
This is a repository copy of Highlights on the application of genomics and bioinformatics in
the fight against infectious diseases : challenges and opportunities in Africa.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/152559/

Version: Published Version

Article:

Bah, S.Y., Morang’a, C.M., Kengne-Ouafo, J.A. et al. (2 more authors) (2018) Highlights on
the application of genomics and bioinformatics in the fight against infectious diseases : 
challenges and opportunities in Africa. Frontiers in Genetics, 9. 575. 

https://doi.org/10.3389/fgene.2018.00575

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


REVIEW
published: 27 November 2018

doi: 10.3389/fgene.2018.00575

Edited by:

Ancha Baranova,

George Mason University,

United States

Reviewed by:

David John Studholme,

University of Exeter, United Kingdom

Sandeep Kumar Dhanda,

La Jolla Institute for Allergy

and Immunology (LJI), United States

*Correspondence:

Saikou Y. Bah

sbah@ug.edu.gh;

sabah@mrc.gm

Gordon A. Awandare

gawandare@ug.edu.gh

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Bioinformatics and Computational

Biology,

a section of the journal

Frontiers in Genetics

Received: 18 June 2018

Accepted: 08 November 2018

Published: 27 November 2018

Citation:

Bah SY, Morang’a CM,

Kengne-Ouafo JA, Amenga–Etego L

and Awandare GA (2018) Highlights

on the Application of Genomics

and Bioinformatics in the Fight

Against Infectious Diseases:

Challenges and Opportunities

in Africa. Front. Genet. 9:575.

doi: 10.3389/fgene.2018.00575

Highlights on the Application of
Genomics and Bioinformatics in the
Fight Against Infectious Diseases:
Challenges and Opportunities in
Africa
Saikou Y. Bah1,2* , Collins Misita Morang’a1†, Jonas A. Kengne-Ouafo1†,

Lucas Amenga–Etego1 and Gordon A. Awandare1*

1 West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana, 2 Vaccine and Immunity

Theme, MRC Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, Gambia

Genomics and bioinformatics are increasingly contributing to our understanding of

infectious diseases caused by bacterial pathogens such as Mycobacterium tuberculosis

and parasites such as Plasmodium falciparum. This ranges from investigations of

disease outbreaks and pathogenesis, host and pathogen genomic variation, and host

immune evasion mechanisms to identification of potential diagnostic markers and

vaccine targets. High throughput genomics data generated from pathogens and animal

models can be combined with host genomics and patients’ health records to give

advice on treatment options as well as potential drug and vaccine interactions. However,

despite accounting for the highest burden of infectious diseases, Africa has the lowest

research output on infectious disease genomics. Here we review the contributions of

genomics and bioinformatics to the management of infectious diseases of serious public

health concern in Africa including tuberculosis (TB), dengue fever, malaria and filariasis.

Furthermore, we discuss how genomics and bioinformatics can be applied to identify

drug and vaccine targets. We conclude by identifying challenges to genomics research

in Africa and highlighting how these can be overcome where possible.

Keywords: bioinformatics, genomics, infectious diseases, antimicrobial resistant, diagnosis

INTRODUCTION: OMICS AND BIOINFORMATICS IN
INFECTIOUS DISEASES

Genomics and bioinformatics have contributed immensely to our understanding of infectious
diseases: from disease pathogenesis, mechanisms and the spread of antimicrobial resistance, to
host immune responses. Herein, we review some of the major contributions of genomics and
bioinformatics in infectious disease research using examples of three diseases that account for
large proportions of morbidity and mortality as well as a neglected tropical disease. Specifically,
we review M. tuberculosis, which causes TB, a disease responsible for approximately two million
deaths globally per year. Dengue virus (DENV) causes Dengue fever, which is a re-emerging
mosquito borne viral disease, responsible for more than 350 million cases annually (WHO, 2017;
World Health OrganizationWestern Pacific Region, 2018). Plasmodium falciparum causes malaria,
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a parasitic disease that accounts for the highest morbidity and
mortality in Sub-Saharan Africa, especially in children under five
and pregnant women (WHO, 2018b), and Filariasis, which is a
neglected tropical disease. Figure 1 shows a circular wheel of
genomics/bioinformatics as can be applied in infectious diseases
as discussed herein, ranging from understanding host and
pathogen genome biology to genome-wide association studies
(GWAS) as well as the identification of drug targets and drug
resistance surveillance to patient management. This encompasses
molecular techniques, bioinformatics and clinical applications
(Figure 1). We also highlight the application of genomics and
bioinformatics to the identification of vaccine targets and drug
discovery. We conclude by highlighting some challenges of
conducting bioinformatics research in resource-limited countries
in sub-Saharan Africa.

OMICS OF TUBERCULOSIS PATHOGENS
AND HOST RESPONSES

Tuberculosis caused by members of the M. tuberculosis complex
is a leading cause of death, with about 9 million cases and
two million deaths per year globally (WHO, 2018a). The
mycobacterial genome was first sequenced in 1998 and many
more M. tuberculosis genomes have since been sequenced (Cole
et al., 1998; Guerra-Assunção et al., 2015; Yun et al., 2016). These
genomes provide great avenues for the genomic characterization,
development of improved diagnostic tools, drug susceptibility
testing, and molecular epidemiology of circulating mycobacterial
strains. Host-pathogen genomics and transcriptomics have
over the past decade enhanced our understanding of human-
mycobacterium interactions and in the identification of potential
diagnostic and prognostic markers (Anderson et al., 2014;
Maertzdorf et al., 2015).

