
This is a repository copy of Integrating Existing Safety Analyses into SysML.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/152498/

Version: Accepted Version

Proceedings Paper:
Clegg, Kester Dean orcid.org/0000-0002-4484-3291, McDermid, John Alexander 
orcid.org/0000-0003-4745-4272, Grigg, Alan et al. (1 more author) (2019) Integrating 
Existing Safety Analyses into SysML. In: Papadopoulos, Y, Aslansefat, K and Katsaros, P, 
(eds.) Model-Based Safety and Assessment (IMBSA) 2019:Lecture Notes in Computer 
Science. Springer , pp. 63-77. 

https://doi.org/10.1007/978-3-030-32872-6_5

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Integrating Existing Safety Analyses into SysML

Kester Clegg1, Mole Li2, David Stamp2, Alan Grigg2, and John McDermid1

1 University of York, United Kingdom, YO10 5DD
{kester.clegg,john.mcdermid}@york.ac.uk

2 Rolls-Royce (Controls) PLC, Derby, United Kingdom
{mole.li,alan.grigg,david.stamp}@rolls-royce.com

Abstract. Migrating systems and safety engineering (often with legacy
processes and certified tools) towards a model based systems engineering
(MBSE) environment is a socio-technical problem. Establishing a com-
mon conceptual framework requires agreement on modelling artefacts
and the integration of existing tool chains to minimise disruption. We
discuss our experience integrating a SysML Safety Profile to model fault
trees but which has the prerequisite requirement to continue the analysis
of those models by existing tools. We demonstrate a lightweight profile
that minimally captures the fault logic for a Rolls-Royce gas turbine en-
gine controller and provides specific in-house extensions for both fault
tree and engine dispatch analysis by exporting model entities and re-
lationships from the SysML fault trees. During integration we realised
a more fundamental need to reconcile the systems engineers functional
view with the safety engineers focus on failure modes and fault logic in
order to maximimse the longer term benefits of MBSE development.

Keywords: SysML · Fault Tree Analysis · Failure Modes

1 Introduction

Systems engineers have traditionally used separate models of the system func-
tions from those used for safety analysis. Part of this stems from the need to
consider the system from a functional perspective on one hand and on the other
hand how it will fail. As failures frequently cut across functional boundaries and
model very different things, system and safety models can be difficult to reconcile
and verify for consistency. While it can be argued that maintaining two models
from a single set of system specifications can act as an independent check that
the system will behave as expected under failure, the differences between the
system and safety models is often a source of inefficiency and misinterpretation.

In this paper we document our experience that trying to reconcile system and
safety perspectives is not simply a question of sharing a single data repository
captured in a modelling language such as SysML (Systems Modelling Language).
Support for different perspectives requires alignment not only of artefacts, but
of how the system should be modelled to gain a common understanding across



2 K. Clegg et al.

the company’s engineers. The context of this work is as part of Rolls-Royce’s Ul-
traFan engine demonstrator program,3 which has elected to trial SysML during
system development.

1.1 Paper structure

§1.2 gives some background to safety critical and systems modelling using SysML
perspective and previous work. §1.3 describes the specific requirements for the
ENCASE (Enabling Novel Controls and Advanced Sensors for Engines) project.
§2 looks at our implementation of the fault tree SysML profile. §3 details our be-
spoke SysML profile that provides support for modelling fault logic both within
SysML and through the use of export scripts to existing fault tree analysis tools.
§4 gives a summary of engine dispatch analysis.4 The issue of gradually introduc-
ing MBSE through integration with the existing analytical toolchain is covered
in §5. In §6 we discuss some of the problems and solutions to reconcile different
modelling viewpoints with respect to the functional specification and derived
safety requirements. Finally §7 concludes our experience and outlines the work
going forward.

