
This is a repository copy of Mitigating stragglers to avoid QoS violation for time-critical 
applications through dynamic server blacklisting.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/152310/

Version: Accepted Version

Article:

Ouyang, X, Wang, C and Xu, J orcid.org/0000-0002-4598-167X (2019) Mitigating 
stragglers to avoid QoS violation for time-critical applications through dynamic server 
blacklisting. Future Generation Computer Systems, 101. pp. 831-842. ISSN 0167-739X 

https://doi.org/10.1016/j.future.2019.07.017

© 2019, Elsevier B.V. This manuscript version is made available under the CC-BY-NC-ND 
4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Mitigating Stragglers to Avoid QoS Violation for Time-Critical

Applications through Dynamic Server Blacklisting

Xue Ouyanga,∗, Changjian Wangb, Jie Xuc

aSchool of Electronic Sciences, National University of Defense Technology, China
bSchool of Computer, National University of Defense Technology, China

cSchool of Computing, University of Leeds, UK

Abstract

The straggler problem is one of the most challenging issues toward rapid and predictable response time
for applications in cluster infrastructures, leading to potential QoS violation and late-timing failure. Strag-
gler tasks occur due to reasons such as resource contention, hardware heterogeneity, etc., and become severe
with increased system scale and complexity. Speculative execution and blacklisting are the major two strag-
gler tolerant techniques, but each has its own limitations. The former creates replica task to catch up with
the identified straggler, but normally with no selection toward nodes when deciding where to launch the
backup. Ignoring server performance hinders the speculation success rate. The latter typically relies on
manual configuration, despite the fact that the ability of nodes to effectively execute tasks changes over
time. In addition, the misidentification of weak-performance nodes decreases system capacity. Combining
these two techniques, we present DSB, a dynamic server blacklisting framework which takes into account
both historical and current behavior of a server node to increase straggler mitigation effectiveness. Servers
are ranked at each time interval according to their performance in fulfilling jobs instead of their physical
capacities, and the worst performed ones got temporarily blacklisted. As a result, no new tasks/replications
are assigned to those straggler-prone nodes within the following time window. DSB also provides an alter-
native API where adjustable top k worst nodes can be blacklisted according to the ranking. The optimal k is
investigated as a trade-off between capacity loss and straggler mitigation efficiency. Results show that, the
DSB scheme is capable of increasing successful speculation rate up to 89%. In addition, it can improve job
completion time by up to 55.43% compared to the default speculator in the YARN platform. This helps to
reduce the chance of QoS violation, which is particularly important for time-critical applications.
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1. Introduction

Clusters often consist of thousands of server

nodes with different physical capacities (including

CPU, memory, disk, etc.), operational age, and ar-

chitecture [1]. These heterogeneities along with the

dynamic resource utilization and multi-tenancy re-

sult in diverse task execution performance for each

node [2], which leads to the straggler problem.

Stragglers are parallelized tasks which experience

abnormally longer duration compared with other

sibling tasks within the same job, resulting in de-

graded service response as well as reduced system

availability. For services that emphasize timely be-

havior, stragglers can cause late-timing failures [3]

and Quality of Service (QoS) breakdown [4]. Node
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execution performance, in this paper, is defined as

the measurement of effective task execution within

a node in the presence of stragglers. A server

exhibits poor execution performance indicating a

higher task straggler occurrence possibility.

Two common solutions for mitigating task strag-

glers are speculative execution and server black-

listing. Speculative execution [5] launches replica

copies for identified stragglers in an attempt to out-

pace the original task. This method is the dominant

approach used in industry practice, and are adopted

by companies including Google, Facebook, Mi-

crosoft, etc. However, the speculation scheme has

to wait until the stragglers been identified before

it can put efforts in mitigation, therefore its effec-

tiveness can be undermined by late detections. To

make things worse, since the speculator does not

exert special selection toward nodes, there is still a

chance for the replica tasks to be assigned to slow

nodes and become stragglers. Statistical analysis

conducted based on the OpenCloud dataset indi-



cates that, as high as 71.22% speculations are ac-

tually created in vain on average, ended up being

killed by the system because the stragglers are fin-

ishing first (Section 3.1). Poor speculation effi-

ciency lead to waste resources. For systems with

high utilization rate, these wasted replications may

result in a higher contention that further enlarges

the chance of straggler occurrence [6] and deterio-

rate job execution performance.

Server blacklisting is another method used to

avoid stragglers [7]. It reduces straggler occurrence

though forbidding the usage of weak nodes by con-

figuring a blacklist. The precision of weak node

identification is vital in these approaches: the false

positive results in unnecessary capacity loss while

the false negative hinders straggler avoidance per-

formance. Most methods assume that slow nodes

are static [8, 9] (i.e. server execution performance

will constantly be poor), however in practice they

can be transient. Ignoring such dynamic character-

istic limits the scheduler to make smart decisions.

In this paper we propose DSB, a dynamic server

blacklisting framework to tolerate stragglers for

time-critical applications. It functions through peri-

odically updating the cluster node ranking based on

the parallel job execution log, and always launches

tasks (both original ones and the speculative repli-

cas) on fast nodes. Our main contributions are sum-

marized as follows:

(1) Analyzing speculative execution effectiveness

with real data from a production cluster in-

frastructure. We demonstrate how node exe-

cution performance varies with time, and how

straggler behavior is influenced by such fluctu-

ation. Statistics toward successful speculation

rate and improvement potential are discussed

as well, revealing the state of the art straggler

mitigation methods are far from effective.

(2) Proposing an enhanced node execution per-

formance ranking algorithm. This algorithm

is based on our previous work that models

and ranks node execution performance lever-

aging historical tracelog data [2]. The previ-

ous method is demonstrated to be effective in

the presence of stragglers, yet faces a challenge

when dealing with failed tasks. In this paper we

make improvements toward the data collection

and filtering process. The node performance

analysis procedure is enhanced as well.

(3) Designing an execution performance aware

node blacklisting scheme. Node performance

is important in improving speculation effi-

ciency. The proposed DSB framework dynam-

ically reflects the node performance changing

trend, which enables enhanced speculation and

scheduling when dealing with stragglers. An

additional API is provided in DSB to support

the customized blacklisting, in which the rela-

tionship between the blacklisted node number

with performance improvement is analyzed.