An understanding of the M. tuberculosis genome biology is
invaluable in the control of TB. The M. tuberculosis genome
is GC rich and consists of about 4000 genes and, unlike other
bacteria, a large proportion of its genome encodes proteins
and enzymes involved in lipogenesis and lipolysis (Cole et al.,
1998), reflecting its thick lipid cell wall. TB control is hampered
by antimycobacterial resistance, multidrug resistance (MDR)
and, recently, extensively drug resistant (XDR) mycobacterial
strains (Leisching et al., 2016). Genomics analysis has immensely
contributed to the identification of drug resistance-conferring
mutations and surveillance (Köser et al., 2013). Whole genome
analyses have demonstrated that mycobacterial drug resistance
is largely attributed to single nucleotide polymorphisms (SNPs);
for example, rifampicin (RIF) resistance arises from mutations
in the rpoB gene and mutations in the katG and inhA
lead to isoniazid resistance (da Silva et al., 2011). Newly
characterized genetic mutations in M. tuberculosis genomes
have also been shown to play key roles in the emergence of
antimycobacterial drug resistance (Sun et al., 2012). Analyses of
161 drug resistant M. tuberculosis genomes identified 72 genes,
28 intergenic regions and 21 SNPs with strong and consistent
associations with drug resistance (Zhang et al., 2013). Genomic
analysis has also identified lineage mutation rate differences

and predicted the emergence of antimycobacterial resistance
(Ford et al., 2013). A retrospective analysis of thousands of
M. tuberculosis genomes collected from African and European
patients identified 120 resistance-determining mutations for
first and second line antimycobacterial drugs, which could be
valuable in developing new assays for drug susceptibility testing
(Walker et al., 2015). Furthermore, genomics through the use of
GWAS has been used to identify novel mutations associated with
resistance to cycloserine, ethionamide, and para-aminosalicylic
acid, suggesting the involvement of efflux pump in the emergence
of resistance (Coll et al., 2018). A number of genomics-based
tools have been developed to detect drug resistance including
Mykrobe Predictor, PhyResSE, and TB-Profiler, which are easy
to use by researchers with no bioinformatics expertise and can
predict drug resistance within minutes after obtaining sequences
(Bradley et al., 2015; Coll et al., 2015; Feuerriegel et al., 2015).
Mykrobe Predictor has a sensitivity and specificity of 82.6
and 98.5%, respectively (Bradley et al., 2015). TB-Profiler was
developed using a mutation library consisting of 1,325 mutations
in different genes associated with drug resistance in 15 anti-
tuberculosis drugs and had more than 75% sensitivity as well
as more than 90% specificity for all drugs tested (Coll et al.,
2015). A recent study evaluating the performance of these tools
showed that their sensitivity ranges from 74 to 80% along with
a specificity of more than 95% (van Beek et al., 2018). However,
there is still a need for optimization of analysis pipelines to make
them applicable in field settings where the disease burden is
usually the highest.

Genomics analysis has also been used to determine the
evolutionary history and spread of mycobacterial strains such
as the Beijing strain, demonstrating its spread from the Far
East (Merker et al., 2015). An investigation of M. tuberculosis
transmission dynamics is important in monitoring outbreak;
Mehaffy et al. (2014) demonstrated that whole genome analysis
can be used to monitor infections to decipher transmission
dynamics. Furthermore, genomics has also been applied to
decipher transmission dynamics of M. tuberculosis in Vietnam,
suggesting that SNPs in ESX-5 type VII secreted protein EsxW
could potentially contribute to enhancing transmission (Holt
et al., 2018). Furthermore, genomics has been applied to
investigate TB outbreaks, genotyping of the outbreak associated
lineages, and their evolution during the outbreak (Jamieson
et al., 2014; Stucki et al., 2015). Indeed, analysis tools have been
developed for the prediction ofM. tuberculosis spoligotypes from
raw sequence reads, and in combination with other analysis
tools also determine antibiotic resistance as well as transmission
dynamics (Coll et al., 2012; Bradley et al., 2015). Some genomics
methods can also be employed to identify mixed infections as well
as infections with a single strain and have recently been applied
to clinical isolates fromMalawi (Sobkowiak et al., 2018).

Genome-wide association study (GWAS) has also been used
to identify candidate gene variants associated with susceptibility
to active tuberculosis. GWAS analyses in African patients from
Ghana, Gambia, Uganda and Tanzania identified TB disease-
associated SNPs located on three chromosomal loci: 18q11,
11p13, and 5q33 (Thye et al., 2010, 2012; Sobota et al.,
2016). Similarly, GWAS studies have also been done in Europe
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FIGURE 1 | Circle of infection disease genomics/bioinformatics. This shows a representation of genomic laboratory technologies, bioinformatics analysis, and

potential applications. This includes: (1) molecular techniques such as whole genome sequencing by methods like Illumina to generate sequence reads, which are

needed for the (2) bioinformatics application to study host systemic responses, pathogen genomics, and transmission dynamics. Further, bioinformatics can be

applied to determine genetic diversity, investigation of drug resistance mechanisms and surveillance, and the identification of vaccine targets in systems vaccinology.

Finally (3), all this information can be integrated to define treatment guidelines and patient management.

identifying SNPs in the ASAP1 gene on chromosome 8q24 and in
a genomic region in which class II human leucocyte antigen (HLA
II) is encoded (Curtis et al., 2015; Sveinbjornsson et al., 2016).
Recently, a GWAS study in a Han Chinese population also found
SNPs in mitofusin-2 (MFN2), regulator of G protein signaling 12
(RGS12) and HLA II beta chain to be associated with active TB
(Qi et al., 2017). This highlights that host genetics play significant
roles in susceptibility to active TB and may explain why some
individuals remain latently infected while some develop active
TB despite having similar exposure levels. Furthermore, based
on host genetic variants, GWAS analysis could be applied to
identify latently infected individuals who are at a high risk
of developing active TB for preventative interventions. Once
validated, identified SNPs can be used to develop point of care
diagnostics to identify high risk people for mass preventative
treatment.

