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THREE-DIMENSIONAL FACE RECOGNITION: AN EIGENSURFACE
APPROACH

Thomas Heseltine, Nick Pears, Jint Austin

Advanced Computer Architecture Group, Department of’ Computer Science, The University of York

ABSTRACT

We evaluate a new approach to face recognition using a varicty
of surfuce representations of three-dimensional tactal structure.
Applying principal component analysis (PCA), we show that
high levels of recognition accuracy can be achicved on a large
database of 3D face models, captured under conditions that
present  tvpical difficultics to more conventional two-
dimensional approaches. Applying a range of image processing
techniques we identity the most effective surface representation
for use in such application areas as sccurity, surveillance, data
compression and archive searching.

1. INTRODUCTION

Despite significant advances in face recognition lechnology, it
has yet to achieve the levels of accuracy required for many
commercial and industrial applications, mamnly due to the
inaccuracies caused by the environmental circumstances under
which images are captured. Vartation in lighting, facial
expression and orientation all significantly increase error rates,
making it necessary to maintain consistent conditions between
query and gallery images for the system to function adequately.
However, this approach eliminates some of the key advantages
offered by face recognition: a passive biometric in the sense that
it does not require subject co-operation.

The use of 3D face medels is motivated by a number of
factors. Firstly, by relying purely on geometric shape, rather
than colour and texture information, we render the system
invariant to lighting conditions. Secondly, the ability to rotate a
facial " structure in  three-dimensional space, allowing for
compensalion of variations in pose, aids those methods requiring
alignment prior to recognition. Finally, additional
discriminating information is captured, when compared with 2D
systems. As an example, eye separation can be recovered from
both sets of data, but nose depth can only easily be recovered
from three-dimensional data. We do recognise, however, that
two-dimensional colour-texture information provides a rich
source of discriminatory information, which is forfeit if three-
dimensional data alone is used. Therefore, the focus of this
paper is to determine the ability of three-dimensional data alone
te form the basis of a face recognition system, as compared to
2D systems. Additional research can then identify methods of
reintroducing normalised two-dimensional texture data in order
to reduce error rates further.

We investigate the use of facial surface data, taken from 3D
face models, as a substitute for the more familiar two-
dimensional images. We take a well-known method of face
recognition, namely the eigenface approach described by Turk
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and Pentland [1] and adapt it for use on three-dimensional data.
Testing a range ot surlace representations and distance metrics,
we identify the most effective methods of recognising taces
using (hree-dimensional surface structure.

In order to test this method of face recognition, we require a
large database of 3D face models. However, until recently, 3D
capture methods have been slow and cumbersome, requiring the
subject to remain perfectly still.  For these reasons, three-
dimensional — face  recognition  has  remained  relatively
unexplored, when compared to the wealth of rescarch focusing
on two-dimensional face recognition. Although  some
investigations have experimented with 3D data {2, 3, 4], they
have had to rely on small test sets of 31} face models or used
generic face models to enhance two-dimensional images prior to
recognition [3, 6, 7]. However, this rescarch demonstrates that
the use of three-dimensional information has the potential to
improve face recognition well beyond the current state of the art.
With the emergence of new 3D capture equipment, the
population of a large 3D face database has now become viable
and being undertaken at The University of York as part of a
project facilitating research into three-dimensional face
recognition technology {8].

2. RELATED WORK

In this section, we discuss previous research exploring the
possibilities offered by three-dimensional geemetric structure to
perform face recognition. To date, the majority of research has
focused on two-dimensional images, although some have
attempted to use a-priori knowledge of facial structure to
enhance these existing two-dimensional approaches. For
example, Zhao and Chellappa [5] use a generic 3D face model to
normalise facial orentation and lighting direction in two-
dimensional images. Using estimations of light source direction
and pose, the 3D face model is aligned with the two-dimensional
face image and used to project a prototype image of the frontal
pose equivalent, prior to recognition by linear discriminant
analysis. Recognition accuracy on the test set is increased from
approximately 81% (comect match within rank of 25) to 100%.
Similar results are witnessed in the Face Recognition Vendor
Test [9], showing that pose correction using Romdhani, Blanz
and Vetter’s 3D morphable model technique [6] reduces etror
rates when applied to the FERET database,

Blanz, Romdhani and Vetter [7] take a comparable
approach, using a 3D morphable face model to aid in
identification of 2D face images. Beginning with an initial
estimate of lighting direction and face shape, Romdhani et al
iteratively alter shape and texture parameters of the morphable
face meodel, minimising difference to the two-dimensional
image. These parameters are then taken as features for



identification, resulting in 82.6% correct identilications on a test
set of 68 people.