The rest of the paper is structured as follows:

Section 2 discusses related work of speculation,

blacklisting and scheduling that targeting the strag-

gler problem; Section 3 presents the straggler prob-

lem background and the speculation limitation;

Section 4 illustrates the dynamic server blacklisting

framework design; Section 5 discusses the experi-

ment setup as well as the system implementation;

Section 6 presents the result and evaluation; Sec-

tion 7 analyses conclusions and future work.

2. Related Work

Current straggler mitigation techniques can be

divided into two main categories: avoidance and

tolerance. Avoidance based methods always occur

at the task scheduling phase [8, 10]. For example,

the MapReduce scheduler often assigns Map tasks

to nodes that store the input data in order to reduce

unnecessary network transmission [5]. The sched-

uler may also attempt to avoid scheduling tasks

onto known faulty nodes by adopting blacklisting

techniques [11, 7], in which tasks will never be as-

signed to such nodes until list removal.

The effectiveness of these approaches is de-

pendent on correctly detecting faulty nodes for

blacklisting, otherwise the system capacity will

be degraded due to the false positives. Besides,

current blacklisting practice tends to assume that

weak nodes are known by the system administra-

tor, which is not true in production environments,

and it is infeasible to conduct manual configura-

tion for clusters comprising thousands of nodes.

Some works adopt data analytics toward node per-

formance to avoid slow nodes [12], however, such

techniques are insufficient when stragglers are not

restricted to a small set of machines [13]. In ad-

dition, the node execution performance does not re-

main stable over time, and such static method is un-

able to accurately capture the most up-to-date per-

formance. There is presently a lack of a compre-

hensive framework for modeling and ranking node

execution performance that can be applied gener-

ally to Cloud datacenters.

Another type of avoidance based methods is

through efficient virtual infrastructure manage-

ment, considering orchestrating time-critical appli-

cations on Clouds [14]. For instance, a graph based

simulation method is applied to evaluate the com-

plexity of the infrastructure network in [15], and

a trust model is leveraged to figure out the Cloud
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provider with bad reputation [16]. Even the virtual

infrastructure can be planned in advance accord-

ing to the application requirements [17]. Some

other works focus on managing the infrastructure

at different phases to provide better QoS assurance,

such as the provisioning phase [18], the deployment

phase [19], and the runtime phase [20]. In addition,

several tools are developed to achieve effective vir-

tual infrastructure management [21, 22]. However,

all these work try to tackle the timing issue from

the Cloud user perspective, which is not the empha-

sis of this paper. In this paper, straggler avoidance

from datacenter infrastructures, or in other words,

from the Cloud provider perspective, is considered.

Different with straggler avoidance, tolerance is

typically performed at the application run-time.

Speculative execution [5] is the dominant approach

of this kind. It monitors the progress of each task

and launches speculative copy that performs iden-

tical work for the identified straggler. The system

will adopt whichever result that comes out first and

abandon the other instance. Speculation functions

with the assumption that the backup copy will com-

plete prior to the straggler, however, due to reasons

such as late identification or misplacement of the

replication, sometimes the straggler finishes first.

Under these cases, the scheduler will discard the

speculation and releases the computing resources

back to use, leading to a failed speculative attempt.

There exist numerous techniques which extend

the default speculative execution method in terms

of specified cases, such as for heterogeneous en-

vironment [23] and for small job’s execution (less

than 10 parallel tasks) [13]. While these works are

effective in minimizing the impact of task strag-

glers within the system, they are mainly focused on

selecting the best task candidates to make replica-

tions and ignore the impact of poor node execution

performance. It is particularly important to avoid

scheduling speculative replicas to the weak nodes,

because that practice can lead to a decreased like-

lihood for the replication to complete prior to the

task straggler. Failed speculation results in limited

improvement toward job execution as well as in-

creased resource overhead.

In terms of determining the suitable nodes for

replica placement, Chen et al. [9] consider both

data locality and data skew to develop a cost bene-

fit model based on the cluster load. Yadwadkar et

al. [8] develop a system that performs regression

using node level statistics based on a production

trace. Through periodically produces correlations

between node level status and task execution time

in the form of a decision tree, this work enhances

scheduling policy when determining which node to

run the replica in order to minimize overall job ex-

ecution. While these methods applying data analyt-

ics to identify weak nodes, they each assume that

poor performance is a static characteristic that re-

mains constant within the cluster, and is determined

by node capacity. In reality, the execution perfor-

mance of a node fluctuates over time due to factors

such as resource contention, workload heterogene-

ity, and user demand.

Beyond the speculation scheme, there exist nu-

merous methods dealing with special types of ap-

plications. For example, [24] is designed for dis-

tributed matrix multiplication. In addition, coding-

theory-inspired approaches such as [25] are ap-

plied to mitigate the effect of straggling through

embedding redundancy in certain linear compu-

tational steps, thus completing the computation

without waiting for the stragglers. Optimization

method [26] proposes an alternate approach where

the redundancy is directly embedded in the data it-

self, thus allowing the linear computation to pro-

ceed completely oblivious to the encoding schemes.

Based on these research, some work further ex-

amines whether the redundancy should be simple

replication or coding [27], and other literature such

as [28] analyzes the effect of coding and replication

on the tradeoff between cost and latency, quantifies

the effect of the tail of task execution times and dis-

cusses tail heaviness as a decisive parameter for the

Figure 1: Statistics in the OpenCloud cluster: (a) individual task duration versus job average, (b) job containing stragglers
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Figure 2: An example of a killed speculation for a Hadoop job

cost and latency of using redundancy.

3. Problem Statement

3.1. Stragglers in Real World Systems

Stragglers are intensively discussed within the

MapReduce [5] background as it is the most promi-

nent parallel computing framework for processing

large data sets within massive-scale clusters. It

mainly consists of seven steps: (1) the MapRe-

duce library forks input file into data chunks; (2)

the scheduler assigns map / reduce tasks; (3) the

mappers read key-value pairs; (4) the map func-

tions generate intermediate data pairs; (5) the re-

ducers remotely read the intermediate results; (6)

the reduce functions generate outputs; and (7) the

output files are appended. Following the above

steps, the MapReduce model automatically paral-

lelizes and distributes large-scale computation jobs

into smaller tasks running on different server nodes.

Typically, a job needs to wait for all the results

generated by its parallelized tasks, and the response

time is dependent on the last task. Ideally, paral-

lelization will make its best advantage if all tasks

generate results at the same time. However in pro-

duction systems, due to factors such as heteroge-

neous machine hardware, network latency varia-

tion, shared resource contention, and unbalanced

input sizes, stragglers will occur [29] which take

significantly longer execution time.