Host transcriptomics are increasingly being used to
understand systemic responses to infections and to identify
diagnostic and prognostic markers. Mistry et al. (2007) were
among the first to use microarray technology to study host
systemic response to TB, identifying a nine gene-signature

with potential for TB diagnosis. Jacobsen et al. (2007) applied
microarray analysis to investigate the host pathway biology and
potential diagnostic biomarkers. Analyzing peripheral blood
mononuclear cells (PBMCs), they found a monocyte-derived
gene expression signature identifying CD64, lactoferrin and
Ras-Associated GTPase-33A as potential diagnostic biomarkers,
which were further validated in another independent study
population in South Africa (Maertzdorf et al., 2011). Applying
gene set enrichment analysis to microarray gene expression
identified metabolic pathways such as insulin metabolism,
immune cell differentiation and inflammation in TB (Lesho et al.,
2011). A neutrophil-driven interferon signature consisting both
type I and type II interferon during TB was also identified using
microarray analysis (Berry et al., 2010). The type I interferon
pathway was also observed by Ottenhoff et al. (2012) identifying
IL15RA, UBE2L6, and GBP4 as the main molecules involved.
A 393-transcript signature for active TB and an 86-transcript
signature with a potential for distinguishing TB from other
inflammatory diseases were also identified (Berry et al., 2010). In
addition, a biosignature consisting of 27 transcript signatures to
distinguish active from latent TB and 44 transcript signatures to
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distinguish active TB from other diseases were recently identified
(Kaforou et al., 2013). Microarrays have also been used to
demonstrate that host transcriptional responses toM. africanum
and M. tuberculosis differ following treatment (Tientcheu et al.,
2015), which could be important in the management of patients
infected with the different mycobacterial strains. Furthermore,
host gene expression has also been used to monitor treatment
responses and predict treatment outcome, which will be valuable
in testing new drug regimens and new antimycobacterial drugs
(Thompson et al., 2017). These studies prove the potential of
host genomics in providing a better understanding of disease
pathophysiology, prognosis and host pathway biology in
response to an infectious agent.

In addition, arrays have also been applied to childhood TB,
to identify signatures for active tuberculosis and a signature
that distinguishes active tuberculosis from other diseases in
sub-Saharan Africa (Anderson et al., 2014). Similarly, a 9-gene
signature was also identified in Warao Amerindian children,
further highlighting the potential of using host biomarkers
for TB diagnosis (Verhagen et al., 2013). Host transcriptional
analysis is moving from array-based technologies to RNA
sequencing and has been applied to 16 gene signatures that
identified people with a high risk of developing TB 2 years
before diagnosis in sub-Saharan Africa (Zak et al., 2016).
However, it is noteworthy that identified biosignatures have
a variable number of genes, from about 10 to more than
100, and there is very little overlap between some signatures.
It will be valuable to conduct a meta-analysis of available
datasets to increase statistical power and identify high confidence
signatures across studies regardless of circulating pathogens
and local environmental factors. In doing such analysis,
confounders due to technologies, age and circulating endemic
pathogens can be accounted for to give a strong as well as
diagnostic and prognostic signature. These studies highlight
the potential application of genomics and bioinformatics to
interrogate host response for the diagnosis and prognosis of TB,
which will contribute immensely to curbing TB morbidity and
mortality.

DENGUE VIRUS RESEARCH IN THE ERA
OF BIOINFORMATICS

Dengue virus (DENV) is a pathogenic single-stranded RNA
virus that belongs to the flavivirus genus, which comprises
other known pathogenic viruses such as West Nile, yellow
fever, Japanese encephalitis, St. Louis encephalitis, tick-borne
encephalitis, Omsk hemorrhagic fever and Zika virus (Gould
and Solomon, 2008). The re-emergence, evolution, diversity and
geographic distribution of flaviviruses make them interesting
pathogens (Moureau et al., 2015). Phylogenetic analysis of
divergence times suggests that flaviviruses originated from a
common ancestor (100,000 years ago) and later split into
mosquito and tick borne flaviviruses about 40,000 years ago
(Holbrook, 2017). Approximately 40% of the world population
is at risk of DENV infection with more than 350 million cases
reported annually.

Illumina SNPs genotyping and SNPs identified through
whole genome analysis have been used in case-control GWAS
statistical analysis to identify SNPs that predispose or confer
protection against DENV infection (de Carvalho et al., 2017).
The DENV shock syndrome (DSS) has been shown in a
GWAS analysis of SNPs in a cohort of 2008 pediatric cases
to have a strong association (P < 0.5 × 10−8) with the
human major histocompatibility complex (MHC) (rs3132468)
on chromosome 6 and phospholipase C (rs3740360 and
rs3765524) on chromosome 10 (Khor et al., 2011). Dang
et al. replicated the study in 917 Thai children with DSS
and confirmed that alleles rs3132468 [MHC I chain related
protein A (MICB)] and rs3765524 [phospholipase C epsilon
1 (PLCEI)] predispose Southeast Asians to DSS (Dang et al.,
2014). In contrast, Whitehorn et al. (2013) genotyped 3,961
confirmed cases and 5,968 controls and found that rs3132468
MICB and rs3740360 alleles PLCEI were associated with less
severe phenotypes of DENV infection in both infants and
adults. This implies that the effect of these SNPs could be
population-specific. Other candidate genes include dendritic
cell-specific intracellular adhesion molecule (ICAM)-3 grabbing
non-integrin (DC-SIGN), C-Type Lectin Domain Containing 5A
(CLEC5A), immunoglobulin gamma constant fragment receptor
(FCGRIIA), Toll-Like receptors (TLRs), Tumor necrosis Factor
(TNF), Interferons (IFNs), 2′-5′-oligoadenylate synthase (OASs),
Janus Kinase (JAK), Stimulator of Interferon Genes (STING),
cytokines, chemokines, ICAM-1 and tryptase 1 proteases (de
Carvalho et al., 2017).

Whole genome sequencing (WGS) and phylogenetic methods
have been used to investigate DENV outbreaks. Faria et al. (2017)
analyzing 92 viral genomes from DENV patients during the 2012
outbreak in Rio de Janeiro, found that at least two thirds of
infections went unnoticed and their analysis highlighted the scale
of the epidemic spread of DENV after the outbreak. Ahn et al.
(2015) investigated the genetic variations in 8,826 nucleotide
sequences of whole-genome DENV virus, and demonstrated that
there was a distinctive genetic pattern between the four DENV
subtypes across different regions (American, Oceanian, Asian,
and Africa).