1.2 Background and previous work

Model Based Systems Engineering (MBSE) brings different modelling viewpoints
and tool chains under the umbrella of a single model repository that forms the
basis of all development and analytical effort. Various flavours of MBSE have
been proposed over the last two decades [12] that targeted the needs of systems
development. The references listed here are mostly pertinent to safety critical
civil aerospace development as to cover all topic domains within MBSE would
require a more extensive review. However, even within the more restricted re-
mit of safety critical aerospace systems and safety modelling there is a wide
variety of approaches, with many based around particular languages (AltaR-
ica[3],[5],[13], SCADE/Lustre[10]), or around a modelling environment such as
Matlab Simulink [15] in combination with other tools, such as HiP-Hops [16] or
physical simulation environments such as Modelica or Simscape ([14],[15]. The
decision to adopt SysML as the modelling language for UltraFan was taken prior
to our work starting on ENCASE.

SysML is an extension of the Unified Modelling Language (UML) that fo-
cuses on systems modelling. SysML supports the specification, analysis, design,
verification and validation of a broad range of systems and systems-of-systems.5

However, ‘support’ in this sense is intended to mean a well-defined specification

3 Part of Innovate UK’s ENCASE (Enabling Novel Controls and Advanced Sensors
for Engines) project.

4 Dispatch refers to the engine’s ability to carry a fault for given time before mainte-
nance action is taken.

5 This paper refers to the current Object Modelling Group (OMG) SysML v1.5, not
the upcoming 2.0 standard. See http://www.omgsysml.org/



Towards a SysML Profile for Safety Analysis 3

to describe the system, so that development and analysis can be performed using
tools that take their data from a single model repository. This allows existing
(perhaps certified) tools to be used provided that a means to export the data
from the repository into a format the tool can use is made available. In order to
do that, an input method must be provided that allows the critical information
and knowledge capture of both system and safety concerns. Unfortunately while
a graphical interface for system modelling is widely supported by tool vendors for
SysML, a similar environment for safety analysts to model fault logic is rarely
provided. Fault logic is typically modelled using a graphical representation of
logic gates that traces the fault from base event to effect and which can contain
additional information, such as failure rate, dispatch information and descriptive
failure modes. A typical example is shown in Fig. 1 and the technique is defined
in standards like IEC 61025 [9].

In 2017 the OMG issued a Request for Proposals on how to represent fault
trees in SysML as part of the Safety and Reliability Analysis Profile for UML,
which will extend the SysML language with “the capability to model safety
information, such as hazards and the harms they may cause, model reliability
analyses, including Fault Tree Analysis (FTA) and Failure Mode and Effects
Analysis (FMEA), and use structured argument notation to organise the model
and specify assurance cases”[2]. As part of this, an early profile for Fault Tree
Analysis (FTA) and Failure Mode and Effects Analysis (FMEA) has been devel-
oped and published [2] and is likely to form part of SysML 2.0. However, while
the new profile is moving in the right direction, it isn’t sufficiently defined to be
adopted for use on the development of UltraFan within Rolls-Royce and neither
is it likely to support the specific requirements for Rolls-Royce to model engine
dispatch availability. Our work attempts to bridge this current gap in SysML
capability by providing a bespoke SysML profile to support Rolls-Royce’s Fault
Tree and Time Limited Dispatch (TLD) analyses.

1.3 ENCASE project

ENCASE’s initial starting point to model fault trees in SysML was an early
paper from the National Aeronautics and Space Administration (NASA)’s Jet
Propulsion Laboratory on fault protection modelling, which captured fault logic
using UML (Unified modelling language) activity diagrams [6]. We investigated
the potential of this approach but found issues with it. Firstly, while it is possible
to model OR logic gates on activity diagrams using nodes, there is no provision
for AND gate representation. The nature of the system redundancy provided
by a dual channel FADEC (Full Authority Digital Engine Control)[11] means
that modelling fault logic requires the use of AND gates (due to the possibil-
ity of the same function on both channels failing). Secondly activity diagrams
were never intended to model fault trees, and trying to use them for that pur-
pose inevitably brings compromises. At Rolls-Royce Controls, system engineers
are already using activity diagrams to model system functions and incorporat-
ing safety model artefacts like fault logic gates using activity diagram notation
would cause confusion and the potential for misunderstood syntax / semantics.



4 K. Clegg et al.

Furthermore, at least as implemented in PTC’s Integrity Manager, activities on
activity diagrams become Call Behaviour Actions, which semantically seems an
over specification for fault logic that is minimally expressed as set of fault propa-
gation paths containing logic gates. Although there are other potential diagram
types within SysML, none offer specific support for fault tree analysis and we
decided we could best meet our needs by creating a bespoke diagram type.