Straggler occurrence is analyzed using trace data

from production environments to demonstrate its

influence. The OpenCloud system at Carnegie Mel-

lon University1 is a research cluster for applications

in areas including machine learning, natural lan-

guage processing, and social networking analysis,

which normally require rapid response. The clus-

ter is composed of 116 homogeneous server nodes,

running the Hadoop platform, the de facto standard

for open source MapReduce. After applying filters

to generate a ten-month-period tracelog, altogether

18,935 jobs and 8,734,974 corresponding subtasks

were included in the analysis.

Figure 1 shows the straggler occurrence within

the OpenCloud cluster and the percentage of jobs

that experience extended durations. Figure 1 (a) is

the distribution of individual task durations com-

pared to the mean completion time of all tasks

within the same job. It is observable that, most

tasks exhibit similar duration around the average,

with a small proportion of tasks completing much

later: the longest being 10 times slower. Stragglers,

with a duration 50% larger than job average, ac-

count for approximately 5% of total tasks within

the system. Figure 1 (b) portrays the distribution of

jobs that contain stragglers: with the slowest task

exhibit more than 1.5 times duration compared to

its average. From the graph it is seen that, almost

half of the parallel jobs are influenced by the strag-

gler behavior. Such phenomenon is also identified

in other production systems such as Google [30],

demonstrating that even rare performance abnor-

malities of tasks can affect a significant portion of

1http://ftp.pdl.cmu.edu/pub/datasets/hla/dataset.html

Figure 3: Killed speculations in the OpenCloud cluster (a) numbers (b) statistics
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all jobs in large-scale infrastructure.

3.2. Speculation and its Limitations

There are a lot of related works in tolerat-

ing negative impacts brought by the stragglers,

among them are speculative execution (speculation

in short) and blacklisting. Speculative execution [5]

is commonly used in industrial clusters such as

Facebook, Google, Bing, and Yahoo!, and is been

integrated into the default Hadoop/YARN/Spark

versions as the mainstream straggler mitigation

technique. It observes the progress of each indi-

vidual task and creates replicas for stragglers. The

original straggler will not be killed upon specula-

tion, instead, the system will let the two copies

compete with each other, adopting the quicker re-

sult to shorten the overall job completion. An ex-

ample of such replication is given in Figure 2. In

Hadoop implementation, original tasks are attempts

marked with suffix 0 while speculative copies are

with suffix 1. From the “Note” column it is observ-

able that, the created speculation got abandoned in

the end due to the straggler succeeded first.

Wasted speculation that ended up being killed is

not a rare case within the system, on the contrary,

they appear quite often. Figure 3 (a) depicts the dis-

tribution of total task number (represented in blue)

versus speculation number (represented in red) ver-

sus killed speculation number (represented in yel-

low). Different jobs are listed in the x-axis, in the

descending order of the task number that the job

contains. A clear observation is made from the

graph: a large proportion of speculations are ac-

tually been killed in the end. Figure 3 (b) further

demonstrates the overall statistics of this propor-

tion: the killed speculation rate in the OpenCloud

system in average reaches as high as 71.22%, and

for almost half of all jobs, the speculative execution

is useless at all.

Figure 4: The improvement potential of the speculation in the

OpenCloud cluster for jobs with duration less than one hour

There are two approaches that can be used in or-

der to help the speculative copies to catch up with

the stragglers and to decrease the speculation fail-

ure rate. One is to assign the replicas to fast nodes

for a quicker execution, while the other is to predict

straggler occurrence according to the node execu-

tion performance. Both methods require node per-

formance modeling. In addition, if we assume the

Figure 5: Straggler rate per node (a) in a month time; (b) per day changing trend; and killed speculation rate per node (c) in a month

time; (d) per day changing trend. Each line in (b) and (d) represents a node, the legend only gives three examples due to the space
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theoretical best case performance speculation can

achieve, is to eliminate all stragglers and replace

their durations with the average job execution time,

we get the speculation performance improvement

potential. As shown in Figure 4, the huge gap be-

tween the actual execution time for OpenCloud jobs

and the theoretical optimal duration indicating an-

other 65.7% performance improvement in average

for current speculation mechanism.

3.3. Blacklisting and its Limitations

Besides speculative execution, the other popu-

lar straggler tolerant technique is through avoid-

ance. Blacklisting [11] is the representative method

of this kind, avoiding scheduling tasks onto known

faulty nodes. However, blacklisting may be insuf-

ficient when stragglers are not restricted to a small

set of machines [13]. In addition, current blacklist-

ing is often through manual configuration (such as

to configure the mapred-site.xml file in Hadoop),

which requires input from the system administra-

tor. This practice is inflexible especially when the

system scale increases.

Another challenge encountered by blacklisting is

to capture the most up-to-date node performance

when this attribute changes dynamically. Figure 5

(a) shows the data analytics result of the OpenCloud

machine behaviors within a 20-day period in Octo-

ber. The speculation rate (or straggler rate, because

the speculation will only be triggered if a straggler

is identified) for each node is balanced: every one

of them faces a 3% to 4% straggler occurrence pos-

sibility. However, if we split the performance into

daily basis as shown in Figure 5 (b), we observe

a quite different trend. On some days such as the

3rd to the 7th day, the straggler rate across different

machines are relatively the same (each line in the

graph is a machine node in the cluster), however for

other days such as the 8th to the 11th day, the per-

formance on each machine varies a lot: the weakest

performance is experiencing almost 30% straggler

rate while the others remain less than 5%. With a

static server blacklist, such characteristic cannot be

captured to achieve the best performance. Similar

trends for the speculation failure rate are also ob-

served as shown in Figure 5 (c) and (d), which re-

flect the dynamic state of the speculation efficiency.

3.4. Straggler Root-Cause and Node Performance

It is advantageous to understand the root-causes

of stragglers in order to better mitigate them us-

ing specifically-designed methods. As discussed in

previous sections, stragglers stem from numerous

reasons ranging from application related reasons

such as unbalanced input data and poorly-designed

code, to server related reasons such as heteroge-

neous machine hardware and shared resource con-

tention [29].

An investigation of correlation is conducted in

a previous study of us, using historical data to de-

rive a deep insight into the most important root

cause of stragglers [31]. Results show that, server

related reasons including high CPU/memory uti-

lization and hardware faults account for more than

60% of straggler occurrence, while data skew type

of stragglers only accounts for around 5%. This

proportion supports the importance of node exe-

cution performance to general straggler mitigation,

and motivates the proposition of DSB, the Dynamic

Server Blacklisting framework. The idea is trying

to avoid weakly performed servers through analyz-

ing task behavior per node statistics.