Analyses of envelope encoding nucleotide sequences from
India have shown a shift from DENV subtype III to subtype
IV, suggesting some level of positive selection (Manakkadan
et al., 2013). These phylodynamic methods, which indicate
evolutionary process or patterns of genetic diversity of the DENV
virus, have also been reconciled with the virus epidemiology
so as to decrease the variation between the two methods that
are mainly used to study the population dynamics or viral
behaviors (Pybus et al., 2012; Rasmussen et al., 2014). Due to the
importance of genomics and bioinformatics in viral research, a
range of tools has been developed to analyze viral genomes and
make inferences (Stamatakis, 2014; Brody et al., 2017).

The use of RNA folding, structural predictions and functional
studies has shown that genetic variation of the DENV occurs
in nature due to high rates of recombination and error-prone
RNA polymerases. A deleterious DENV genome was first shown
by Aaskov et al. (2006) whereby a stop codon in the envelope
coding region resulted in a defective DENV. Li et al. (2011)
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also discovered defective interfering viral particles by analyzing
short fragments of DENV, suggesting that they may be part of a
broader disease attenuating process mediated by the deleterious
virus and the defective interfering particles are important in viral
replication, thereby enhancing the overall transmission capability
of DENV (Li and Aaskov, 2014). Structural RNA predictions have
implicated other elements in modulating replication of the virus,
such as the downstream cyclization sequence (Friebe et al., 2012),
cis-acting elements occurring in the capsid coding region (de
Borba et al., 2015), and elements in the promoter Stem Loop A
(SLA) and non-structural protein 5 (NS5) regions (Gebhard et al.,
2011).

Understanding intra- and inter-host genetic diversity was
previously mired with experimental and analytical methods that
did not fully account for errors in viral amplifications. Thai
et al. (2012) used various statistical approaches to correct for
the artefactual mutations resulting from PCR amplifications
and sanger sequencing, and showed that the genetic diversity
index (Pi) of the DENV was low, ranging from 0 to 0.0013.
This suggested sequence conservation, but they were able to
show mixed infections and phylogenetically distinct DENV
lineages present within the same host. Furthermore, genome-
wide scans for patterns of intra-host diversity in DENV identified
variants between genes suggesting significant differences in
intra-host diversity of the virus in the Nicaraguan population
(Parameswaran et al., 2012). Functional annotation of the
variants showed the impact of viral mutations on protein
function, which strongly suggested purifying selection across
transmission events.

Deep sequencing, RNA structural analysis and fitness
evaluation have been used to determine processes that DENV
employs for host specialization (mosquito or human) using RNA
elements in the 3′-UTR (Villordo et al., 2015). A host adaptable
stem loop structure was found to be duplicated, which DENV
uses to accumulate mutations that are beneficial in one host
and deleterious in another host, but the duplication confers a
robust mechanism during host switching (Villordo et al., 2015).
Recently, Waman et al. (2016) used population genetics methods
to compute the genotype diversity and evolution of 990 DENV
genomes, and revealed that the DENV-2 population is subdivided
into 15 lineages. Their study also indicated the presence of intra-
genotype diversity and that the population structure of DENV-
2 is spatiotemporal, shaped by episodic positive selection and
viral recombination (Waman et al., 2016). The application of
genomics and bioinformatics in the study of DENV shows the
complexity of the virus biology, which can be exploited in target
identification for drug discovery and vaccine development (Guy
et al., 2016; Low et al., 2017).

PROGRESS IN MALARIA GENOMICS

Malaria incidence and mortality rates decreased by 21 and
29%, respectively, between 2010 and 2015 (WHO, 2018b). The
genetic landscape of P. falciparum, the main cause of malaria, is
increasingly being unraveled by using deep sequencing to identify
polymorphisms and structural and copy number variations,

which are fundamental for parasite evolution (Kwiatkowski,
2015). Sequencing consortia such as the MalariaGEN improve
our understanding of genomics of both the Anopheles vector and
the plasmodium species1. A recent study on genotyping accuracy
using deep sequencing of Plasmodium parental generations and
their progenies revealed that polymorphism frequencies can be
used as markers of high recombination rates (Miles et al., 2016),
which is an important contributor to enhancing immune evasion
and drug resistance. Using whole genome deep sequencing and
micro-array analysis, a study observed 18 deletions on regions
encoding multigene families that are associated with immune
evasion (Bopp et al., 2013). The authors showed the presence of
chromosomal crossovers in six of the deletions and were able to
estimate mutation rates of P. falciparum (Bopp et al., 2013).

Bioinformatics has contributed to our understanding of
resistant mechanisms to previous drugs such as chloroquine
and the emerging resistance to artemisinin-based combination
therapies (ACT). Robinson et al. deployed next generation
sequencing to investigate multi-clonality, population genetics
and drug-resistant genotypes (Robinson et al., 2011). More
recently, WGS was used to discover that mutations in the Kelch
propeller domain (K-13) are associated with ACT resistance in
Cambodia (Ariey et al., 2014; Straimer et al., 2015). Profiling of
the drug resistance genes [P. falciparum chloroquine resistance
transporter (pfcrt), P. falciparum multidrug resistance (pfmdr1),
P. falciparum dihydrofolate reductase (dhfr) and P. falciparum
dihydropteroate synthetase (dhps), and P. falciparum Kelch
protein 13 (pfk13)] was done using Illumina next generation
sequencing and demonstrated that the resistance-associated K-13
variants were largely absent in Africa (MalariaGEN Plasmodium
falciparum Community Project, 2016; Nag et al., 2017).