There is also recent work investigating the formal translation of activity dia-
grams in UML / SysML to fault trees [7]. While this is a rigorous method, that
entails a one to one correspondence between the two models, at this stage in
the ENCASE project a more pragmatic approach is required due to the variety
of ways engineers model activities. For example there are parts of activity di-
agrams, such as Join Nodes, that are semantically ambiguous and can be used
/ interpreted differently by users which would make automated translation dif-
ficult. However there is a more fundamental problem with attempting a direct
translation, in that traditional fault logic models often contain quite abstract
failure modes that will not have a corresponding entity in a functional model.
For example system engineers may model functional behaviour that mitigates
against a known hazard, but they are unlikely to model the loss of that function
and its effect on the system. Therefore the fault tree may contain fault logic
that cannot be linked to or directly translated from entities within activity dia-
grams. It may be possible to do a partially automated translation if both models
were carefully constructed to reflect the same functional hierarchy and channel
implementation. We discuss this possibility in more detail in §6.

The primary practical concern for the safety team was that the SysML fault
tree models should be capable of modelling the system fault logic as it had been
done historically and exporting it in a format where it could be analysed by
their existing tools such as FaultTree+ (part of Isograph’s Reliability Workbench
suite). Their requirements were that the graphical user interface should be as
close as possible to FaultTree+ and that the information kept in the SysML
model should be the minimum required to export the fault logic for analysis.
This made adapting some existing approaches, such as Component Based Fault
Trees [1] unsuitable as they were felt to be too complex for what was needed,
despite the requirement for modular fault trees. Being able to compose sub fault
trees that can be joined to existing branches of fault logic for specific forms of
analysis, such as time limited dispatch analysis, is supported via transfer gates
and in this respect mirrors the functionality offered by FaultTree+.

2 Implementation

The current modelling environment for UltraFan is provided by PTC’s Integrity
Modeler (formerly Artisan) using SysML extended to aid efficient modelling of
gas turbine controllers. A typical screenshot is shown in Fig. 2 and to date
the software is mostly used to capture system specification through activity
diagrams. In the left hand panel, below the activity diagrams in the package
hierarchy can be seen the fault tree structures. Our initial trials showed that



Towards a SysML Profile for Safety Analysis 5

Fig. 1. Lower level of a fault tree showing base events with FMES (Failure Mode and
Effects Summary) identifiers (unique names) as rendered by RWB’s FaultTree+.

there are some user interface issues with very large fault trees being represented
in a ‘file browser’ type format, as the user can quickly get lost scrolling through
hundreds of gates. However, there are tools within PTC IM that allow a quick
search between entities on the fault tree diagrams and their location with the
package browser.

In order to bridge the gap between traditional safety engineering that uses
separate models from the system engineers’ models, and in a similar spirit to the
OMG RFP mentioned earlier, we have drafted the first stage of our Model Based
Safety Assurance (MBSA) profile that will in time allow the full integration
of safety analysis models with existing system models. Our profile remains a
work in progress and this part is sufficient to start to migrate the existing fault
tree models into the SysML repository. Similar to SysML extensions in UML,
the proposed Fault Tree Profile reuses a subset of UML 2.5 and provides a
bespoke diagram type (an extension of structured diagram) and additional gate
definitions to aid specific types of Fault Tree and dispatch analysis for Rolls-
Royce. The initial version of our profile is detailed in [4] and the profile’s entities
and linkages are described in detail there. However, we have since released a new
version with substantive changes, in particular the removal of ‘failure modes’ as
a first class entity, due to issues with the user interface and ease of export to
analytical tools (see §3).



6 K. Clegg et al.

Fig. 2. Example of activity diagram modelled in PTC Integrity Modeler (formerly
Artisan).

The main aim of the profile was to capture the minimum information needed
to accurately export the fault logic to FaultTree+ and to ensure that a single
specification was used to drive both safety and systems modelling. Using as
lightweight a profile as possible means much of the FMES (Failure Modes and
Effects Summary) base event and dispatch information does not need to be kept
in the SysML model.6 Instead, the events and gates have unique identifiers that
is sufficient for the information associated with them to be extracted from the
FMES database. The reason for this is that the FMES is quite large (>3K rows
with many columns) and there has to be an explicit case made for bringing that
information into the SysML model where it is less easy to keep it maintained
and checked.