In addition, the DSB design is an optimization

made at the node side, it can cooperate with other

methods focusing on the application side to miti-

gate stragglers together. For example, the ones that

taking straggler root cause into consideration. DSB

is not contradicted with enhanced speculative exe-

cution or specific data skew mitigation methods.

Figure 6: (a) The monolithic and (b) the two-level scheduling architecture; (c) the DSB system model
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4. The Dynamic Server Blacklisting Design

4.1. System Model

Currently, both the speculator component and the

blacklisting technique have to work with a specific

scheduling scheme in order to complete the system

design. For the former, once the speculator identi-

fies a straggler and creates a backup, the replication

will be submitted to the scheduler as a normal task

waiting to be assigned to a node for execution; for

the latter, the blacklist provides available resources

pool for the scheduler to generate the scheduling

decision. There are many scheduler architectures in

modern Cloud datacenters such as the monolithic

scheduling and the two-level scheduling [32]. In

the monolithic architecture shown in Figure 6 (a),

all tasks run through the same scheduling logic with

a single scheduler. The Borg scheduler [33] and the

default scheduler in Hadoop version 1 [5] belong to

this kind (e.g., the JobTracker in Hadoop V1). The

monolithic scheduling is simple and uniform, how-

ever, meets bottleneck handling mixed workloads.

This is tricky when most clusters today run hetero-

geneous types of applications. The two-level archi-

tecture shown in Figure 6 (b) has been proposed to

address this problem, by separating resource alloca-

tion and task placement. The YARN scheduler [34]

belongs to this type.

Considering the decentralized nature and its ad-

vantage in scaling, we develop our DSB system on

top of the YARN architecture. Figure 6 (c) illus-

trates the system model. The key components of

the Application Master (AM), the Resource Man-

ager (RM) and the Node Manager (NM) are con-

sistent with the default YARN design. AM is in

charge of job execution, including MapReduce job

creation, request resource from RM, communicate

with NM to run containers, monitor job running

status and do speculation, etc. RM is responsible

for resource management functionalities such as re-

quest and release containers, while NM is respon-

sible for launching containers, reporting resource

usage to RM and heartbeat. Other modified com-

ponents related to the DSB implementation includ-

ing History Server that records job/tasks execution

logs and Health Checker that reports node status

and conduct server blacklisting. Additional compo-

nents such as the Execution Calculator is responsi-

ble for modeling and ranking the server node exe-

cution performance.

The dynamic server blacklisting framework

functions through two key steps detailed in Algo-

rithm 1: the node execution performance ranking

and the blacklist-based scheduling. For the algo-

rithm inputs, the “Task” element is a user defined

structure which contains attributes including tID,

jID, mID, and duration. The notion of tID is short

for taskID, and is a unique identification string.

Similarly, jID is short for jobID, indicating which

job this certain task belongs to, and mID is short for

machineID, showing the machine number this task

runs on. The notion of duration represents the ex-

ecution time of the task. Other notions used under

the DSB background are: a job J j is decomposed

into m tasks. T i
j

represents the ith task in job J j

(0 < i ≤ m). Di
j

stands for the duration of task T i
j
,

while D j is the average duration of job J j. The clus-

ter is consists of n server nodes, with Mk denoting

the kth machine in the cluster (0 < k ≤ n).

4.2. Framework Description

Key phases of the DSB framework include fol-

lowing procedures: calculating normalized execu-

tion value for tasks, building up machine execu-

tion performance model, interval-based ranking,

and blacklisting. The first step captures key features

to represent node execution performance while the

second step builds up the distribution model and

generates statistical attributes. The third proce-

dure ranks the nodes according to the attributes and

the fourth step forbids the weakest nodes from the

available resource pool. The following subsections

introduce the algorithms developed for each step.

4.2.1. Normalized Task Execution Value

Server nodes in cluster infrastructure are typi-

cally composed of different characteristics includ-

ing resource capacity (CPU, memory, disk, etc.), ar-

chitecture, and operational age. Besides these phys-

ical heterogeneities, dynamic attributes such as uti-

lization and multi-tenancy also result in diverse task

execution performance at given time for each node

within the system, such as the demonstrated strag-

gler occurrence rate shown in Figure 5. Therefore,

it is important to periodically evaluate the node ex-

ecution performance to avoid straggler occurrence

and to improve speculation effectiveness.

The DSB system uses the task execution log to

generate the node performance model through cal-

culating the normalized task durations with respect

to their own job average using Equation (1).

˜Di
j
=

Di
j
− D j

σ j

(1)

where σ j is the standard deviation of all tasks’

duration of job J j. The normalized value of task

duration is used in DSB when modeling node per-

formance, because there are always multiple work-

loads co-exist in clusters, each with a differently de-

signed duration, therefore, raw job response time

cannot be compared directly to reflect node execu-

tion performance. ˜Di
j
, on the other hand, reveals the

7



Algorithm 1 The DSB Workflow

Inputs:
{tasks}: A task set with “Task” elements
{machines}: A machine set with “String” elements

1: while True do
2: set Ω = ∅, set Ψ = ∅, set Γ = ∅
3: for each task ∈ {tasks} do
4: µ = NormalizedExecutionValue(task, {tasks})
5: ω = 〈 task.tID, task.jID, task.mID, µ 〉
6: Ω = Ω ∪ {ω}
7: end for
8: for each ω ∈ Ω do
9: for each mID ∈ {machines} do

10: if (mID == ω.mID) then
11: ψ = 〈 mID, ω.µ〉
12: end if
13: end for
14: Ψ = Ψ ∪ {ψ}

15: end for
16: for each mID ∈ {machines} do
17: init CI = 〈 Low, High 〉
18: CI =MachineExecutionPerformance(mID, Ψ)
19: γ = 〈 mID, CI 〉
20: Γ = Γ ∪ {γ}
21: end for
22: set ∆ = IntervalBasedRank(Γ)
23: BlackList(∆)
24: Sleep(TimeWindow)
25: end while

relative speed of task T i
j
, makes it possible to com-

pare the performance of tasks running on different

nodes irrespective of job heterogeneity.

The Normalized Execution Calculator compo-

nent in Application Master as shown in Figure 6 (c)

is in charge of the ˜Di
j

calculation, following Equa-

tion (1). A negative ˜Di
j
value indicates a quick task

completion while a positive ˜Di
j

represents a slower

execution because the duration of T i
j

is larger than

average. The larger the positive value, the more se-

vere straggler behavior T i
j
exhibits.