Furthermore, bioinformatics tools have been used to
demonstrate multi-locus linkage disequilibrium and local
diversity, recent selection through integrated haplotype scores,
regional gene flow and allele frequency differentiations (Duffy
et al., 2017). Intra-host diversity can now be statistically
characterized using the Fws metrics because sequencing
platforms are able to generate read count data. Auburn et al.
characterized within host diversity in 64 samples from West
Africa, capturing a multiplicity of infections, number of clone
ratios, clonal variation and within-host diversity (Auburn et al.,
2012). Bioinformatics analysis of deep sequencing revealed
large-scale genetic variations in P. falciparum (86158 SNPs), and
genome wide allelic frequencies, population structure, linkage
disequilibrium and intra-host diversity (Manske et al., 2012). The
genetic diversity of P. falciparum is dependent on directional and
balancing selection, whereby drug pressure and host immunity
are the major selective agents, respectively (Mobegi et al., 2014;
Duffy et al., 2015).

Genomics has been used to discover novel malaria resistance
loci in humans, which provide 33% protection from severe
malaria (Malaria Genomic Epidemiology Network, 2015). In
Ghana, GWAS identified two unknown genetic loci associated
with severe malaria: 1q32 within the ATPase Plasma Membrane
Ca2+ Transporting 4 (ATP2B4) gene and the 16q22.2 linked

1https://www.malariagen.net/
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to a tight junction protein known as MARVELD3 (Timmann
et al., 2012). Most recently, GWAS was used in a longitudinal
surveillance to detect K-13 signatures, which led to the
identification of a Kelch variant that is suggested to be a potential
modulator of artemisinin resistance (Cerqueira et al., 2017).

The Plasmodium pathophysiology is increasingly being
explored using transcriptomics and proteomics. Bioinformatics
and statistical models have been used to describe the genome-
wide translational dynamics of P. falciparum, showing that
parasite transcription and translation are tightly coupled
presenting a broad and high resolution of parasite gene
expression profiles (Caro et al., 2014). ChIP-Seq and RNA
sequencing have been used for polysome profiling to understand
the regulation of Plasmodium gene expression in humans. Bunnik
et al. (2013) observed a delay in peak polysomal transcript
abundance for several genes as compared to the mRNA fraction,
which they reported to be alternative polysomal mRNA splicing
events of non-coding transcripts.

DNA microarray technologies had been used to describe
the gene expression patterns of P. falciparum during the intra-
erythrocytic stage (Bozdech et al., 2003), gametocyte (Young
et al., 2005), sporozoite (Siau et al., 2008), liver stage (Tarun
et al., 2008), and even between three different strains (Llinás
et al., 2006). Recently, microarrays have been used to characterize
parasite transcriptomes during cerebral and asymptomatic
malaria, which revealed some differentially expressed genes
encoding proteins involved in protein trafficking, Maurer’s cleft
proteins, transcriptional factor proteins and several hypothetical
proteins (Almelli et al., 2014). RNA sequencing has also been
used to describe P. falciparum expression profiles at different
time points and has found novel gene transcripts, alternative
splicing events and predicted untranslated regions of some genes
providing further information on the parasite biology (Otto
et al., 2010). Yamagishi et al. (2014) simultaneously analyzed
the human host and the parasite transcriptomes using RNA
sequencing, and showed that several human and parasite genes
such as Toll-like receptor 2 and TIR domain-containing adapter
molecule 2 (TICAM2) correlated with clinical symptoms. RNA
sequencing has also been employed to study the transcriptome of
P. vivax, which revealed a hotspot of vir genes on chromosome
2, new gene transcripts and the presence of species-specific
genes (Zhu et al., 2016). It would be valuable to compare
this data with similar data from other related Plasmodium
species to identify species-specific transcriptomes. Analyzing the
transcriptome of Chloroquine sensitive and resistant parasites
identified 89 upregulated genes and 227 downregulated genes
that were associated with resistance (Antony et al., 2016).
These differentially expressed genes are involved in immune
evasion mechanisms, pathogenesis, and various host-parasite
interactions and could be targeted for drug and vaccine
development.

Currently, single-cell RNA sequencing is revolutionizing the
study of cell-to-cell heterogeneity. For example, the use of
this method led to the discovery of novel variations in the
expression of specific gene families that are involved in host-
parasite interactions among asexual populations (Reid et al.,
2018). Altogether, these studies demonstrate the profound

impact of malaria parasite transcriptomics and genomics on our
understanding of the parasite (Lee et al., 2017), and identify
possible candidate targets for drugs, vaccines and diagnostics
(Ludin et al., 2012; Hoo et al., 2016).

GENOMICS RESEARCH IN FILARIASIS

Filariasis is a neglected chronic disease caused by tissue-dwelling
nematodes (filariae) with onchocerciasis and lymphatic filariasis
(LF), causing significant health concerns with a disease burden
approaching 86 million cumulatively (WHO/Department of
Control of Neglected Tropical Diseases, 2016). Onchocerciasis
is caused by Onchocerca volvulus while LF is caused by three
different parasites, namely Wuchereria bancrofti, Brugia malayi,
and Brugia timori (Taylor et al., 2010). Elimination of filariasis is
challenging because of the unavailability of sensitive diagnostic
tools, lack of appropriate treatments and inadequate control
measures in resource limited countries.

The W. bancrofti and O. volvulus genomes have been
sequenced, providing opportunities for further genomic analyses
(Desjardins et al., 2013; Cotton et al., 2016). Bioinformatics
revealed the presence of gene coding for host immune system
regulators such as human-like autoantigens as well as serine and
cysteine protease inhibitors (Molehin et al., 2012; Cotton et al.,
2016).

Molecular studies coupled with computational analyses have
demonstrated an association between human host factors and
filariasis clinical manifestations. LF infections have been shown
to cluster in some families using pedigree studies (Cuenco et al.,
2004; Chesnais et al., 2016). These studies show that genetic
factors are involved in the regulation of LF infections and
affect both the presence and intensity of microfilariae. However,
a GWAS would be more comprehensive to demonstrate this
genetic susceptibility to LF as has been the case for a tropical
lymphedema (Podoconiosis) of non-filarial origin (Tekola Ayele
et al., 2012). It is worth mentioning that lymphedema, or
elephantiasis, is one of the main features of LF and normally
occurs as a result of a compromised lymphatic system (Addiss,
2010). As opposed to LF, which is infectious, Podoconiosis is
a non-communicable disease caused by soil particles such as
aluminum and silica predominant in volcanic regions (Price,
1976; Davey et al., 2007). A comparative genomics-based study of
LF would help to better understand these clinical manifestations.