Therefore it is easiest when a new analysis is to be run to extract the summary
failure rate data directly from the databases, while keeping the fault propogation
logic, base and dispatch events within the SysML model. This is in keeping with
our belief that the SysML model represents a knowledge repository, whereas
the FMECA and FMES databases are designed to handle, import and export

6 The FMES is a derived summary of the Failure mode, effects and criticality analysis
(FMECA) database (>25K rows) which is maintained with the latest failure rates.



Towards a SysML Profile for Safety Analysis 7

Fig. 3. Lower level of H01 (this is a top level hazard for turbine overspeed) fault tree
showing OR gates and base events with FMES identifiers, as rendered by PTC Integrity
Modeler using our Fault Tree SysML profile.

large amounts of data efficiently and are able to interface with a wide range of
analytical tools. Fig. 3 shows an example fault tree modelled using our profile
in PTC Integrity Modeler. Removing the FMES data (which is not used by the
safety analysts when modelling the fault logic — it is added by FaultTree+ by
combining the failure rates of base events) gives a much cleaner interface. The
gate descriptions or ‘failure modes’ are tags on both events and gates.

3 Changes to the Previous Fault Tree Profile for SysML

Version 1 of our profile is shown in [4] which describes in detail the profile’s
entities. However, due to user experience studies, we have had to make some
fundamental changes to the profile and have further extended it with trans-
fer gates, null gates and dispatch events (see Fig. 4) in order to accommodate
the types of analysis for engine dispatchability that are specific to Rolls-Royce
(civil aerospace). As engine dispatch analysis is a complex topic, we give a short
summary in §4.

Our changes to the profile centre around the removal of ‘failure modes’ as a
first class entity that could be linked to other parts of the SysML specification
(see Fig. 3 that shows using gate descriptions as ‘failure modes’). The motivation
for having them as first class entities in the profile was to enable a more flexible
traceability to derived safety requirements and to enable verification checks so
that each failure mode was associated with a function and every function was
associated with at least one failure mode. Unfortunately, user tests revealed that
users would often ‘copy and paste’ failure mode instances when modelling dual
channel functions (instead of creating unique failure modes for each channel).



8 K. Clegg et al.

Fig. 4. Meta model of the proposed Fault Tree Profile, which will form part of a larger
MBSA profile. The Fault Tree Diagram scripts are not part of the profile but serve to
recreate a familiar user interface for safety analysts in PTC Integrity Modeller (PTC
IM). The export script is not shown.

The effect of this was that the model would link that failure mode instance
to both logic gates, so that it would end up with two inputs (one from each
channel).7 While the fault tree diagrams looked fine to the user, on exporting
the fault tree logic to Reliability Workbench, it was realised that these failure
modes had the wrong number of inputs to the next gate. Although this issue
could perhaps have been addressed by suitable user training, it was felt that
this was not particularly user friendly due to the linked inputs being effectively
‘hidden’ from the user (i.e. the additional links were not visible on the fault tree
diagram).

The solution was to remove failure modes and instead consider them as ‘hu-
man readable’ descriptions of the logic gates in the fault tree. This simplified the
model parsing for export and removed some of the ‘clutter’ of the fault tree dia-

7 As explained later, a single gate with two inputs from either channel is possible
where both channels access the same hardware component and therefore share the
same fault logic. However, that is a specific case and is definitely not correct in the
case of a duplicate control function running on each channel.



Towards a SysML Profile for Safety Analysis 9

grams. As most gates have a unique identification with respect to their channel,
this reduced the possibility of the user creating ‘hidden’ links in the model by
using an existing gate defined for another channel. There are exceptions to this,
as there are hardware components that both channels use (such as the fuel shut-
off valve) and for which there is a single set of associated base events and fault
logic. In this case, the user must take care to define the gates and events that
represent the shared hardware above the split in the fault tree branch that mod-
els the implementation of a specific channel’s fault logic, so that both channels
can have access to an instance of the gate or event on their respective branches
of the fault tree. This ability to model the shared hardware for either channel
or repeated instances of hardware is particularly important for common cause
analysis.