4.2.2. Machine Execution Performance Model

For each machine M within the cluster, the nor-

malized execution values for tasks that are assigned

to M within a certain time period can be used for

analyzing its execution ability during that time. If

the majority of tasks assigned are with positive˜Di
j
s,

which indicate slower executions compared with

their own average job duration, we say that M en-

counters a poor execution performance. In con-

trast, intensive negative ˜Di
j

values observed from

M demonstrate a good execution performance, be-

cause tasks assigned to this specific machine tend

to always finish quicker than the other sibling tasks

from the same job. In the DSB system, every node

holds a file consisting of following 6-tuples:

< (T i
j)s
, (T i

j)e
, IDT i

j
, IDJ j

, IDMk
,˜Di

j
>

where (T i
j
)

s
, (T i

j
)
e

and˜Di
j
represent the start time,

the end time, and the normalized execution value of

Algorithm 2 Machine Execution Performance

Inputs:
targetMID: The target machine for performance evaluation
Ψ: A set of normalized value tuples {〈 mID, µ〉}

Output:
CI: The performance confidence interval for the machine

1: set Υ = ∅
2: AvgNValue = 0, tNum = 0
3: for each ψ ∈ Ψ do
4: if (targetMID == ψ.mID) then
5: Υ ∪ {ψ.µ}
6: tNum++
7: AvgNValue += ψ.µ
8: end if
9: end for

10: AvgNValue /= tNum
11: StDevNValue = 0
12: for each υ ∈ Υ do
13: StDevNValue += math.pow((υ− AvgNValue), 2)
14: end for
15: StDevNValue = math.sqrt(StDevNValue / tNum)
16: td = TDistribution(tNum - 1)
17: a = td.inverseCumulativeProbability(0.975)
18: CI.Low = AvgNValue - StDevNValue*a/math.sqrt(tNum)
19: CI.High = AvgNValue + StDevNValue*a/math.sqrt(tNum)
20: return CI

task T i
j

that runs on machine IDMk
. This file pro-

vides input that enables the analysis of building up

the ˜Di
j

distribution model per node following algo-

rithm 2. The input {〈 mID, µ〉} is collected based

on the aforementioned file, and the target machine

is represented as targetMID in the algorithm. The

Model Builder component demonstrated in Figure

6 (c) is responsible of conducting such analysis.

In the proposed algorithm, once the probabilis-

tic distribution model has been generated, the sta-

tistical attributes such as the mean or the quantile

values can be used to evaluate node execution per-

formance. To note that, it is reasonable to assume

that each node has an equal chance to run the data

skew type of slow task, therefore from statistical

point of view, when leveraging slow task behavior

to measure node execution performance, the influ-

ence generated by data skew stragglers to each node

are at the same level, therefore can be eliminated.

In other words, if a node got blacklisted in our al-

gorithm, it is more due to its contention or tem-

porary unhealthy behavior, in which case migrate

tasks running on them is meaningful.

In the current implementation, the 95% confi-

dence interval (CI) is adopted to ascertain the like-

lihood of straggler occurrence.

4.2.3. Ranking and Server Blacklisting

The node execution performance ranking is gen-

erated in this step based on the confidence intervals,

and the Node Ranking component in Figure 6 (c) is

in charge of classifying nodes into different levels

that describe the susceptibility of straggler occur-

rence. The weakest set of nodes in the ranking or-

der will be put on the server blacklist.

In this paper, we modify a graph-based ranking
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Algorithm 3 Interval Based Ranking

Inputs:
{machines}: A machine set of “Machine” elements

Output:
{mID}: The machine ID set indicating weakest n machines

1: for each machine ∈ {machines} do
2: init machine.out = ∅, machine.int = ∅
3: end for
4: for each m1 ∈ {machines} do
5: for each m2 ∈ {machines} do
6: if (m1.mID != m2.mID) then
7: if (m1.CI.High 6 m2.CI.Low) then
8: m1.outEdge = m1.outEdge ∪ {m2.mID}
9: m2.inEdge = m2.inEdge ∪ {m1.mID}

10: end if
11: end if
12: end for
13: end for
14: {mID} = ∅
15: for each m ∈ {machines} do
16: if (m.outEdge == ∅) then
17: {mID} = {mID} ∪ {m.mID}
18: end if
19: end for
20: return {mID}

algorithm named P-Cores [35] to rank the perfor-

mance CIs by constructing a directed acyclic graph

(DAG). Cluster machines are represented as the

nodes in the DAG while the edges indicate the se-

quence of the CIs. The principle adopted to deter-

mine the construction of the sequence edge is given

in Algorithm 3: if [L1, H1] and [L2, H2] represent

the performance CIs of machine M1 and M2 respec-

tively, with Li and Hi to be the low and the high

bound of the CI, there will be an edge from M1 to

M2 only when L2 > H1. CI overlaps will not lead

to an edge under this construction.

It can be inferred that, if a machine is with no

outward edge, it is the current weakest node be-

cause its CI is larger than the others, indicating a

frequent straggler occurrence and a severe tailing

behavior. It is common that the CIs could overlap

with each other, which means the performance dif-

ference between the two compared nodes is not that

remarkable. Our previous published case study [2]

ranks Google nodes using CI as the indicator which

classifies Google nodes into 5 performance levels.

Results show that, the weakest level 0 nodes ac-

counts for 0.83% of the total population. The ma-

jorities are the middle levels (level 1-3 in the case

study), accounting 98.73% in total. The nodes in

the same level exhibit similar performance due to

the fact that their CI is overlapped. This proportion

is consistent with the intuitive sense, and our goal

is to blacklist the weakest nodes that show obvious

performance differentiation compared to others.

As long as the ranking has been generated at each

timestamp, the DSB framework can then periodi-

cally blacklists the weakest-performed nodes from

the cluster function set to improve job execution

time as shown in Algorithm 3. The input “Ma-

chine” element is a user-defined structure that con-

tains attributes of mID and its performance CI. The

P-Cores algorithm repeatedly records the weakest

nodes at each iteration (the ones without any out-

ward edges in the DAG), removes them from the

graph with all related inward edges until there are

no remaining nodes. The level zero nodes represent

the ones that are removed at the first iteration, and

are the weakest ones among all. The default server

blacklisting policy as demonstrated in Algorithm 3

returns all level zero nodes at the time when the

procedure is called, termed as the P-Cores without

number policy.