Most of the pathological features of LF are associated with
human-immunogenetics (Taylor, 2003; Junpee et al., 2010),
which has been investigated using genomics and bioinformatics.
Gene candidate-based genomics studies carried out in Thailand
revealed that polymorphisms in the TLR-2 gene (−196 to −173
deletion, +597 T > C and +1350 T > C) have a strong
linkage disequilibrium and were associated with increased risk
of asymptomatic LF (Junpee et al., 2010). In a functional study,
individuals with the −196 to −173 deletion were found to have
significantly low transcription levels compared to those with the
wild-type gene (Junpee et al., 2010). Further analyses showed
strong association of a mutation (M196A) in human tumor
necrosis factors (TNF) receptor-II with hydrocele development,
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while the A288S mutation of endothelin-1 (ET-1) correlated with
low ET-1 1 plasma levels and elephantiasis (Panda et al., 2011).

Population genetics is very important for assessing and
understanding the epidemiology and transmission dynamics
of filarial diseases (Small et al., 2016; Doyle et al., 2017).
Population genomics of O. volvulus samples collected from
different geographical zones – West Africa (WA), Uganda and
Ecuador – demonstrated some level of population structure
between WA and other populations (Choi et al., 2016).
Furthermore, phylogenetic signals indicative of gene flow and
genetic admixture between WA forest and savanna populations
were identified. These signals could serve as markers to delineate
forest from savanna populations and/or sort out admixed
populations (Choi et al., 2016). A study using both nuclear and
mitochondrial sequences identified regions in the W. bancrofti
genome that exhibited an arrangement which was consistent with
both balancing and directional selection (Small et al., 2016).

The control of filariasis in general is difficult due to the
complex parasite life cycle. In an attempt to demystify the
complex life cycle of the parasite, RNA sequencing has been used
to investigate gene expression profiles of different developmental
stages of Brugia malayi (Choi et al., 2011). Transcriptomics
analyses revealed stage-specific gene expression correlating
with stage-specific pathway activation. Upregulated proteins
included cathepsin L and Z-like cysteine proteases that were
previously demonstrated to be essential for larva molting in
O. volvulus (Lustigman et al., 2004) and cuticle and eggshell
remodeling in filarial nematodes in general (Guiliano et al., 2004).
Another study using a filarial microarray chip composed of
18,104 gene probes revealed that gene expression in B. malayi
infective larvae (L3s) depends on environmental factors (Li
et al., 2009). The gene expression patterns in irradiated L3s,
laboratory-adapted L3s and those collected from mosquitoes
were found to be different. Gene Ontology analyses showed
that upregulated genes in laboratory-adapted and mosquito-
derived L3s were mostly involved in growth and invasion,
whereas those in irradiated L3s were enriched with immunogenic
proteins and proteins involved in radiation repair (Li et al.,
2009). Such high throughput genomics analysis is important for
understanding the biology/development, invasion, and immune
evasion mechanisms of the parasite and could help improve
disease control measures (Choi et al., 2011).

Mass drug treatment with Ivermectin (IVM) orMectizan R© and
Albendazole is the main strategy for filariasis control in Africa
and has been going on for decades (Amazigo, 2008). However,
cases of drug resistance have been reported and genomic
methods are increasingly being used to investigate mechanisms
of resistance. Genotyping and sequencing studies have shown
an association between SNPs in some O. volvulus genes (P-
glycoprotein-like protein, β-tubulin) and the development of
resistance (Nana-Djeunga et al., 2012; Osei-Atweneboana et al.,
2012). P-glycoprotein was recently demonstrated to be associated
with resistance to IVM in a horse filarial species (cyathostomins)
with transcript levels measured by RNA-Seq and confirmed by RT
q-PCR found to be significantly higher in the resistant compared
to sensitive worm population (Peachey et al., 2017). Moreover,
GWAS demonstrated that reduced sensitivity of O. volvulus

to IVM is accounted for by genetic drift and soft selective
sweeps. Pooled next generation sequencing of O. volvulus worms
collected from Ghana and Cameroon repeatedly treated with
IVM and phenotypically characterized into poor responder
(PR) and good responder (GR) parasites identified genetic
variants that considerably delineate GR and PR parasites. One
of these variants (SNP, OM1b_7179218) was common in both
Cameroon and Ghana worm populations, whereas the others
were country-specific (Nana-Djeunga et al., 2014; Doyle et al.,
2017). These variants were found to be grouped in quantitative
trait loci (QTLs) in which published genes associated with
IVM resistance were scarcely found. Gene Ontology2 analysis
revealed that genes found in those QTLs regions were linked
to pathways involved in neurotransmission, development, and
stress responses (Harris et al., 2004; Doyle et al., 2017). The
involvement of neurotransmission is a promising finding here
because one of the main targets of IVM is a ligand-gated channel
at neuromuscular junctions (Cully et al., 1994).

The molecular mechanism of Ivermectin is not clearly
understood and has been investigated using bioinformatics
approaches. RNA-Seq analyses of ivermectin-challenged
B. malayi adult female worms revealed that genes involved in cell
division (meiosis) and oxidative phosphorylation were drastically
downregulated as early as 24 h post-exposure (Ballesteros et al.,
2016). A similar study in which the worms were instead
challenged with flubendazole (FLBZ), a potential macrofilaricide,
demonstrated the effect of FLBZ on embryogenesis and cuticle
integrity (O’Neill et al., 2016a). Expression of cuticle-related
genes and those involved in mitosis or meiosis were notably
affected by the treatment. These studies further elucidate the
drug-induced inhibition of embryogenesis and microfilarial
release from the female worm uterus during larval development
as previously demonstrated (O’Neill et al., 2015, 2016b).
Knowledge of this mechanism could help in drug repurposing
whereby drugs known to have a similar mode of action or
mechanism, but are used for the treatment of other parasitic
diseases, could be tested for their efficacy on filarial parasites.