3.1 Additional extensions to the profile

The rationale for creating a bespoke fault tree SysML profile is so that in-house
modelling techniques and practices can be maintained with as little disruption
or additional training as possible as the transition is made to MBSE. In the case
of Rolls-Royce, a specific gate called a TRANSFER gate is used for linking sub
trees (often stored in separate files) to branches of an existing fault tree. This
means that sub fault trees that model shared system resources (such as hardware
or network buses) can be built up into libraries and added to models as required.
This has the advantage that if change needs to be made to a sub tree, it can be
made once and the change will be reflected wherever that sub tree is used.

The second type is a variant of a base event termed a House event and this is
used to model the presence of dispatch faults in certain configurations needed for
dispatch analysis (see next section). House events as implemented in FaultTree+
are base events except that their logic mode is restricted to either true or false.
Selecting them to TRUE (logic mode) incorporates the event into the analysis.
Selecting the house event to FALSE removes it from the analysis. House events
can be modelled under an OR gate or an AND gate dependent upon the system
effect being modelled.

At Rolls-Royce Controls NULL gates are sometimes used above a house event
as a type of neutral interface. NULL gates do nothing except pass the input
onward, however they are more flexible than a direct input from a base event if
changes are needed, as NULL gates can take an input another gate or subtree,
whereas a base or house event cannot. House events are primarily of interest for
engine dispatch analysis in order to satisfy the requirements of CS-E 1030 and
the process is briefly described in the following section.8

4 Modelling Time Limited Dispatch

A FADEC system is designed to be fault tolerant so that many single faults lead
to loss of redundancy rather than functionality. This enables airlines to operate

8 See [8] for a detailed discussion on the Time Limited Dispatch requirements for
more-electric gas turbine engines with respect to CS-E 1030.



10 K. Clegg et al.

engines with faults in the control system until a convenient place and time of
repair is reached. At the end of each flight the on-condition maintenance en-
sures that the system provides a record of known faults (if any) and determines
whether the faults within the system are sufficient to prohibit dispatch. If de-
parture is allowed with known faults then in many cases a time limit is set for
the repair to be carried out.

With respect to base event models and time limited dispatch, there are two
types of maintenance policy:

– On-condition maintenance requires that a fault be repaired within a fixed
period of time after a fault is detected. This is modelled using the time at
risk model with all faults conservatively assumed repaired at the end of the
allowable period.

– Fixed interval maintenance only repairs faults at one of a number of sched-
uled maintenance slots. When a fault is detected it is repaired at the next
slot. This is modelled with the ‘dormant’ model with repair rate set to zero
and the inspection interval set to the period between maintenance slots.
Note, zero repair time is used since the safety models only consider flight
time and the repairs effectively take no flight time (no repairs in flight!)
regardless of the actual repair time on-ground.

Certain events do not have an associated control systems dispatch period and
instead have an immediate effect. These are modelled as Do Not Dispatch (DND)
faults and may be designated as initiating events. A number of event groups have
been defined and these include an event group for each of the main exposure
periods (i.e. DND, Short Time Dispatch (STD), Long Time Dispatch (LTD),
Unlimited Dispatch (ULD), and Dormant) along with additional groups for any
exposure periods that may arise that do not fall within the main categories.
In general the dispatch period used for a base event should be that set by the
dispatch status generated by that fault when it occurs while the system is in a
‘full-up configuration’. This strategy gives the correct results for one or two fault
cut sets. Issues may occur with three fault cut sets. The dispatch information
is not kept in the SysML model, in keeping with our principle that the profile
should be as lightweight as possible and that information is easier to maintain
and manage via the FMES and FMECA databases.

There are three main aspects to the Fault Tree Analysis for Time limited
Dispatch (TLD):

1. Fleet average rate calculation.
2. Specific rates for individual dispatchable configurations.
3. Cut set analysis to demonstrate that no hazardous event can be caused by

a single control system fault in any dispatchable configuration.