In extreme cases that all CIs are overlapped with

each other and there is no obvious weak node, we

can either blacklist no nodes or specify a certain

number to blacklist depending on customized pref-

erence, in either case the algorithm still works.

Next section discusses the partial blacklisting as the

supplement of the default server blacklisting policy,

termed as the P-Cores with number policy.

4.2.4. Partial Blacklisting as a Supplement

The automatic server blacklisting method can

help reduce the administrative burden of setting the

predefined blacklist size, guarantees that all weak

nodes can be prohibited to reduce the straggler pos-

sibility. However, under extreme cases when the

cluster size is small, this policy has a risk of hin-

dering system capacity due to no control of the ex-

act server number that been blacklisted. For exam-

ple, in special cases when all machine CIs are over-

lapped with each other, making the DAG contains

no edges but only scattered points, the P-Cores

without number policy will rank all nodes as level

zero ones and blacklists all available machines.

In order to solve this problem, DSB introduces

the P-Cores with number blacklisting policy as an

alternative complement, which generates the top k

weakest nodes. It uses standard deviation and the

mean value as two vice indicators to help with the

ranking procedure. When the number of level zero

nodes surpasses a certain threshold, we will fur-

ther rank them in descending order of the StDev

value and of the mean value, respectively. The

top k nodes in the intersection of these two rank-

ings are selected as forbidden servers. For exam-

ple, if the automatic ranking classifies ten level zero

nodes while the system configuration only allows at

most six nodes to be removed from the working list

considering capacity loss, the P-Cores with number

policy would rank these ten nodes according to ˜Di
j

StDev and ˜Di
j

mean. If the descending order of the

StDev is M1, M2, M3, M4, M5, M6, M7, M8, M9,

M10 while the descending order of the mean is M1,

M2, M3, M4, M5, M7, M6, M8, M9, M10, the inter-
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section of the top six of these two ranking are M1,

M2, M3, M4, M5. These five nodes will be added

to the server blacklist. As for the sixth nodes, the

P-Cores with number policy would randomly pick

either M6 or M7 because these two are the sixth

nodes from the two ranking. The idea supporting

the random choice of the controversial item in the

intersection is from Sparrow [36], which adapts the

power of two choices load balancing technique [37]

to the domain of parallel task scheduling.

The heuristic for this partial server blacklisting

is that, nodes with weaker performance will result

in a more random task execution behavior, charac-

terized by a larger ˜Di
j

StDev, and a longer execu-

tion time for most tasks, characterized by a larger
˜Di

j
mean. Through this alternative policy, users can

control the blacklisted node number.

The last (but not least) procedure of the DSB

design is releasing nodes from the server black-

list. The methodology adopted here is that, at each

time period, the ranking result will be re-calculated

based on the behavior of all available servers in the

system, including the ones in the blacklist. This

policy implies a release action: as long as the per-

formance ranking of the blacklisted nodes can sur-

pass some current working nodes, they can then be

removed from the blacklist in the upcoming time in-

terval. Refer back to Algorithm 1, at the beginning

of each iteration, all related sets, such as the task

set Ω and the normalized value set Ψ per machine,

are all initialized as empty sets so that the calcula-

tion can involve information of the newly generated

tasks as well as the servers in the blacklist during

the past time interval.

5. Experiments

5.1. Experiments Setup

In order to verify the generality of the proposed

framework, two testbed environments are used for

our experiments. The first one is a 30 virtual ma-

chine (VM) cluster built on top of the OpenNebula

platform2 with typical VM configuration to be 1 GB

of memory, 1 virtual core with 2.34 GHz capac-

ity, and 10GB disk space on potentially shared hard

drive. The VMs use KVM virtualization software

and run the Ubuntu 12.04 x86 64 operating system.

Another testbed is a 20 VMs cluster build on top of

the ExoGENI infrastructure3 with 2 XOLarge VM

and 18 XOMedium VM (detailed configuration of

each VM type can be found in4), run the CentOS

6.7 operating system.

In all experiments, we configured the HDFS to

maintain two replicas for each data chunk. The job

types for the experiments include WordCount and

Sort, which are given in the original Hadoop distri-

bution5. We use these two workloads because they

are the main benchmarks used in Google’s MapRe-

duce paper [5] and in the LATE [23] paper for eval-

uating Hadoop performance. In addition, we con-

figured the container sizes for both map and reduce

tasks to be 1GB of memory, and the node capacity

to be 2GB. In the ExoGENI cluster, we configured

an Ambari6 system to monitor and to manage the

cluster utilization. Figure 7 shows the system uti-

lization of ExoGENI cluster, with Figure 7 (a), (b),

and (c) to be the CPU, the memory, and the net-

work usage, respectively, when no user program is

2http://opennebula.org/
3http://www.exogeni.net/
4https://wiki.exogeni.net/doku.php?id=public:experimenters:resource types:start
5http://hadoop.apache.org/
6https://ambari.apache.org/

Figure 7: The CPU, memory, and network utilization of the ExoGENI cluster with (a)(b)(c) no user program running, respectively;

and with (d)(e)(f) user workload running
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Table 1: The VM Configurations for Experiment Clusters

OpenNebula ExoGENI OpenNebula 2
VM Number 30 20 30

Injected
CPU Fault

10.1.0.27, 10.1.0.28, 10.1.0.29 node1, node2 10.1.0.27
10.1.0.30, 10.1.0.31 node3 10.1.0.28

Injected
Mem Fault

10.1.5.62, 10.1.5.63, 10.1.5.64 node4, node5 10.1.5.62
10.1.5.65, 10.1.5.66 node6 10.1.5.63

running. And Figure 7 (d), (e), and (f) show the

utilization changing situation when experiments are

conducted, from which we observe the influence of

blacklisting and speculation toward system capac-

ity and job execution.

We injected “faults” into the system to simulate

a realistic environment with node performance het-

erogeneity. We tested three cases with different

numbers of weak nodes through creating extreme

resource contention situations on certain VMs. A

CPU intensive program which continuously calcu-

lating the π value, and a memory intensive tool

which intensively create arrays to occupy memory

are developed. The detailed deployment configura-

tion for these three environments is shown in Ta-

ble 1. In the OpenNebula cluster, VMs are referred

with their private IP address while in the ExoGENI

cluster, VMs are referred with their host names.