APPLICATION OF OMICS TO VACCINE
TARGET IDENTIFICATION AND DRUG
DISCOVERY

The availability of whole genome sequences of both the host
and pathogens in different databases such as GenBank3 (Benson
et al., 2004), EuPathDB (4formerly ApiDB), WormBase5, Virus
Pathogen Database and Analysis Resource (ViPR) has led to
tremendous advances in the search for new drug and vaccine
targets (Yan et al., 2015; Xia, 2017). This enables high throughput
in silico screening for the identification of vaccine and drug
targets, thus focusing expensive laboratory screening on selected
high affinity targets. Though not yet fully implemented in Africa,

2http://geneontology.org/
3http://www.ncbi.nlm.nih.gov
4http://EuPathDB.org
5http://www.wormbase.org
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omics technologies and bioinformatics analyses have aided
significantly in the generation of new knowledge toward drug and
vaccine target discovery (Yan et al., 2015; Xia, 2017). Genomic,
transcriptomic and proteomic analyses of pathogens such as
filariasis parasites have identified new potential biomarkers that
can be invaluable in diagnostics, vaccine and drug development
(Armstrong et al., 2016; Bennuru et al., 2017). Kumar et al. (2007),
using genome wide C. elegans RNA-interference data as proxy,
identified a set of 3,059 essential genes in the B. malayi genome,
from which 589 were characterized as potential drug targets. The
prioritization algorithm helps in the prediction of the efficacy,
selectivity and tractability of each target.

Phylogenomic analyses across Plasmodium spp. and
comparative genomic studies in humans have led to the
identification of new drug targets in P. falciparum. Identification
of essential genes (targets) responsive to specific inhibitors led to
the discovery of 40 potential drug targets, which includes known
ones such as calcium dependent protein kinase and previously
unknown ones such as phosphoisomerase and carboxylase
(Ludin et al., 2012). Comparing the transcriptomes of six
Plasmodium spp. during blood stage infection revealed about
800 genes that have similar expression patterns across species,
among which 240 were demonstrated to be druggable by online
drug target prioritization databases (Hoo et al., 2016). Similarly,
genomic and transcriptomic analyses have been carried out with
other pathogens with encouraging results in fungi (Kaltdorf et al.,
2016), bacteria (Turab Naqvi et al., 2017), and viruses (Dapat and
Oshitani, 2016).

In vaccine target identification, pathogen genomes are being
scanned in a bid to identify genes encoding proteins or molecules
with vaccine candidate properties such as low antigenic variation,
polymorphism, and immunogenicity (Masignani et al., 2002;
De Groot et al., 2008). Despite the success of whole-organism
vaccines such as those for polio, whole-organism vaccines for
pathogens such as Plasmodium spp., Mycobacterium spp. and
HIV remain a challenge (Doolan et al., 2014; Proietti and
Doolan, 2015). Genomics offers a potential way around this
challenge through the discovery of immunogenic antigens using
whole-genome scans (Doolan et al., 2014; Proietti and Doolan,
2015). Here, omics techniques and bioinformatics tools are
used to determine genes or proteins that are involved in the
virulence of the pathogen and pathogenesis of the disease by
comparing, for example, attenuated and pathogenic disease
agents. Algorithms can be used to predict T cell epitopes or
regions with high affinity within HLA molecules in translated
peptides found in databases (Grubaugh et al., 2013; Davies
et al., 2015) in order to inform the choice of the right
antigens for vaccine design. Omics technologies have been
reviewed in the context of vaccine target identification by He
(2012).

Most of the tools used for epitope identification rely on
statistics and machine learning. Some of them include servers to
predict MHC-binding, peptides namely RANKPEP (Reche et al.,
2004), which uses Position Specific Scoring Matrices (PSSMs),
and nHLAPred6 (Bhasin and Raghava, 2007), based on Artificial

6http://www.imtech.res.in/raghava/nhlapred/

Neural Networks (ANNs) and quantitative matrices among
others. Some severs are specific for B-cell epitope prediction,
such as Bcepred7 (Saha and Raghava, 2004), ABCpred8 (Saha
and Raghava, 2006), and BepiPred9 (Jespersen et al., 2017). These
tools work based on the physicochemical properties and location
of the peptides. They function alongside epitope-containing
databases such as Swiss-Prot, SYFPEITHI, and IEDB (Fleri et al.,
2017). The list of tools, methods and databases mentioned here
is not exhaustive, however, they have been extensively reviewed
elsewhere (Soria-Guerra et al., 2015).

Nowadays, due to advances in the fields of computer
sciences, genomics, proteomics, bioinformatics and management
of patients’ health records, etc., there seems to be a paradigm
shift from generalized medicine to personalized therapy (Sorber
et al., 2017). For example, many drugs are metabolized by
cytochrome P450 enzymes with drug action depending on the
expressed gene variant (BlueCross and BlueShield Association,
2004; Daly et al., 2006). Moreover, malaria patients with
glucose-6-phosphate (G6p) deficiency have been reported with
severe complications such as cardiotoxicity and acute hemolytic
anemia following treatment with quinidine gluconate (Damhoff
et al., 2014). These complications have been described as a
consequence of inherited (X-linked trait) mutations in the g6p
gene (Luzzatto and Seneca, 2014). These mutations do not
cause the complete loss of the G6P enzyme but instead affect
its stability and level in red blood cells (Luzatto et al., 2001).
In the same line rifampicin, which is the drug of choice for
TB treatment, is transported after administration by a human
anion transporter encoded by the SLCO1B1 gene. Studies have
shown that mutations in the SLCO1B1 gene, namely rs11045819
and rs4149032, are associated with decreased RIF plasma levels
in South-African populations (Weiner et al., 2010; Chigutsa
et al., 2011; Gengiah et al., 2014). However, this finding could
not be replicated in Malawian and South Indian populations,
implying that this could be population-specific (Ramesh et al.,
2016; Sloan et al., 2017). These show, in a nutshell, the
implication of genomics and bioinformatics in drug discovery
and precision therapy (Hamburg and Collins, 2010; Rabbani
et al., 2016).