Although these methods show that knowledge of three-
dimensional face shape can aid normalisation for two-
dimensional face recognition systems, none ol the methods
mentioned so far use actual geometric structure to perform
recognition. Whereas Beumier and Achercy [2] make direct use
of such information, testing various metheds of matching 3D
face models, although few were successful. Curvature analysis
proved ineffective, and feature extraction was not robust enough
to provide accurale recognition.  However, Beumier and
Acheroy were able to achieve reasonable error rates using
curvature values of vertical surface profiles. Venfication tests
carricd out on a database of 30 people produced equal error rates
(ELR) between 7.25% and 9.0% on the automatically aligned
surfaces and between 6.25% and 9.3% when manual alignment
was used.

Fesher et al [10] take a similar approach to our base method,
using PCA of range images and euclidean distance o perform
recognition. Matching 37 range images produces a correct
identification rate of 94%, when training is performed on the
gallery set. However, it is not demonstrated how successtul the
system 18 when the training and test set are disjomnt and no other
surface representations are tested.

Chua et al [4] take a different approach, applying non-rigid
surface recognition techniques to the tace structure. An attempt
is made to ideniify and extract ngid areas of facial surfaces,
creating a system invariant to facial expression.  The
characteristic used to identify these rigid arcas and ultimately
distinguish between faces is the point signature, which describes
depth values surrounding local regions of specific points on the
facial surface. The similarity of two face models is computed by
identifying and comparing a set of unique point signatures for
each face. Identification tests show that the probe image is
identified correctly for all people when applied to a test set of 30
depth maps of 6 different people.

Another method, proposed by Gorden [3], incerporates
feature localisation. Using both depth and curvature mmformation
extracted from three-dimensional face models, Gordon identifies
a number of facial features, mcluding head width, nose
dimensions and curvatures, distance between the eyes and eye
width. These features are evaluated using fisher’s linear
discriminant, determining the discriminating ability of each
individual feature. Findings show head width and nose location
are particularly important features for recognition, whereas eye
widths and nose curvatures are less useful. Recognition is
performed by means of a simple euclidean distance measure in
feature space. Several combinations of features are tested using
a database of 24 facial surfaces taken from 8 different people,
producing results ranging from 70.8% to 100% correct matches.

3. THE 3D FACE DATABASE

As mentioned previously, there is little three-dimensional face
data publicly available at present and nothing towards the
magnitude of data required for development and testing of three-
dimensional face recognition systems. Therefore, we introduce
a new database of 3D face models, collected at The University
of York, as part of an ongoing project to provide a publicly
available 3D Face Database of over 5000 models [8]. The 3D
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Figure 1. Face models taken from the UOY 3D face database

models are generated using a 3D camera, which operates on the
basis of stereo disparity of a high-density projected light pattern.
Faor the purpose of these experiments, we will be using a subset
of the 3D face database. acquired during preliminary data
acquisition scssions. This sct consists of 330 models taken from
100 people under the ten conditions shown in figure 1.

During capture no effert was made to control lighting
conditions. In order to gencrate face models at various head
oriciations, subjects were asked to face relerence points
positioned roughly 45° above and below the camera, but no
etfort was made to enforce a precise angle of orientation.

3D face models ure orientated to tace directly forwards using
owr orientation normalisation algorithm (not described here)
betore being converted into depth maps. The database 15 then
separated into two disjoint scts: the training set consisting of 40
depth maps (type 1, figure 1) and a test set of the remaining 290
depth maps. Both sets contain subjects of various race, age and
gender and nobody 1s present in both the tratning and test scts.

4. SURFACE REPRESENTATIONS

In previous work we have shown that the use of image
processing techniques can significantly reduce error rates of
two-dimensional [ace recognition methods [11, 12], by removing
unwanted effects caused by environmental capture conditions.
Much of this environmental inflaence is not present in the 3D
face models, but pre-processing may still aid recognition by
making distinguishing features more explicit. We test a number
of surface representations, which may affect recognition error
rates, derivedt by pre-processing of depth maps, prior to both
training and test procedures, as described in table 1.

5. DEFINING SURFACE SPACE

We define surface space by application of PCA to the training
set of facial surfaces, taking a similar approach to that described
by Turk and Pentland [1] and used in previous investigations
[11, 12]. Consider our training set of facial surfaces, stored as
orientation normalised 60x105 depth maps, represented as
vectors of length 6300. We begin by reducing dimensionality to
a practical value, while maximising the spread of facial surfaces
within the subspace, by application of PCA to the training set of
M (40) depth maps {I'| I ... I'y}, computing the covariance
matrix,
A
C=12 @0

nat
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Where @, is the difference of the nth depth map from the
average . Eigenvectors and eigenvalues of the covariance

= 447
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(left) and lirst eight eigensurfaces

Figure 2. The average surface
matrix are calculated using standard linear methods.  The
resultant eigenvectors describe a set of axes within the depth
map space, along which most variance occurs and the
corresponding eigenvalues represent the degree of this variance
along each axis. The M eigenvectors are sorted in order of
descending cigenvalues and the M'(40) greatest eigenvectors
chosen to represent surface space. We tenn each eigenvector an
eigensurface, displayed as range images in figure 2.