5.2. Implementation

To minimize overhead, we leverage existing in-

terfaces provided by the YARN platform when im-

plementing the DSB framework. Two key compo-

nents of the DSB system are the Normalized Execu-

tion Calculator and the Node Health Checker. For

the former, we use the History Server Rest API to

collect job execution log details in order to gener-

ate the task normalized value within a certain time

frame. Attributes of interest include JobID, TaskID,

AttemptsID (indicating whether this attempt is a

speculation or an original task), SubmitTime, End-

Time, Status (success or been killed), MachineID,

etc. Relevant syntax can be found through the on-

line manual7 of Apache Hadoop.

For the latter component, the Node Healthy

Checker mechanism provided by YARN is utilized,

which functions through specifying a user-defined

script. When the given condition is fulfilled, the

script will generate a message with an “ERROR”

heading to report the unhealthy status of the node.

One example is shown as follows: when the script

detects the existence of the flag file, the reported

“ERROR” message will be detected by the YARN

NM, triggering the built-in mechanism to put this

specific node into the blacklist. In other words, no

7http://hadoop.apache.org/docs/r2.4.1/hadoop-yarn/hadoop-

yarn-site/HistoryServerRest.html

upcoming tasks will be assigned to this node until

the next script iteration.

The Weak Node Report Script

#!/bin/bash
if [-f machineID.txt] then
echo “ERROR, this node is a weak performance one!”
end if

Through this implementation, we make sure

that the additional modification toward the default

YARN system is minimized. The major overhead

comes from three steps: (1) the normalized value

calculation; (2) the performance CI calculation; and

(3) the P-Cores ranking calculation. The first two

calculations are both at linear complexity with task

numbers per job and per node. The time window

(mapping to the parameter in the REST API) can

be adjusted to control the number of history jobs as

the input. The last calculation is conducted on the

number of nodes, which is small in size compared

to the number of tasks (in practice, this number is

usually between 100 to 10,000 depending on differ-

ent cluster scale). Besides, the Model Builder and

the Ranking component can be deployed in other

nodes rather than the NameNode to further reduce

the overhead, as shown in Figure 6.

We run the Sort job on the same input in the Ex-

oGENI cluster with (1) the default YARN setting,

and with (2) the DSB setting configured as no node

to be blacklisted, to discuss the DSB overhead. The

job execution time result for the default YARN is

299.67s in average, with a StDev of 13.9 (301s,

316s, and 282s), while for the DSB system, dura-

tion results are 307s, 283s, and 294s (Avg: 294.67s;

StDev: 9.8). This indicates minimal overhead gen-

erated by the DSB design.

6. Evaluations

This section evaluates the effectiveness of the

proposed DSB framework by measuring three key

performance improvements: the node ranking re-

sults to show whether the weak nodes are success-

fully detected; the execution time results to demon-

strate the performance in improving job response

times; the successful speculation rate results to il-

lustrate how it benefits straggler mitigation. The

latter two are chosen because the two common per-

formance metrics for distributed job execution are
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Table 2: Job Execution Time Results with DSB and YARN Speculator

With No Weak Nodes With Weak Nodes

DSB (seconds) YARNspeculator (seconds) DSB (seconds) YARNspeculator (seconds)

Execution 183 160 155 151 154 160 468 451 409 529 531 511

Time of the Avg 166 Avg 155 Avg 443 Avg 524

Sort StDev 12 StDev 4 StDev 25 StDev 9

Workload Improvement -7.09% Improvement 15.47%

Execution 74 72 71 75 73 76 89 100 109 141 137 106

Time of the Avg 72 Avg 75 Avg 99 Avg 128

WordCount StDev 1 StDev 1 StDev 8 StDev 16

Workload Improvement 3.13% Improvement 22.40%

1) Latency, measuring the execution time, and 2)

Cost, measuring the resource usage. In our evalu-

ation, latency is measured in its standard manner

while cost is measured in the form of successful

speculation rate. Besides these two common indi-

cators, the evaluation toward the node ranking re-

sult is needed because this is the key procedure of

DSB, and this is also an important measurement for

blacklisting based methods.

6.1. Node Ranking Results

Node ranking result is the foundation of the DSB

framework which directly influences the system

performance. Misidentifying of the weak nodes

leads to capacity loss with no benefits toward job

execution time and speculation effectiveness. Fig-

ure 8 shows the box plot of all tasks’ normalized

execution value given in Equation (1) per node for

the three cluster configurations after an hour, which

gives insights toward the node execution ability.

From the results it is observable that, in the

first OpenNebula cluster, node 10.1.5.62, 10.1.5.63,

10.1.5.64, 10.1.5.65, 10.1.5.66 are with obvious

higher performance CIs (observed from the normal-

ized value distribution, the average and the standard

deviation are both larger than the other nodes). This

result precisely flagged out all the nodes with mem-

ory interference program running on top. The re-

sults in the ExoGENI cluster and the OpenNebula 2

cluster exhibit similar trend: for the former, node4,

node5, and node6 are identified, while for the latter,

the node of 10.1.5.62 and 10.1.5.63 are flagged out.

The nodes with injected memory fault are success-

fully ranked as the worst performed nodes by the

DSB system, which is consistent with the fact.

In addition, in Figure 8 (b), it is observable

that the nodes with injected CPU fault (namely

node1, node2, and node3) are exhibiting the sec-

ond largest performance CIs, ranked weaker than

the rest within the cluster. However in Figure 8 (a)

and (c), this observation is not as clear. For example

in Figure 8 (a), node 10.1.5.71 performance worse

than 10.1.0.28 during the one-hour experiment pe-

riod. This reveals a fact that, for the YARN sys-

tem with WordCount and Sort workloads, the con-

tention for memory is the major cause of the strag-

gler behavior rather than the contention for CPU.

6.2. Execution Time Performance

The overall job execution time is dependent on

the duration of its last parallel task. When a subset

of parallelized tasks is assigned to nodes with poor

execution performance, they have a larger chance

to become stragglers which lead to an extended job

response. For applications that emphasize timing

constraints, this response extension may break ser-

vice QoS and cause late timing failures. After ap-

plying the DSB framework in the OpenNebula clus-

ter, we get an improved job response result shown

in Table 2.