CHALLENGES AND OPPORTUNITIES IN
CONDUCTING OMICS AND
BIOINFORMATICS STUDIES IN AFRICA

Bioinformatics is increasingly becoming an important
cornerstone in contemporary research on infectious diseases
(Mulder et al., 2017), where Africa has the highest morbidity
and mortality but less genomics research output compared to
other regions of the world (Fatumo et al., 2014; Karikari, 2015).
This slow pace of genomics research output is due to several
challenges in omics and bioinformatics research facilities in
Africa; three of the major ones are briefly discussed.

7http://www.imtech.res.in/raghava/bcepred/
8http://www.imtech.res.in/raghava/abcpred/
9http://www.cbs.dtu.dk/services/BepiPred/
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Inadequate Infrastructure
Bioinformatics and genomics analysis require powerful
computers and a reliable source of electricity for large data
storage and high throughput analyses (H3Africa Consortium
et al., 2014). With the exception of some South African
universities, most sub-Saharan African universities lack high
performance computing facilities (Karikari et al., 2015; Mulder
et al., 2016). There is also a limitation of high-speed internet
for sharing data and accessing bioinformatics databases and
repositories (Fatumo et al., 2014; Karikari, 2015). This hinders
the application of cloud-based web services which could have
circumvented the need for local high-performance computing
facilities (Navale and Bourne, 2018). Furthermore, few research
institutions in Africa have sequencing facilities and therefore
resort to sequencing abroad through collaborations. Such
collaborations often result in a loss of ownership of the data and
resulting publications usually have the external collaborators as
lead and correspondence authors. Notable efforts being made to
bridge this infrastructural gap include the installation of high-
performance computers (HPCs) at The Developing Excellence
in Leadership and Genetics Training for Malaria Elimination
in sub-Saharan Africa (DELGEME) at the University of Science
Technique and Technologies of Bamako, Mali, the West African
Centre for Cell Biology of Infectious Pathogens (WACCBIP),
University of Ghana and the Medical Research Council Unit,
The Gambia at the London School of Hygiene and Tropical
Medicine, to support storage and high throughput analyses
of genomic data. These HPC facilities are complemented by
NGS sequencing facilities at WACCBIP and MRC in addition
to some institutions in East Africa such the International
Livestock Research Institute (ILRI-Kenya). This infrastructural
development, and pressure from initiatives such as Human
Heredity and Health in Africa (H3Africa), will hopefully serve
as a springboard for Africa to increase her involvement in
the study design, sample collection, analysis and ownership
of data rather than just collecting samples for international
collaborators.

Lack of Training Opportunities and
Well-Structured Bioinformatics Courses
Until the recent introduction of bioinformatics training courses
by H3ABioNet, there were limited bioinformatics training
courses in Africa. Such training programs were mostly short
courses organized by local bioinformaticians with support from
experts in the field across Africa and other external collaborators
(Gurwitz et al., 2017). Very few African universities have
structured bioinformatics courses, most of these universities are
South African, while some are North African and few are in sub-
Saharan Africa (Bishop et al., 2015). The DELGEME, through
funding from the Wellcome Trust, is also providing funding
for Master of Science courses in bioinformatics, which are
mostly done in South Africa. The other form of bioinformatics
training is through local capacity building, which institutions
organize for staff with support usually through North-South
collaborations and transfer of expertise. However, the downside
of short courses is that there is no mentorship beyond the

course, which hinders consolidation of the knowledge gained.
In addition to these, some organizations working predominantly
on crop production, such as the International Institute of
Tropical Agriculture Bioscience Center10 and Consultative
Group on International Agricultural Research institute11, offer
short bioinformatics training opportunities to African scholars.
Sometimes some students from Africa get training from
European universities, but the challenge is that most of the
trainees do not come back to join local institutions because
of poor infrastructures. Furthermore, there is a disconnect
between biologists and other scientific disciplines such as
computer science, statistics and mathematics in most African
universities. This affects multidisciplinary research, which is
crucial in modern-day infectious disease research. Ultimately,
the lack of well-structured bioinformatics curricula hampers the
development and maintenance of highly needed experts in the
field in Africa, since they often move to Europe and North
America for better career prospects.

Limited Research Funding
A major challenge to research on the African continent is
the lack of funding for biomedical research. Current research
is mainly funded from international donors, with limited or
no funding from national governments and African regional
bodies such as the African Union (Hamburg and Collins,
2010; Karikari, 2015). However, a few countries such as
South Africa, through the South Africa’s National Research
Foundation and Medical Research Council, do provide funding
for genomics research projects (Karikari et al., 2015). Until
the initiation of H3Africa, through funding from the National
Institute of Health (United States) and the Wellcome Trust
(United Kingdom), there was limited to no funding for genomics
and bioinformatics in Africa (Adoga et al., 2014; Mulder et al.,
2017).

CONCLUSION AND PERSPECTIVE

Herein we highlight how genomics and bioinformatics has
contributed to our understanding of infectious diseases of
significant health concern, ranging from bacterial and viral to
parasitic infections, as well as their applications to drug and
vaccine target identification. This ranges from understanding
pathogenesis, host systemic responses and host-pathogen
interactions to identification of prognostic and diagnostic
markers. However, in Africa, despite the high morbidity and
mortality due to infectious diseases, there is limited expertise
in the field of bioinformatics and hence limited bioinformatics
research output in terms of publications. Thus, there is a need to
strengthen training and capacity building in bioinformatics in
Africa to improve infectious disease genomics and host-pathogen
genomics on the continent. This can be achieved through the
establishment of well-structured courses, mentorship for junior

10http://bioscience.iita.org/index.php/en/services/bioinformatics
11https://www.cgiar.org/
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and trainee bioinformaticians and better career prospects to
maintain trained bioinformaticians on the continent.
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