6. VERIFICATION OF FACIAL SURFACES

Once surface space has been defined, we project any face into
surfice space by a simple matrix multiplication, using the
eigenvectors calculated from covariance matox C.

w, =ul ([~ Jork =1L
Where 1, is the kth eigenvector and oy is the /i weight in the
vector 7 = [oy, 05, ... wyr ] The vector 2 s taken as (he “Tace-
key’ representing a person’s facial structure in surface space and
compared by cither euclidean or cosine distance m;etrics.
_ _ I 2
- ﬂQ«- ng ocwrnr 21 2.
In addition, we can also divide each face-key by its respective
eigenvalues, prior to distance calculation, removing any inherent
dimensional bias and introducing two supplementary metrics,
the Mahalanobis distance and weighted cosine distance. An
acceptance (facial surfaces match) or rejection (surtaces do not
natch) is determined by applying a threshold to the calculated
distance. In order to evaluate the effectiveness of the face
recognition methods, we compare each of the 290 surfaces in the
test set with every other surface (41,905 verification operations).
False acceptance rates (FAR) and false rejection rates (FRR) are
calculated as the percentage of incormrect acceplances and
rejections after applying a thresheld. Varying the threshold
produces a senies of FAR, FRR pairs, which plotted on a graph
produces an eryor rate curve (figure 3), from which the EER
(where FAR equals FRR) is taken as a single comparative value,

d
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7. RESULTS

Results are presented as error rate curves and bar charts of EERs
(figure 3). The results clearly show that dividing by eigenvalues
to normalise vector dimensions prior to distance calculations,
significantly decreases error rates for both enclidean and cosine
distance, with the Mahalanobis metric providing the lowest EER
for the depth map system. The EERs produced show that
surface gradient representations provide the most distinguishing
information, with horizontal derivatives giving the lowest EERs
of all, using the weighted cosine distance metric. In fact, the
weighted cosine distance retums the lowest EER for the majority
of surface representations, excepting a few particular cases.
However, the most effective surface representation seems to be
dependent on the distance metric used for comparison.

8. CONCLUSION

We have shown that a well-known two-dimensional face
recognition method can be adapted for use on three-dimensional

face models. Tests have been carried out on a large database of
three-dimensional facial surfaces, captured under conditions that
present typical ditliculties when performing recognition. The
error rates produced from the three-dimensional baseline system
(19.1% EER using cuclidean distance) are notably lower that
thosc gathered in similar experiments using two-dimensional
images (23.5% EER) [12]. Although a more direct comparison
is required, using a common 2D/3D test database, in order to
draw any quantitive conclusions, initial resulis suggest that
three-dimensional face recognition has distinct advantages over
conventional two-dimenstonal approaches.

Expertmenting with a number of surface representations, we
have discovered that facial surface gradient is more etfective for
recognition than depth and curvature representations.  In
particular, horizontal gradients produce the lowest error rates,
seemmg to indicate that horizontal derivatives provide more
discriminatory information than vertical. Another advantage is
that gradients are likely to be more robust to inaccuwracies in the
alignment procedure, as the derivatives will be invartant to
translations along the Z-axis.

Curvature representations do not seem 1o contain as much
discriminatory inforination as other surface representations. We
tind this surprising, as second derivatives should be less
sensilive to inaccuracies of orientation and translation along the
Z-axis. However, this could be 2 reflection of inadequate 3D
model resolution and high noise content.

Testing tour distance metrics has shown that the choice of

methed for face-key comparisons has a considerable affect on
resulting error rates. The euclidean and cosine measures seem
tailored to specific surface representations, suggesting that some
create a surface space in which between-class deviation is
predominantly angular, whereas others produce more radial
deviation. [t is also evident that dividing each face-key by
respective eigenvalues, nommalising dimensional distribution,
usually improves results for both euclidean and cosine distances.
This indicates that the distribution along one surface space
dimension is not necessarily proportional to its discriminating
ability and that face-keys become more discriminative when all
dimensions are weighted evenly. However, this is not the case
for some surface representations with higher EERs, suggesting
that these reptesentations incorporate only a few dominant
useful components, which become masked when -weighted
evenly with the majority of less discriminatory components.
" Error rates of the optimum 3D eigensurface system (12.7%
EER) are substantially lower than the best two-dimensional
systems (20.4% EER and 17.8% EER) tested under similar
circumstances in our previous investigations [11, 12]. Although
we recognise the differences between these experiments (most
notably the lack of a common 3D/2D test set), the results do
show that geometric face structure is useful for recognition when
used independently from colour and texture and capable of
achieving high levels of accuracy, Given that the data capture
method produces models invariant to lighting conditions and
provides the ability to recogrise faces regardless of pose, makes
this system particujarly attractive for use in security and
surveillance applications. However, more testing is required to
identify the limitations of the eigensurface method, although one
obvious issue is the system’s reliance on accurate orientation
nermalisation. A better approach would be te generate a surface
representation that was invariant to orientation.
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