From the results we see that, for system configu-

ration with no weak nodes (consists of only homo-

geneous default VMs without any injected faults),

the response time improvement is limited: only

3.31% on average for the WordCount job. And for

the Sort job, the DSB system even results in de-

teriorated execution: -7.07% on average. This is

because when nodes are exhibiting similar execu-

tion performance such as the 3rd to the 5th day in

Figure 8: The node performance ranking within (a) the OpenNebula cluster; (b) the ExoGeni cluster; and (c) the OpenNebula 2 cluster
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Figure 5, and when cluster size is limited, black-

listing nodes can sometimes hinder system capac-

ity, which is more important for job execution per-

formance compared with the negative impact of

stragglers. On the contrary, the DSB framework

functions well for the cluster with heterogeneous

node execution performance: 15.47% and 22.4%

improvement for Sort and WordCount job, respec-

tively, are observed. The improvement value is

calculated following Equation (2), with DDS B and

DYARN speculator stand for the average job duration in

the DSB system and in the original YARN system,

respectively. The execution average and standard

deviation are calculated based on three experiment

runs for each test case listed in Table 2.

Improvement =
DYARN speculator − DDS B

DYARN speculator

(2)

The results in Table 2 are generated under the

P-Cores without number blacklisting policy. That

is to say, all level zero nodes identified by the au-

tomatic ranking algorithm are blacklisted. During

the experiments listed in Table 2, this number is

ranging from 2 to 5 in the 30 node OpenNebula

cluster, indicating a 7% to 20% weak node percent-

age. We have tested the additional P-Cores with

number policy through controlling the parameter of

the prohibited node number as well. The job re-

sponse time in the ExoGENI cluster is evaluated,

with the number of blacklisted nodes ranging from

0 to 5. Zero blacklisted node represents the com-

parison standard of the default YARN performance.

The results are detailed in Figure 9. From the re-

sults it is observable that, three (15%) is the optimal

number of k when determining the number of weak

nodes to be blacklisted under this system configura-

tion, with an average improvement for job response

time being 55.43%. If we blacklist 5 nodes from

this 20-node cluster (in other words, 20%), the ex-

ecution time will be increased by 35.75%. This is

due to the fact that, if the number of the blacklisted

nodes is too small, the machine with high straggler

occurrence possibility will continue to hinder the

job execution, while on the other hand, if this num-

ber is too large, it will make the system suffer from

the capacity loss. And in this experiment case, the

number of three covers all VMs with injected mem-

ory fault (weak nodes), which is consistent with the

node ranking result.

6.3. Successful Speculation Performance

Another important improvement of the DSB

framework is its effectiveness in reducing the killed

speculation rate. Bearing the principle of assign-

ing speculative replications to fast nodes to enlarge

their chance of surpassing the stragglers, DSB is

Figure 9: The average job execution time (with standard devi-

ation) with different number of blacklisted nodes in ExoGeni

cluster

Figure 10: The successful speculation rate with different number

of blacklisted nodes in the OpenNebula cluster

effective in improving successful speculation per-

formance. Detailed results are listed in Figure 10.

The average successful speculation rate is 63.8%,

65.33%, and 62.83% for 1, 2, and 3 blacklisted

nodes (3%, 7%, 10%), respectively. Compared to

the current successful speculation rate in real world

systems, which is less than 30% as analyzed in pre-

vious sections, the performance is doubled.

It is also observable that, after we further black-

list 4 to 5 nodes, the successful speculation rate in

DSB system increases to almost 90%. This is be-

cause for situations when only a partial of weak

nodes are prohibited, there is still a chance for the

speculations to be assigned to servers with poor ex-

ecution performance. And this problem is elimi-

nated after the number of blacklisted nodes covers

the majority of the weak ones. All the average and

the standard deviation values listed in Figure 10 are

calculated based on three execution runs for each

case to eliminate randomness. In addition, we did

not include evaluation for more than 6 blacklisted

nodes in the figure, because the maximum number

of weak nodes identified by the DSB framework us-

ing the automatic P-Cores without number policy is

5, and there is no point to blacklist normal nodes.
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7. Conclusion and Future Work

The response time of parallel jobs such as

MapReduce can be significantly prolonged by

stragglers, due to the fact that the job needs to wait

until the last task to finish before it can generate the

final outcome. The state-of-the-art straggler mitiga-

tion method is speculative execution, which creates

task replicas for identified stragglers. However, ob-

servations made based on production clusters show

that current speculation mechanism has a high fail-

ure rate, and the improvement of service response

is far from the theoretical optimal.

In this paper we propose DSB, a dynamic server

blacklisting framework that avoids scheduling tasks

to nodes which exhibiting weak execution perfor-

mance, through which we manage to decrease sus-

ceptibility to straggler occurrence and improve job

response time. Core contributions are:

• Demonstrated that current straggler mitigation

method is far from effective. Data analytics

result based on OpenCloud cluster show that

the failed speculation rate reaches as high as

71.22% in average, leads to a dramatic re-

source waste, and there is still another 65.7%

improvement potential for job response times

under current speculation scheme. We also

demonstrated that machine performance re-

garding parallel task execution and straggler

occurrence are dynamic attributes of server

node which chenge over time.

• Proposed a node execution performance mod-

eling and ranking algorithm, which analyze

node ability in terms of parallel job execution.

Weak nodes influence parallel job execution

by enlarging the possibility of the straggler be-

havior, and can limit speculation efficiency by

hindering successful replications. This algo-

rithm helps to identify the weak nodes through

dynamically adjust the ranking at each times-

tamp, and leverages information that collected

by the default YARN system to minimise the

overhead on additional monitoring.

• Developed a performance-aware dynamic

server blacklisting framework. The period-

ically updated straggler possibility per node

analytics accurately reflect the newest system

state, and the ranking result enables the en-

hanced blacklisting as well as the speculation.

We have integrated the DSB framework into

current YARN system, leveraging the node

healthy checker mechanism. Results show that

DSB can improve job completion time up to

55.43% compared to the default YARN spec-

ulator, and is capable of increasing successful

speculation rate up to 89%.

Meanwhile, there remain many challenges, for

example, there are too many causes that lead to

the straggler problem, and some stragglers cannot

be solved purely using speculative execution such

as the data skew caused stragglers: because of the

replication nature, the newly created speculations

would still suffer from the imbalanced input and

become a straggler again. We have some initial

attempts in identifying root causes for stragglers

in [6]. This paper is mainly an optimization for

general stragglers that cooperates with the specu-

lative execution scheme, which predicts node per-

formance and avoids assigning tasks/speculations

to slow servers. Further improvement could in-

volve developing approaches to find the root cause

for each straggler so that DSB could intelligently

decide the most appropriate straggler mitigation

method to work with, such as the algorithm specif-

ically dealing with reasons such as data skew in

MapReduce[38] rather than simply cooperates with

speculative execution.
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