmission >75%

Optical band-pass filter width 30 GHz FWHM

Detector Quantum Efficiency >55% QE at 589 nm

Detector Array Maximum Photon-Count-Rate 160 Mcps (8x20 Mcps)

Detector Dark count rate ∼20 kHz

Timing electronics timing resolution 100 Ms/s /channel binning

Laser Linewidth 85 MHz RMS
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Table 2: Science requirements and ACaDAMe performance.

Phenomenon/ ∆z ∆s Science ACaDAMe Margin

Feature Requirements Precision

Fast GWs 5 km 3 km ∆TMean ≤ 5 K 4 K at night 25%

(20 km ≤ λz & 20 km

≤ λh)

Medium GWs 2 km 3 km ∆TMean ≤12 K 7 K at night 71%

(10 km ≤ λz ≤30 km &

50 km ≤ λh)

Slow GWs 1 km 5 km ∆TMean ≤19 K 8 K at night 140 %

(4 km ≤ λz ≤16 km &

100 km ≤ λh)

Tides and PWs 5 km 500 km ∆TMean ≤2 K 0.3 K at night 667%

5 km 500 km ∆TMean ≤ 2 K 1.5 K at day 33%

Global T Map 3 km 500 km ∆TMean ≤2.5 K 0.4 K at night 525%

3 km 500 km ∆TMean ≤2.5 K 2.0 K at day 25%

Global ρNa Map 3 km 500 km (∆ρNa)Mean ≤

1%

0.2% at night 400%

3 km 500 km (∆ρNa)Mean ≤

1%

0.5% at day 100%

Sporadic Na 1 km 5 km (∆ρNa)Mean ≤

5%

2.48% at night 102%

2 km 20 km (∆ρNa)Mean ≤

5%

2.78% at day 80%

Thermospheric Na 10 km 200 km ∆ρNa

∆Na
≤ 30% ≤ 28.0% at

night

23%

(2 cm−3 ≤ ρNa)
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Figure 1: GW coupling processes in the atmosphere-ionosphere system versus altitude and

latitude. Note the Na layer (orange), originates from the daily ablation of incoming me-

teoroids, where ACaDAMe would measure small- and large- scale waves and quantify their

global momentum transport and deposition, multi-scale interactions, forcing of the MLT, and

penetration to higher altitudes for the first time.
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Figure 2: ACaDAMe Flight System Concept.

Figure 3: ACaDAMe lidar block diagram.
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Figure 4: The Na D2 resonance line is a thermally broadened doublet composed of six

hyperfine lines of atomic Na centered at 589.159 nm: (a) Earth’s Na absorption cross-section

as observed by ACaDAMe on ISS at three different temperatures, and (b) at three different

nadir angles. The chosen frequencies guarantee high sensitivity to thermal broadening of the

Na line for a wide range of expected nadir pointing angles.
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Figure 5: Regions of the atmosphere, and purpose. where ACaDAMe would perform mea-

surements.

Figure 6: Expected nighttime T errors as function of vertical and horizontal integration and

data sets required for proposed studies.
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Figure 7: Example of an end-to-end simulation demonstrating ACaDAMe’s ability to detect

GWs. The retrieval yielded GW parameters T=7.3 K, λs = 48.6 km and λz = 14.3 km, which

are very similar to the prescribed values T = 7.0 K, λs = 50.0 km, and λz = 15.0 km.

Figure 8: Simulated ACaDAMe performance (∆z=2.4 km, ∆s=7.5 km) as function of off

nadir-angle. The temperature error between 86 and 98 km altitude is approximately flat

between -1o and +4o.
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Figure 9: ACaDAMe Laser Transmitter – frequency division multiplexing of the three trans-

mitted wavelengths.

Figure 10: ACaDAMe laser injection-seeding and wavelength locking system.

Figure 11: ACaDAMe Laser Optics Module block diagram.
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Figure 12: Experimental absolute frequency locking performance. The demonstrated <5 MHz

drift surpasses the ACaDAMe requirement (<40 MHz).

Figure 13: ACaDAMe Receiver Aft Optics design.
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