The first is covered by setting exposure periods for base events. The second is
covered by modelling dispatchable configurations using House Events. The house
events are added for each Dispatchable Fault (DF) identified in the dispatch
summary. These are added both to the individual main and sub-models, and



Towards a SysML Profile for Safety Analysis 11

their logic mode set FALSE. Each house event in turn is selected to TRUE and
the model run, giving results for each dispatchable configuration. The third also
uses the dispatchable fault house events. It involves setting their logic mode to
basic to ensure they appear in cut sets and then examining the cut sets for all
Hazardous events to ensure that there are no cut sets where both a dispatchable
fault and a single control system fault occur. If such a cut set existed it would
indicate that there is a dispatchable configuration where a single control system
fault results in a hazardous event.

In FaultTree+ a base event can take three values for its logical mode — basic,
true or false. A house event can only take either true or false, and therefore it is
either part of tree as a dispatch fault that is ‘on’ or excluded as an input. This
is a tool specific extension we include in profile so that export to FaultTree+
will support existing methods of analysis. If a different tool was being used for
analysis, it would be possible to create a profile that extended the base event class
to create a dispatchable fault that contained a simple boolean tag to indicate if
it should be part of dispatchable configuration for analysis. The ability to extend
profiles in this way to match the export needs of specific analytical tools is one
of the great advantages of SysML.

In order to demonstrate compliance to the requirements of CS-E 1030 it is
required to calculate the top event rates of the various hazards in each of the
declared dispatchable configurations. To facilitate this analysis requires the ad-
dition of a number of dispatchable events to the fault trees in order to model de-
graded configurations. Previously this analysis was performed manually through
the use of NULL gates that ‘switched’ house events to TRUE. However, as we
discuss in the following section, thanks to the extensive automation interface
provided with PTC IM, it will in future be possible to largely automate this
configuration of this task using export scripts.

5 Using scripts to integrate analytical tools

Bringing together different engineering perspectives under the SysML umbrella is
complicated by the established traditions and processes for those disciplines. En-
gineers get used to particular tool idiosyncrasies and work arounds, but more fun-
damentally they establish a level of trust through methods of working with the
tools. In order that the migration process towards MBSE retains these trusted
methods, accomodating existing analytical tools is essential. Fortunately, many
tools allow import and export of data into spreadsheets or CSV (comma sepa-
rated values) files. The current environment for modelling SysML at Rolls-Royce
Controls is PTC’s Integrity Manager.

PTC’s IM comes with an extensive automation interface that can use Visual
Basic (VB) scripts to provide customisations to the user interface, to edit and
change models and to export data via formats such Microsoft’s Excel database.
This facility has been of great benefit when creating the user interface for our
bespoke fault tree diagram. For example, it was possible to replicate to a large
extent the look and feel of FaultTree+, so that users could use familiar icons



12 K. Clegg et al.

Fig. 5. Dispatch event shown with NULL gate. Export scripts can identify these events
through Rolls-Royce’s naming convention and enable them by setting their logical mode
to TRUE and then exporting the fault logic for that dispatch configuration.

and graphic symbols in their diagrams. An example of additional functionality
is to enable them to create new branches of the fault tree by double clicking
on a gate with no inputs. This opens a new fault tree diagram if one does not
already exist and the user can use the same gate instance on the new diagram
to help readability. Furthermore the use of scripts can limit the types of action
allowed on fault tree diagrams by prohibiting the wrong ‘links’ between entities
or warn the user if the cardinality between entities is exceeded, it is even possible
to perform look ups to match gate names against the FMES database. But the
real value of scripts in the SysML model is allow exports to analytical tools.

5.1 Exporting fault tree logic

By choosing a minimal capture of fault logic for the fault tree profile, the in-
formation required to extract for import into FaultTree+ is relatively easy to
obtain. FaultTree+ requires fault logic imports to summarise two worksheets,
one for base events and one for the gates and their inputs. Due to the automa-
tion interface, the data repository can easily parse all classes belonging to a
package. In our case, the gates and events are extensions of classes and so these
can be filtered from the data dictionary. The complexity comes from maintain-
ing and identifying the dependents and dependees for each gate. The dependent
relationship is the output of that gate into another gate. The dependee relation-
ship is the inputs to that gate from other gates or events. A typical output is
shown in Fig. 6. Once the fault logic has been imported, the analysis can be



Towards a SysML Profile for Safety Analysis 13

Fig. 6. Export of gate logic to Excel worksheet. The fault logic is represented by the
inputs to each gate (up to 17, including whether it came from an event or another
gate) and the dependent gate (the gate that receives the output). The failure modes
in the previous profile were replaced as descriptions of the gate. Although 25 columns
in the worksheet for the gates are specified (and a similar number for events), the gate
and base event unique IDs are sufficient for extracting additional information from the
FMES / FMECA as needed to analyse dispatch configurations.

run as usual. The probability and exposure data behind the fault logic remains
in the FMES and FMECA databases and can be extracted as needed into the
SysML model or FaultTree+.

5.2 Automating the dispatch analysis

As explained in §4, dispatch analysis is carried out by selecting house events
and setting them to TRUE in the fault tree and running the analysis. To date
this has been a manual task, and quite a substantial one given the combination
of dispatch configurations and events. However, now that information is in the
SysML model, it can be parsed by scripts that can generate a set of dispatch
configurations for export into FaultTree+. The dispatch status of each event is
maintained in the FMES (Failure Mode and Effects Summary) database and
can be extracted to create a list of dispatch configurations. The script loops
through each configuration, and selectively generates an export containing each
enabled dispatch event integrated into the fault logic as needed. These are then
passed on to FaultTree+ and the analysis run as usual. Being able to automate
the generation of fault logic for the different dispatch configurations represents
a considerable saving of man hours.

6 Alignment of safety and system models

Advocates of MBSE are quick to point out the improved fidelity and efficiency
of maintaining a single development model. However, as safety engineers have
traditionally modelled their understanding of the system’s fault logic with re-
spect to a hazard independently of other system models, some abstract failure
conditions may have little obvious connection to system functions. In such cases,



14 K. Clegg et al.

a realignment and reassessment of failure modes may be necessary. For exam-
ple safety engineers often model a system with respect to its redundancy and
mitigation against a hazard, thus an analysis for a dual channel control system
might query why the mitigation provided by the redundant channel has failed
in addition to the channel in control. Contrast this with the system engineer’s
perspective, which is to consider an engine protection feature in its abstract
specification first, then its implementation and finally how it is implemented
on a respective channel. In the move towards using a single SysML model for
all system development and analysis, little benefit is going to be gained unless
concept and viewpoints on the system share a common understanding and ref-
erence points. For example, rather than the top level fault logic models starting
by querying channel redundancy, they could follow where possible the functional
hierarchy provided by the system engineers and instead consider redundancy at
the level of channel implementation. Fault trees are often “richer” than system
models in that they may have to include physical or external factors that lie
outside the system’s functional specification but are required to understand how
that function could fail. In such cases it can seem there is little correspondence
between the system and safety models, but such differences can be overcome
by ensuring a flexible profile that allows links to hardware and activity models
alike from the fault logic. Visibility of the associated fault logic for functions can
then be provided to the system’s engineers without the unnecessary addition of
unrelated events that are present in the full fault tree.

7 Conclusions

In this paper we have sought to identify some of the benefits and problems
when migrating system and safety modelling under the MBSE SysML umbrella.
Through the use of lightweight bespoke profiles and user interface scripts, an-
alysts gain familiar means to input their models into the SysML repository.
The short term benefits are that analysts are able to continue with tried and
trusted analytical methods by exporting data to existing tools, with the ad-
ditional benefit of potentially time saving auto-generation of certain analyses
such as dispatch configurations. However, longer term benefit requires a more
significant shift towards a common understanding of how the system should be
specified and analysed, so that system and safety engineers can cross-reference
each others models and ensure better traceability from derived safety require-
ments. Looking longer term still, we can expect to see the OMG’s SysML 2.0
safety profile solidify to give stricter semantics within meta-models, leading to
the possibility that large parts of the fault logic could be auto-generated from
system functions and hardware models.

References

1. Adler, R., Domis, D., Höfig, K., Kemmann, S., Kuhn, T., Schwinn, J.P., Trapp,
M.: Integration of component fault trees into the uml. In: Dingel, J., Solberg, A.



Towards a SysML Profile for Safety Analysis 15

(eds.) Models in Software Engineering. pp. 312–327. Springer Berlin Heidelberg,
Berlin, Heidelberg (2011)

2. Biggs, G., Juknevicius, T., Armonas, A., Post, K.: Integrating Safety and Reliabil-
ity Analysis into MBSE: overview of the new proposed OMG standard. INCOSE
International Symposium 28, 1322–1336 (07 2018)

3. Boiteau, M., Dutuit, Y., Rauzy, A., Signoret, J.P.: The AltaRica data-
flow language in use: modeling of production availability of a multi-state
system. Reliability Engineering and System Safety 91(7), 747–755 (2006),
https://EconPapers.repec.org/RePEc:eee:reensy:v:91:y:2006:i:7:p:747-755

4. Clegg, K., Li, M., Grigg, A., Stamp, D., McDermid, J.: A SysML Profile for Fault
Trees — linking safety models to system design. In: SAFECOMP Proceedings
2019. Springer (yet to be published)

5. David, P., Idasiak, V., Kratz, F.: Automating the synthesis of AltaRica Data-Flow
models from SysML. Proceedings of ESREL 2009 1 (09 2009)

6. Day, J., Murray, A., Meakin, P.: Toward a model-based approach to flight system
fault protection. In: Aerospace Conference, 2012 IEEE. pp. 1–17. IEEE (2012)

7. Dickerson, C.E., Roslan, R., Ji, S.: A Formal Transformation Method for Auto-
mated Fault Tree Generation From a UML Activity Model. IEEE Transactions on
Reliability 67(3), 1219–1236 (Sep 2018)

8. Fletcher, S., Norman, P., Galloway, S., Burt, G.: Impact of engine certification
standards on the design requirements of More-Electric Engine electrical system ar-
chitectures. SAE International Journal of Aerospace 7(1), 24–34 (September 2014)

9. IEC 61025: Fault tree analysis (FTA). Standard, International Electrotechnical
Commission, Geneva, CH (August 2006)

10. Joshi, A., Heimdahl, M.P.E.: Model-based Safety Analysis of Simulink Models
Using SCADE Design Verifier. In: Proceedings of the 24th International Confer-
ence on Computer Safety, Reliability, and Security. pp. 122–135. SAFECOMP’05,
Springer-Verlag, Berlin, Heidelberg (2005)

11. Li, M., Batmaz, F., Guan, L., Grigg, A., Ingham, M., Bull, P.: Model-based systems
engineering with requirements variability for embedded real-time systems. In: 2015
IEEE International Model-Driven Requirements Engineering Workshop (MoDRE).
pp. 1–10 (Aug 2015). https://doi.org/10.1109/MoDRE.2015.7343874

12. Lisagor, O., Kelly, T., Niu, R.: Model-based safety assessment: Review of the
discipline and its challenges. In: The Proceedings of 2011 9th International
Conference on Reliability, Maintainability and Safety. pp. 625–632 (June 2011).
https://doi.org/10.1109/ICRMS.2011.5979344

13. Rauzy, A., Blriot-Fabre, C.: Model-Based Safety Assessment: Ratio-
nal and trends. In: 2014 10th France-Japan/ 8th Europe-Asia Congress
on Mecatronics (MECATRONICS2014- Tokyo). pp. 1–10 (Nov 2014).
https://doi.org/10.1109/MECATRONICS.2014.7018626

14. Schallert, C.: Automated safety analysis by minimal path set de-
tection for multi-domain object-oriented models. Mathematical and
Computer Modelling of Dynamical Systems 23(3), 341–360 (2017).
https://doi.org/10.1080/13873954.2017.1298624

15. Shao, N., Zhang, S., Liang, H.: Model-based safety analysis of a control system
using Simulink and Simscape extended models. MATEC Web Conf. 139, 00219
(2017). https://doi.org/10.1051/matecconf/201713900219

16. Sorokos, I., Papadopoulos, Y., Azevedo, L., Parker, D., Walker, M.: Automating
Allocation of Development Assurance Levels: an extension to HiP-HOP. IFAC-
PapersOnLine 48(7), 9 – 14 (2015), 5th IFAC International Workshop on Depend-
able Control of Discrete Systems


